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Abstract 
Selecting good feature is especially important to 

achieve high speech recognition accuracy. Although the 
mel-cepstrum is a popular and effective feature for 
speech recognition, it is still unclear that the filter-bank 
in the mel-cepstrum is always optimal regardless of 
speech recognition environments or the characteristics 
of specific speech data. In this paper, we focus on the 
data-driven filter-bank optimization for a new feature 
extraction where we use the Kullback-Leibler (KL) 
distance as the measure in the filter-bank design. 
Experimental results showed that the proposed feature 
provides an error rate reduction of about 20% for clean 
speech as well as noisy speech compared to the 
conventional mel-cepstral feature. 

 

1. Introduction 
Speech recognition is mainly composed of feature 

extraction and classification. Of the two parts, feature 
extraction aims at not only preserving necessary 
information to distinguish the proper phonetic class 
from the categorized phonetic ones but also alleviating 
irrelevant redundancies such as speaker variability, 
channel variability, or environmental noise [1], [2]. 
These roles of feature extraction make selection of 
feature especially important to achieve high recognition 
accuracy.  

Currently, most speech recognizers utilize the mel-
cepstrum as their input feature because of its 
predominant attractiveness in speech recognition 
accuracy as well as noise immunity. The mel-cepstrum 
is based on the properties of speech production and 
speech perception, which are reflected by cepstral 
analysis and the critical band-based filter-bank analysis 
respectively [3], [4]. Therefore, one of the basic ideas of 
the mel-cepstrum is to reflect the human auditory 
perception mechanism on the feature for speech 
recognition. The relatively superior effectiveness of the 
mel-cepstral feature to other features is well known 
from numerous experimental results [3]. Nevertheless, it 
is still unclear that the filter-bank in the mel-cepstrum is 
always optimal in the sense of information preservation 
or speech recognition accuracy regardless of speech 
recognition environments or the characteristic of speech 

database for developing a speech recognizer for a 
specific application domain. This is due to the fact that 
the mel-scaled filter-bank is mainly based on the results 
from empirical researches on the human auditory 
perception [4]. Thus, there are always some needs to 
make new approaches in the sense of maximizing the 
preservation of information driven from real speech data 
in the feature extraction. As a part of solving these 
topics, several research activities have been conducted 
to optimize the filter-bank of the mel-cepstrum [1], [2] 
and [5].  

Our work, as another approach to this research area, 
focuses on the filter-bank optimization for a new feature 
extraction for the given speech data environments. Here, 
we use an optimization criterion derived from the 
information theory-based entropic distance measure in 
the process of filter-bank design. 

This paper organized as follows. Section 2 describes 
the overall algorithmic procedure used for designing the 
optimized filter-bank for the newly proposed feature 
extraction. Section 3 presents experimental results for 
evaluating the performance of the proposed feature 
extraction method. Conclusion is finally given in 
Section 4. 

 

2. Data-Driven Filter-Bank-based Feature 
Extraction 

Typically, the mel-cepstrum is obtained using a 
filter-bank with a number of filters or frequency bands, 
each of which is a nonlinearly scaled, triangularly 
shaped filter. The frequency bands in the filter-bank can 
be further modified in the direction of maximum 
information preservation or minimum speech 
recognition error. In this paper, we restrict the 
modification of frequency band only to its bandwidth 
(or cut-off frequencies) and center frequency because 
these parameters decisively specify the shape of 
frequency bands. To obtain an optimized filter-bank for 
a new cepstrum-based feature, we need to find the 
proper frequency band parameters such as the center 
frequency and the bandwidth. Thus, our main algorithm 
is to find these frequency parameters by the proposed 
method. 

The basic idea of our approach is to repeatedly 
merge two neighboring frequency bands into a wider 



frequency band until the previously determined number 
of frequency bands is obtained. This is resulted from the 
assumption that if the corresponding probability 
distributions of spectral energy obtained from two 
neighboring frequency bands are very similar to each 
other, the two bands could be regarded as a single wider 
frequency band. The criterion adopted at this merging 
process is the minimum entropic distance which is 
another representation of maximum similarity between 
two probability distributions. The frequency bands after 
the final merging step become the resulting frequency 
bands or filters. An array of these final frequency bands 
becomes the optimized filter-bank. The detailed 
explanation of our method is as follows. 

For speech signals of a certain phonetic class, the 
entropic distance or relative entropy between spectral 
energies of two frequency bands indexed by i and j, is 
represented by the following KL distance [6]. 
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where  is the estimated discrete probability of 

normalized spectral energies at the m
)(, mp ik

th level which are 
belong to the kth phonetic class and the ith frequency 
band, and M is the number of levels in the histogram. 

Because this measure does not have symmetric 
property required in the distance measure, the modified 
entropic distance measure is given by 

 

)),(),((
2
1),( ijDjiDjiD kkk +=     (2) 

 
Then, the overall entropic distance considering all 

the phonetic classes between two frequency bands 
indexed by i and j, is represented by 
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where ωk is a weight representing the relative frequency 
or portion of speech frames belong to the kth phonetic 
class compared to the whole speech frames, and K is the 
number of phonetic classes. 

The smaller entropic distance means that the 
probability distributions of spectral energy extracted 
from two neighboring frequency bands are more similar 
to each other. As mentioned above, this implies that the 
two frequency bands have so similar spectral 
characteristics that they can be regarded as a single 
frequency band. Thus, we merge these two frequency 
bands showing minimum entropic distance into a new 
frequency band. At each merging step, the number of 
candidate merging pairs is one less than that of whole 
frequency bands because only two neighboring 
frequency bands can be the pair. Among them, only a 

single pair having minimum entropic distance is 
selected as the merging frequency bands. As a result, 
the number of frequency bands is decreased by one. 
When the desired number of merged frequency bands is 
reached, the merging procedure is finished and the 
optimal frequency bands are obtained. 

After each merging step, the resulting merged 
frequency band contains a number of initial frequency 
bins, which are defined as the frequency bands or 
indices before the first merging step. Thus, the number 
of these initial frequency bins is half of the FFT size. 
Because probability distributions of two merging 
frequency bands are not perfectly identical, the shape of 
probability distribution of the merged frequency band 
tends to be getting flatter and flatter as the number of 
initial frequency bins included in the frequency band is 
increased. At the selection of two merging frequency 
bands, the frequency bands with flatter or broader 
probability distribution tend to be chosen primarily 
because of their ease of similarity. To avoid this 
undesirable selection, we use one of the probability 
distributions of initial frequency bins belong to the 
merged frequency band at the entropic distance 
calculation. In other words, when a frequency band 
contains at least two initial frequency bins, the 
probability distribution of an initial frequency bin, 
which is the centroid of all initial frequency bins 
included in the frequency band, is used as a 
representative probability distribution of the frequency 
band. These representative probability distributions are 
used for calculating the entropic distance. This approach 
is effective to solve the problem caused by smeared 
probability distributions after each merging process. 

We define the center frequency, the other parameter 
of each frequency band, as the initial frequency bin 
whose probability distribution is selected as the 
representative one. Utilizing these parameters, we apply 
a triangular window to each frequency band and the 
final filter-bank is obtained.  

 

3. Experimental Results 

3.1. Data preparation 
To evaluate the performance of our feature 

extraction algorithm, we used 452 phonetically balanced 
Korean word data. The data consist of a total of 66,328 
word utterances uttered by 72 speakers (male 39, female 
33). About 60,000 utterances of them were used for the 
development of the proposed feature and training of 
speech recognizers. The remaining 6,328 utterances 
were used for the performance evaluation. All speech 
data were recorded in a sound-proof room and digitized 
at 16 kHz sampling rate with 16 bit quantization level 
per sample. 

In addition, we created 3 sets of noise-corrupted test 
data which were generated by adding white Gaussian 
noise to the original clean test data to test our algorithm 



in the noise environments. The target SNR (Signal to 
Noise Ratio) of the noisy test data was 20dB, 10dB, and 
5dB respectively. 

According to our algorithm described in Section 2, 
we need phonetically labeled speech data. All of the 
necessary labeling information was obtained using the 
HMM-based forced alignment algorithm. We used 47 
Korean phoneme units including silence as phonetic 
classes. 

 

3.2. Experimental procedure 
In the extraction of the spectral energy data, each 

digitized speech signal is firstly pre-emphasized by the 
transfer function of 1-0.97z-1. A Hamming window with 
the width of 20ms is then applied every 10ms. The 
erratic variation of harmonic structure in the voiced 
speech spectrum causes undesirable effects on the 
reliable estimation of probability distribution. To reduce 
these effects, we apply the cepstral window [7] with the 
order of 40 to the initial energy spectrum obtained by 
the FFT (fast Fourier transform) algorithm. The 
resulting cepstrally smoothed spectral energies are 
normalized and then used to estimate probability 
distributions.  

In the performance evaluation of the proposed 
feature, the speech signal is processed using the same 
preprocessing steps adopted in the process of 
probability distribution estimation except the cepstral 
windowing step. After the Hamming windowing, new 
cepstral feature utilizing the optimized filter-bank is 
extracted for each speech frame. The final features for 
the speech recognition experiments consist of a total of 
39 coefficients including the 12th-order cepstral 
coefficients and a single order frame normalized energy 
and their first and second time derivative values. 

We used the HTK software toolkit [8] in the 
evaluation for the proposed feature. A total of 2,000 
context-dependent phone HMMs including a single 
state silence model are trained using clean speech data 
mentioned in Section 3.1. All these acoustic models are 
derived by the decision tree-based state-tying algorithm 
[8]. In each state, Gaussian mixture distributions with 
diagonal covariance matrices are used. We evaluate the 
performance of the proposed cepstral feature using 4 
sets of test data including clean speech data, 20dB, 
10dB, and 5dB noisy speech data respectively.  

 

3.3. Recognition results 
Figure 1 shows the speech recognition results for the 

conventional mel-cepstrum and the cepstrum using the 
optimized filter-bank. For all of the four evaluation 
cases related to the noise environments, the proposed 
cepstral feature shows superior performance to the 
conventional mel-cepstrum. Even in the test for clean 
speech data, the proposed feature produced meaningful 
improvement over the mel-cepstrum. The results in 

table 1 are another representation of those shown in 
figure 1 in terms of relative error reduction, that is, the 
error rate reduction (ERR) of the optimized cepstrum 
over the mel-cepstrum. As can be seen in table 1, our 
feature outperforms the well-known mel-cepstrum 
notably by about 20 % in terms of ERR.  
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Figure 1. Comparison of word recognition rates 
between the mel-cepstrum and the optimized cepstrum 
(Number of frequency bands in the filter-bank: 20). 

Table 1: Comparison of error rate reduction between 
the mel-cepstrum and the optimized cepstrum 
(Number of frequency bands in the filter-bank: 20). 

 Clean 20 dB 10 dB 5 dB 
ERR [%] 20.0 18.2 32.4 23.9 

 
The center frequencies obtained from our proposed 

method showed somewhat different from those of mel-
cepstrum. However, the linear scaling pattern at the low 
frequency region and logarithmic spacing trend at the 
high frequency band are also prominently presented at 
those parameters in the optimized filter-bank. However, 
bandwidths of the frequency bands are not identical to 
the corresponding ones in the mel-cepstrum. This 
difference mainly accounts for the needs for optimizing 
frequency bands in the mel-cepstrum.  

We also performed additional tests to examine the 
recognition accuracy by varying number of final 
frequency bands. Figure 2 shows the relative 
performance of our proposed feature compared to the 
mel-cepstrum with respect to different number of 
frequency bands. The results show that the proposed 
feature is especially effective on the noise environment 
of 10 dB SNR. Furthermore, the overall results from 
noisy test data said that the proposed feature also 
worked well in noise environments although only 
Gaussian noise data were used. This implies that the 
proposed feature seems to have some characteristics of 
noise robustness. At the clean speech tests, the proposed 
feature also showed superior results while both features 



represented similar results at the case of 22 frequency 
band-based filter-bank.  
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Figure 2. Error rate reduction of the proposed feature 
compared to the mel-cepstrum with respect to number 
of frequency bands in the filter-bank. 

 

4. Conclusion 
The feature extraction in the speech recognition is 

very important for high performance speech recognition. 
Due to its predominant merits, the mel-cepstrum has 
been adopted widely as a principal feature in speech 
recognition for almost three decades. However, it is still 
unclear that the mel-cepstrum is optimal in the sense of 
information preservation or speech recognition accuracy 
regardless of speech recognition environments. This is 
mainly due to the fact that the idea of the feature is 
based on the results from empirical researches on the 
areas of the speech production and speech perception.  

As a trial study to compensate this weakness, we 
proposed a new method of cepstral feature where we 
optimized the filter-bank used in the process of cepstral 
feature extraction. As an optimization criterion, we 
adopt the minimum entropic distance measure derived 
from the well-known KL distance. After repeated 
merging steps, a number of filters or frequency bands 
are obtained. The new cepstral feature is derived from 
the optimized filter-bank which is the overlapped array 
of the resulting frequency bands. In the speech 
recognition evaluation using clean and noisy speech 
data, the proposed cepstral feature showed superior 
performance to the conventional mel-cepstrum. The 
feature especially works well in noisy environments. 

As a further study, testing the proposed feature to 
the real noisy speech data is required to verify its 
effectiveness on that environment. Evaluating the 
feature under other kinds of speech database to examine 
its capability in the new acoustic-phonetic environments 
is also necessary. The filter-bank adopted in the 
proposed cepstral feature is obtained using the 
phonetically labeled speech data whose labeling 
information is obtained by using HMM-based automatic 
labeling method. Because this automatic method entails 

noticeable amounts of labeling errors, the feature 
extraction using more elaborate labeling information 
extracted by phonetic experts and its evaluation may 
also be meaningful. 
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