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ABSTRACT 
 

A new calibration algorithm using only angles is presented. 
The proposed algorithm is based on the simple idea of the 
invariance of angles under the similarity transformation. 
Stratified calibration approaches using various scene 
constraints including angles have been proposed. However, 
the proposed algorithm uses only one type of scene 
constraint of angle, while directly recovering Euclidean 
structure from projective structure. We demonstrate the 
feasibility of the proposed algorithm through the 
experiment using synthetic and real images. 
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1. INTRODUCTION 
 

Recent interesting applications such as virtual reality and 
augmented reality need metric information from image 
streams. The metric recovery of 3D scene structure from 
image sequences requires the calibration of cameras. 

Classical calibration algorithms [1, 2] compute the 
relative positions of the cameras and their intrinsic 
parameters using a priori known 3D coordinates of points 
on a calibration target. After the calibration is done, we can 
compute Euclidean coordinates of scene points through the 
triangulation of the corresponding points between images. 
The need of calibration target limits its application in 
various areas such as varying cameras, on-line calibration, 
and 3D recovery from old video sequences. Therefore, the 
need of more relaxing calibration algorithm appears. The 
research toward this goal has been done in two directions: 
one is the calibration algorithm through the scene 
constraints other than the absolute 3D coordinates, and the 
other is the self-calibration that only requires 
correspondences among images.  

In this paper, we focus on the calibration algorithm using 
scene constraints other than the absolute 3D coordinates. 
Faugeras [3] presented various scene constraints for the 
metric recovery of a scene, and he proposed a stratified 
framework: from projective to affine, and finally to 
Euclidean. He shows the relation between the image of the 

absolute conic and known angle between two optical rays, 
which is a second order polynomial equation on the 
unknown coefficients of the image of the absolute conic. 
This relation is applicable to the known angle of lines 
between optical rays. To apply this as the constraint for 
the calibration using known angles between lines in 3D, the 
algorithm requires the information about the plane at 
infinity. Therefore, the algorithm presented by Faugeras [3] 
takes the form of stratified fashion. 

In [4], experimental results by the algorithm described in 
[3] using real images are presented. They recovered affine 
geometry of a scene by computing a plane at infinity, 
which is determined from the vanishing points of the 
images of three sets of non-coplanar parallel lines. They 
recovered Euclidean structure of a scene up to a global scale 
using a priori information of some pairs of orthogonal lines. 
Boufama et al. [5] presented a calibration algorithm using 
scene constraints such as fixating a point, laying on the 
horizontal plane, vertical alignment and the distant between 
points in 3D, and they directly estimate the transformation 
matrix between the projective and the Euclidean using those 
scene constraints. 

We present a calibration algorithm that only requires one 
type of scene constraint of known angles. The proposed 
algorithm directly recovers Euclidean structure of a scene 
up to the similarity transformation from projective 
structure using angles.  
 
 

2. RELATED CALIBRATION METHODS USING 
ANGLES 

 
In this section, we review the calibration algorithm of 

Faugeras [3] and Faugeras et al. [4] and compare them with 
the proposed method.  

In [3], he first shows the relation between the image of 
the absolute conic and known angle between two optical 
rays. A conic ω  is a curve defined by the locus of points 
on the projective plane and it satisfies the equation 

 

( ) 0
3

1,

== ∑
=ji

jiij xxaS x             (1) 

 



where ija  is symmetric with respect to i and j. The matrix 
form of Eq.(1) is  
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where W is 3X3 symmetric matrix and defined up to a scale 
factor.  

The angle between two optical rays in projective space 
can be defined using the Laguerre formula [6]. Let m and n 
be two image points and <C, m> and <C, n> be the two 
optical rays as shown in Fig. 1. Let α  be the angle two 
optical rays forms. ∞M  and ∞N  are the points of 
intersection with the plane at infinity by the two optical 
rays. U and V are the two points of intersections of the line 
< ∞M , ∞N > with the absolute conic Ω . The cross ratio 
{ }VUNM ,:, ∞∞  is preserved under the projection to the 
retinal plane. The angle between <C, m> and <C, n> is 
given by { }( )vunm ,;,log21 i  by the Laguerre formula. u 
and v are the images of points U and V. To obtain an angle 
we need the coordinates of u and v in the image plane. u 
and v are two intersection points of the line <m, n> with 
the image ω  of the absolute conic. Line <m, n> can be 
represented by nm θ+ . The variable θ  is the projective 
parameter of line <m, n>. The points u and v should lie on 
the image ω  of the absolute conic. From this we obtain 
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Let 0θ  and 0θ  be the two roots that are complex 

conjugate and they are the projective parameters of u and v.  
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From the above equation, we can represent an angle α  
as  

( )
( ) ( )nm

nm

SS

S ,cos −=α                 (5) 

When we know the angle α  between two optical rays 
we can use it as estimating the image ω  of the absolute 
conic. According to Eq. (5) this gives the following 
constraint on the coefficient of the equation of ω: 

 
( ) ( ) ( ) α22 cos, nmnm SSS =          (6) 

 
ω  is consisted of five independent parameters so that we 
need at least five angles between optical rays. 
 

 

 

 

 

 

 

 

 

 

Fig. 1 The angle between two optical rays <C,m> and 
<C,n> by using the image of the absolute conic 

 
Eq. (6) is a second order polynomial equation for the 

unknown ω , thus we should solve the system of second 
order polynomial equation to obtain ω . To apply this 
constraint for the calibration using angles between lines in 
3D, Faugeras [3] suggests a stratified approach.  

In the stratified approach of Faugeras et al. [4], they first 
recover affine geometry using a priori information such as 
3D parallel lines, and then they recover Euclidean geometry 
of the scene up to a global scale factor using a priori 
information such as 3D angles between two lines in 3D. 
They recover sequentially projective structure, affine 
structure and Euclidean structure up to a global scale using 
a priori information according to the each step.  

These approaches [3, 4] recover a metric structure in a 
stratified fashion and need various scene constraints 
according to each step. On the other hand, the proposed 
method recovers the homography matrix that directly 
relates projective structure and Euclidean structure without 
intermediate processes. 
 
 

3. CAMERA CALIBRATION USING KNOWN 
ANGLES 

 
The projection of a 3D scene point onto the image plane 
can be thought as a sequential step. First, there is a rigid 
body transformation between the world coordinates wX  
and the camera-centered coordinates cX . The next stage is 
perspective projection of cX  onto x in the image plane. 
Finally, the image coordinates x are converted to the pixel 
coordinates ( )T

vu 1,,=m . These processes can be 
represented as: 

weucXPm =                   (7) 

where 
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eucP  is the camera projection matrix for a perspective 
camera. uα and vα  are the scale aspect of the x and y axis 
in the image, γ  is a skew factor, and 0u  and 0v  are the 
image coordinate of the principal point. 0P is the 
perspective projection matrix. In this projection under the 
pin-hole camera model, lens distortion is not considered. 
We assume that the skew in the camera is negligible: 
 

 0=γ             (8) 
 

We can reconstruct a given scene up to the projective 
transformation only using corresponding points between 
images [8, 9]. In this case the projection equation is given 
by  
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where i
jm  is a 3x1 vector representing the j-th point in 

the i-th image, i
projP  is a 3x4 projective projection matrix 

of i-th camera, Q is a 4x4 nonsingular homography matrix 
in 3P  and j

projX  is a 4x1 projective structure in 3P . 
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Any nonsingular 4x4 matrix satisfies Eq. (9), therefore 
there could be infinite projective reconstructions that 
satisfy the correspondences. Among those Q matrices, 
there exist a unique Q matrix that transforms the projective 
structure to the Euclidean structure. Through this unique Q 
matrix we can calibrate each camera and reconstruct a 3D 
scene up to similarity transformation. Such a Q matrix 
satisfies the following relations: 
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where j
eucX  is a metric structure of a 3D point. 

In general, the matrix Q consists of 15 parameters 
considering scale. We can further limit its element by 
selecting the world coordinate at the first camera’s optical 
center. If we set the world coordinate system at the optical 
center of the first camera, we can obtain the projective 
projection matrix and the Euclidean projection matrix as 

[ ]333
0 0IP Xproj =  and [ ]30

0 0AP =euc . If we substitute 
these relations into Eq. (10), we can obtain the element of 
Q matrix: 

[ ] [ ]

( ) 







≅∃⇔

≅⇔≅

4321

30
4321

33330
00

qqqq
qqqq

Xprojeuc

0A
Q

Q0I0AQPP

  (11) 

Since Q is defined up to a scale, we can represent it as: 
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Finally the matrix Q is consisted of the intrinsic 
parameters of the first camera and the coefficient of plane 
at infinity, ( )321 ,, qqq .  

Next, we describe an algorithm for computing unknown 
matrix Q using known angles. Let us assume three points B, 
C and D are specified with their world coordinates 

B
wX , C

wX  and D
wX  as shown in Fig. 2. If we set the world 

coordinate at the optical center of the first camera and if we 
know Q matrix in Eq. (10), we can have Euclidean structure, 

B
wsX , C

wsX  and D
wsX , up to a global scale. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 The configuration of the imaging system 

 
Since the Euclidean structure is recovered up to a scale, 

angle formed by the three points is invariant under the 
similarity transformation: 
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Set 1−Q  and the projective structure of j-th point as: 
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where T
i
−Q  is the i-th row of 1−Q . 

By substituting Eq. (14) into Eq. (10), the Euclidean 
structure of j-th point can be represented as the 
combination of unknown matrix Q and known projective 
structure. 
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Using Eq. (15), we can derive a following constraint to 
compute unknown matrix Q using the known angle BCDθ . 
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Therefore, scene constraints - the angle invariance under 
similarity transformation - can be translated to a constraint 
on the intrinsic parameters. Eq. (16) is used to obtain the 
Euclidean projection matrix from the projective one. A 
nonlinear least squares method provides an approximate 
solution by minimizing the following criterion: 
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Each known angle from three points gives one constraint 
for the calibration. We use the Levenberq-M arquardt 
method [10] to solve the nonlinear minimization problem. 
An algorithm for the computation of the initial values for 
( )321 ,, qqq  is presented in the next section. 

Projective reconstruction is done as follows. First, we 
compute the Fundamental matrix from correspondence 
between images using the method in [12]. We can compute 
the projective projection matrix from the Fundamental 
matrix, and finally we obtain the projective structure 
through the triangulation [7]. Projective reconstructions 
between two views have different projective basis, 
therefore it is necessary to equalize the projective 
reconstruction in a common basis. For this, we use the 
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method in [13]. Intrinsic parameters and extrinsic 
parameters are computed through the decomposition of the 
estimated Euclidean projection matrix [14]. 

 
 

4. INITIAL VALUES FOR THE NONLINEAR 
MINIMIZATION 

 
We need initial values to run the nonlinear minimization. 
The cost function of Eq. (17) has many local minima. Thus 
it is important to have good initial values close to the true 
ones to guarantee the convergence. The initial values by [11] 
often do not guarantee the convergence. This is due to the 
fact that a least-squares solution using the assumption that 
intrinsic parameters are constant under the varying cameras 
makes the initial values even worse. We propose a new 
initialization method for ( )Tqqq 321 ,,  using only two 
views. 

Euclidean projection matrix can be represented as:  
[ ]iii

i
euc tRAP =  

where iA  is the matrix consisted of the intrinsic 
parameters, iR  is rotation matrix and it  is translation 
vector. Now, if we denote ∗Q  as the first three columns 
of the matrix Q, we can derive following relation from Eq. 
(10). 
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From Eq. (18), it follows 
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iω  is the dual image absolute conic and Ω  is the 
absolute dual quadric. 

From Eq. (19), we obtain 
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We assume that the intrinsic parameters are constant 

through the first and the second camera. We use f computed 
from the algorithm proposed in [11], and take the initial 
values of the principal point as the center of the first image. 
Then, we are left with four unknowns iλ , ( )Tqqq 321 ,,  
and Eq. (20) provides 6 equations. We compute the 
unknowns using four equations. Thus, we avoid the false 
initial values by least-squares using overconstrained 
equations. Experimental results support this fact. 
 
 

5. EXPERIMENTAL RESULTS 
 
Comparison with Tsai calibration algorithm 
 
First we compare the proposed algorithm with Tsai’s [1] 
calibration algorithm. Fig. 3 shows an input image sequence, 

which are captured while changing the position and the 
focus of camera. For the Tsai calibration, we used the 75 
points on the calibration box, and 15 control angles for the 
proposed calibration algorithm.  

Table 1 shows the initial values of ( )321 ,, qqq  by the 
method in [11] and by the proposed algorithm. The true 
values of ( )321 ,, qqq  are (-50.5, 12.33, -36.3). The 
method in [11] employs least-squares and presents a linear 
algorithm. We used 2~6 images for the least-squares 
solutions of the algorithm in [11]. The proposed method 
for the initial values of ( )321 ,, qqq  provides two solutions 
at a fixed focal length. The proposed algorithm gives more 
accurate initial values, which guarantee the convergence of 
gradient-based search. The initial values computed by the 
method in [11] are often far from the ground truth values 
and result in a a local minimum. 

Table 2 shows the intrinsic parameters computed by the 
proposed and Tsai’s calibration algorithm, respectively. 
We can observe that both results are comparable each other. 

Tables 3 and 4 show the rotation and the translation 
parameters computed by the proposed and Tsai’s 
algorithm. Specifically, the proposed algorithm computes 
the rotation and the translation by decomposing the 
estimated Euclidean projection matrix. In Table 3, the 
relative error of the rotation parameters with respect to the 
Tsai algorithm is presented. Table 4 shows the angular 
directional error of the estimated unit translation vector to 
the Tsai algorithm. Our angle-based algorithm computes 
accurate motion parameters, which are comparable with 
those by the Tsai algorithm, only using known angles 
between lines. 

We reconstruct the given scene up to the similarity 
transformation. Fig. 4 shows the texture-mapped 3D 
structure with a proper scale, which is selected arbitrarily 
for display purpose. We can observe that the estimated 
3-D structure preserves the good orthogonality and 
planarity of the original structure. 

 

 

 
Fig. 3 The calibration box image sequence 
 

Table 1 Comparison of the initial values of ( )321 ,, qqq  
Initialization method by 

[11] 
Proposed initialization 

method 

f ( )321 ,, qqq  f ( )321 ,, qqq  

760  
760 
760  
760  
760 

(0.0,-6.84,-5.13) 
(-81.8,1.78,-8.44) 
(-82.6,1.66,-7.85) 
(-94.1,-0.30,0.54) 
(-86.3,0.92,-5.00) 

650 
 

760 
 

960 

(-39.4,10.1,-37.3), 
(42.7,-1.34,-35.1) 
(-46.1,11.6,-41.6), 
 (50.1,-1.74,-38.6) 
(-57.2,14.0,-50.9), 
 (62.9,-2.35,-46.0) 

 
Table 2 The computed intrinsic parameters. 



Proposed algorithm Tsai [1] algorithm  

00 ,,, vuvu αα  00 ,,, vuvu αα  
C1 759.3,759.3,340.6,228.8 758.9,760.0,340.4,230.3 
C2 880.8,880.2,352.3,221.5 880.2,881.0,353.2,223.2 
C3 860.3,860.3,366.9,219.1 859.9,861.2,366.6,220.8 
C4 1092.2,1093.1,332.8,230.

1 
1091.6,1094.1,332.6,232.

1 
C5 1007.6,1006.6,335.6,232.

8 
1007.1,1007.6,335.4,234.

7 
C6 1032.7,1033.5,326.6,229.

7 
1032.0,1034.5,326.5,231.

5 
 

Table 3 The computed rotation parameters. 
Rotation [degree] ( )zyx θθθ ,,   
Tsai [1] Proposed(relative 

error [%]) 
C1-C2 (-1.028,-15.384,-4.071) 0.25 
C1-C3 (1.512,-9.616,-2.655) 0.23 
C1-C4 (1.039,-15.754,-3.248) 0.30 
C1-C5 (1.472,-11.108,-1.945) 0.36 
C1-C6 (0.895,-23.558,-4.386) 0.33 

 
Table 4 The computed translation vector. 

Unit translation ( )zyx TTT ,,   
Tsai [1] Proposed(angular 

directional error) 
C1-C2 (-0.9697,0.0697,0.2343) o030.0  
C1-C3 (-0.6883,-0.1493,0.7099) o063.0  
C1-C4 (-0.7549,-0.0335,0.6550) o076.0  
C1-C5 (-0.7404,-0.1194,0.6615) o063.0  
C1-C6 (-0.8644,-0.0775,0.4968) o053.0  

 
(a) (b) 

Fig. 4 The estimated 3-D structure by the proposed 
algorithm: (a) A texture mapped display; (b) a different 
perspective to check the orthogonality. 
 
Experimental results using real images 
 

Fig. 5 shows a sequence of images of an outdoor building 
scene captured by a hand-held camcorder. Fig. 5-(a) shows 
the control angles used for the calibration, and we assume 
the true value of the angle is o90 . The mean and standard 
deviation of angles formed by the control points from the 
estimated 3D structure is oo 27.3/2.92 . It is a good 
estimate since the window frames are manufactured to have 
the right angle. Fig. 6 shows the estimated 3D structure 
with a texure map. We can observe that the coplanarity of 
the original structure is well preserved in the recovered 
structure. 

 

 
          (a)                       (b) 
Fig. 5 Outdoor building images captured by a hand-held 
camcorder (a) the first image and the control angles (b) the 
second image. 
 

 
(a) 

 
(b) 

Fig. 6 (a) Texture mapped display of the estimated 3D 
structure by the proposed algorithm (b) a different view. 
 
 
 
 

6. CONCLUSIONS 
 
We have presented a calibration algorithm using a specific 
scene constraint of angles. The prosposed algorithm 
directly recovers Euclidean structure up to the similarity 
transformation from projective structure as well as the 
camera parameters using one type scene constraint of angle. 
A similar angle-based stratified algorithm requires various 
scene constraints according to each step. 

We have also shown that the proposed algorithm, only 
assuming known angles, provides calibration parameters 
whose accuracy is comparable with the Tsai calibration 
algorithm. One limitation of the proposed algorithm is that 
it needs a priori 3D scene information. However, we 
envision that this method may be effective to scenes 
consisting of man-made objects. 
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