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Abstract Motion estimation approaches enable the robust prediction of successive
camera poses when a camera undergoes erratic motion. It is especially difficult
to make robust predictions under such conditions when using a constant-velocity
model. However, motion estimation itself inevitably involves pose errors that result
in the production of an inconsistent map. To solve this problem, we propose a novel
3D visual SLAM approach in which both motion estimation and stochastic filter-
ing are performed; in the proposed method, visual odometry and Rao-blackwellized
particle filtering are combined. First, to ensure that the process and the measurement
noise are independent (they are actually dependent in the case of a single sensor),
we simply divide observations (i.e., image features) into two categories, common
features observed in the consecutive key-frame images and new features detected
in the current key-frame image. In addition, we propose a key-frame SLAM to re-
duce error accumulation with a data-driven proposal distribution. We demonstrate
the accuracy of the proposed method in terms of the consistency of the global map.

1 Introduction

Simultaneous localization and mapping (SLAM) is the technique of building up a
map of the unknown environment while simultaneously keeping track of the current
position of the cameras or robots in the environment. This problem has attracted
immense attention in the robotics and computer vision communities. To solve the
SLAM problem, many methods based on the recursive estimation of the posterior
distribution have been introduced. Davison [1] successfully performed monocular
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SLAM by employing an extended Kalman filter (EKF) and adopting an initializa-
tion process to determine the depth of the 3D landmarks by using the particle filter-
type approach. Eade et al. [2] utilized the FastSLAM-type particle filter in single-
camera SLAM to manage a greater number of landmarks because the computational
requirements of EKF-based SLAM approaches rapidly grow with the number of
landmarks. In [3], the authors described a visual SLAM algorithm that is robust to
erratic camera motion and visual occlusion by using efficient scale prediction and
examplar-based feature representations in conjunction with the use of an unscented
Kalman filter (UFK). Recently, Eade et al. [4] proposed a monocular SLAM sys-
tem in which map inconsistencies can be prevented by coalescing observations into
independent local coordinate frames, building a graph of the local frames, and op-
timizing the resulting graph. Paz et al. [5] presented a 6-degree-of-freedom (DOF)
visual SLAM system based on conditionally independent local maps by using a
stereo camera as the only sensor. Here, it is worth noting that in most 3D visual
SLAM approaches, a constant-velocity model is employed to achieve the indepen-
dence between the process and the measurement noise. However, in the constant
velocity model, when cameras undergo sudden motion, these SLAM approaches
are highly prone to failure, resulting in inconsistencies in the global map. In [6], the
authors combined the particle filter-based localization with the UKF-based SLAM
problem to cope with erratic camera motion while maintaining a small number of
landmarks.

On the other hand, in the vision community, structure-from-motion (SFM) ap-
proaches have been studied independent of SLAM to estimate camera trajectories
by using only a sequence of images. For example, Nister et al. introduced ‘visual
odometry’ that estimates the relative movements of the stereo head in the Euclidean
space [7]. Recently, Zhu et al. [8] developed a helmet-based visual odometry system
that consists of two pairs of stereo-cameras mounted on a helmet; one pair faces for-
ward while the other faces backward. By utilizing the multi-stereo fusion algorithm,
they improved the overall accuracy in pose estimation. Here, we should note that in
many previous studies, optimization techniques such as bundle adjustment [9, 10]
have been adopted to avoid inconsistencies in the global map. However, it is not
feasible to perform conventional bundle adjustment in on-line approaches because
the computational cost rapidly grows with the number of 3D landmarks and their
observations (the image coordinates over the sequence).

2 Motivation

SLAM approaches are described by two probabilistic models — the process and
measurement models [11]. The current state,xt , is governed by the probabilistic
function of the previous statext−1, the control inputut , and the additive process
noisewt as follows :

xt = f (xt−1,ut ,wt) . (1)
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Fig. 2 Bayesian network that describes dependency between process and measurement noise

The measurementszt are also governed by the probabilistic function of the cur-
rent state and the additive measurement noisevt . We re-estimate the posterior dis-
tribution of the state produced from the process model by using the measurement
model as follows :

zt = h(xt ,vt) . (2)

wherewt andvt represent the process and measurement noise, respectively; they are
assumed to be independent, as shown in Fig. 1.

In many visual SLAM approaches, a constant-velocity model that is independent
of sensor data is employed [1, 2, 3] or another sensor such as a wheel encoder [12],
or IMU [13] is used for the process model. However, if a camera undergoes sudden
motion, a constant-velocity model is not valid, and wheel encoders cannot be used
to obtain the 6-DOF poses of the camera. In contrast, motion estimation approaches
can be adopted to obtain good estimates for the 6-DOF pose under erratic camera
motion.

However, on the other hand, if we use motion estimation methods for the pro-
cess model, the control input,ut , directly depends on measurements, and the in-
dependence assumption is no longer valid, as shown in Fig. 2. Moreover, SLAM
approaches involve some problems related to dimensionality when estimating the
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Fig. 3 Overall procedure followed in our visual odometry system

6-DOF camera pose and 3D landmarks, and scalability caused by the large number
of landmarks obtained during long-distance navigation.

The contributions of the proposed approach compared to the previous methods
can be summarized as follows:

(i) We achieve the independence between the process and measurement noise
when using conventional motion estimation approaches for the process model in
SLAM. (Section 4.2).

(ii) We use the key-frame SLAM approach to reduce the number of camera poses
to be estimated in the path by generating the poses only at key-frame locations. In
addition, we propose a method that effectively updates the posterior distribution of
the camera path by using many observations obtained at non key-frame locations.
(Section 4.3).

(iii) We use a data-driven proposal distribution computed using the RANSAC
to efficiently represent the posterior distribution of the camera pose by a limited
number of particles. (Section 4.5)

(iv) We develop a novel SLAM approach by integrating the above contributions
to reduce the error accumulation involved in conventional motion estimation ap-
proaches.

3 The Visual Odometry System

Our visual odometry system consists of a few sub-components. Fig. 3 shows the
overall procedure followed in our visual odometry system.
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3.1 Feature extraction and stereo matching

For each stereo pair, we first extract corner points in the left image and then apply
the 1D KLT feature tracker [14] to stereo images to obtain correspondences. The 3D
coordinates of the matched corner points are used for map building and for motion
estimation.

3.2 Motion Estimation

As mentioned previously, Nister et al. [7] introduced a method called ’visual odome-
try’ for the real-time estimation of the movement of a stereo head or a single camera.
In this approach, the 3-point algorithm [15] is employed: the images of three known
world points are used to obtain up to four possible camera poses and more than three
points are required to automatically obtain one solution. Here, we also employ the
RANSAC [16] where a set of 3 world points and their image coordinates are ran-
domly selected to compute the relative camera pose. The estimated pose is evaluated
from other correspondences.

3.3 Key-frame Designation

The number of tracked corners between an incoming image and a previous key
image is a measure that is used to determine the key-frame locations. If the number
of points tracked by the KLT tracker [17] is smaller than a pre-defined threshold, we
designate an incoming image as a key-frame image and estimate the relative pose
w.r.t the previous key-frame. This strategy can partially prevent error accumulation
because we determine the relative pose w.r.t the previous key-frame pose.

4 Stochastic Filtering

4.1 Rao-Blackwellized Particle Filter

We initially employ a Rao-Blackwellized particle filtering technique [18, 19], by
which a SLAM problem is decomposed into a localization problem and a collection
of landmark estimation problems that are conditioned on pose estimates as follows:

p(x1:t ,M|z1:t ,d1:t) =
p(x1:t ,M,z1:t ,d1:t)

p(z1:t ,d1:t)
= p(x1:t |z1:t ,d1:t) p(M|x1:t ,z1:t ,d1:t) .

(3)
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Fig. 4 A sequence of frames divided according to key-frame and non key-frame locations

wherex1:t andM represent the camera path and a collection of 3D landmarks, re-
spectively.z1:t andd1:t indicate the observations and data association up tot.

In FastSLAM [19], the path estimator is implemented using the particle filter.
The landmark estimator is implemented using a Kalman filter, with a separate filter
for different landmarks, because all the 3D landmarks are independent of each other
with a given path as shown in Eq. (4).

p(M|x1:t ,z1:t ,d1:t) =
L

∏
l=1

p(ml |x1:t ,z1:t ,d1:t) (4)

whereml represents each landmark inM.

4.2 Independence Between Process and Measurement Noise

We estimate the camera path that consists of a sequence of camera poses at only
the key-frame locations instead of all the frames, as mentioned in Section 3.3.
In other words, we estimate the posterior distributionp(n1:k|z1:t ,d1:t) instead of
p(x1:t |z1:t ,d1:t). When designating an incoming image as a key-frame image, we
elongate the path,n1:k+1, by adding the relative pose,ut , w.r.t the last key-frame
pose,nk, to the previous path,n1:k, as shown in Fig. 4. We first divide the obser-
vations into two categories: observed features common to two key-frame imageszc

and newly detected features in the current key-frame imagezd (= z−zc), as shown
in Fig. 5.zc are used to evaluate the posterior distribution of the pathn1:k, andzd are
used to estimate the relative pose,ut . Thus, we have

p(n1:k|z1:t ,d1:t) = p
(

n1:k|zc
1:t ,z

d
1:t ,d1:t

)
(5)

We then achieve the independence between the process and measurement noise by
simply dividing the observations instead of using another sensor, as shown in Fig.
6.
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4.3 Path Estimation for Key-Frame SLAM

The posterior distribution ofn1:k with givenz1:t andd1:t (correspondences between
the landmarks,M, and observations,zc

1:t ) is represented as a weighted set of parti-
cles:

p
(

n1:k|zc
1:t ,z

d
1:t ,d1:t

)
= ∑

i
p
(

ni
1:k|zc

1:t ,z
d
1:t ,d1:t

)
δ

(
n1:k−ni

1:k

)
(6)

whereδ (x) represents the Dirac delta function that returns 1 ifx is zero, and 0
otherwise.

For non key-frame locations, we re-estimate the posterior distribution of the cam-
era pathn1:k by marginalizing the relative poseut using Eq. (7).
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p
(

ni
1:k|zc

1:t ,z
d
1:t ,d1:t

)
=

∫
p
(

ni
1:k,ut |zc

1:t ,z
d
1:t ,d1:t

)
dut

= ∑
j

p
(

ni
1:k,u

j
t |zc

1:t ,z
d
1:t ,d1:t

) (7)

The posterior distribution of the relative pose is represented by a set of particles
coming from the RANSAC, where relative poses are estimated by selecting multiple
sets of minimal correspondences. Each pair of the minimal set provides a single
hypothesis on the relative pose, and its weight is computed according to the number
of inliers among all correspondences. This will be described in Section 4.6. We
compute the joint probability of a camera path,ni

1:k, and a relative pose,u j
t , using

Eq. (8).

p
(

ni
1:k,u

j
t |zc

1:t ,z
d
1:t ,d1:t

)
=

p
(

ni
1:k,u

j
t ,z

c
t ,z

d
t ,dt ,zc

1:t−1,z
d
1:t−1,d1:t−1

)

p(z1:t−1,d1:t−1,zt ,dt)

= η p
(

zc
t |ni

1:k,u
j
t ,dt

)
p
(

u j
t |zd

t

)
p
(

ni
1:k|zc

1:t−1,z
d
1:t−1,d1:t−1

)

(8)
wherep(zc

t |ni
1:k,u

j
t ,dt) is a likelihood andp(u j

t |zd
t ) is the posterior distribution of the

relative pose, as defined by Eq. (11).p(ni
1:k|z1:t−1,d1:t−1) is the previous posterior

distribution up tot − 1, andη is a normalization term that makes the sum of all
probabilities 1.

In our key-frame SLAM approach, we can reduce the number of camera poses
to be estimated in the path and update the particles of the camera path whose poses
are generated at the key-frame locations by using many observations obtained at the
non key-frame locations.

4.4 Likelihood Estimation

The likelihood estimation is based on the number of inliers for each particle of the
camera pose. It is computed by examining how many scene pointsml are projected
close to relevant measurementszl

t , as defined in Eq. (9).

p
(

zc
t |ni

1:k,u
j
t ,dt

)
=

L

∑
l=1

d
(

zl
t ,ml ,n

i
1:k,u

j
t

)
/L

d
(

zl
t ,ml ,n

i
1:k,u

j
t

)
=

{
1 if

∥∥∥zl
t −z

(
ml ,

(
ni

1:k⊕u j
t

))∥∥∥ < el

0 otherwise

(9)

where(ni
1:k⊕u j

t ) indicates the global pose of the camera computed from the path

ni
1:k and the relative poseu j

t . d(zl
t ,ml ,ni

1:k,u
j
t ) indicates whether the pointml is an

inlier or outlier with respect to the observationzl
t and the camera pose(ni

1:k⊕u j
t ),
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andz(ml ,(ni
1:k⊕u j

t )) is the projection of a scene pointml for a particular camera

pose(ni
1:k⊕u j

t ). L is the number of scene points that are associated with the current
measurements, as defined bydt , andel represents the uncertainty in the projection
of the 3D scene point (see Section 4.8).

4.5 Outlier Rejection

We eliminate the outlierszo
t amongzl

t that are not supported by any particles in the
computation of the likelihood values as shown in Eq. (10).

zo
t =

{
zl
t |∑

i
∑

j
d
(

zl
t ,ml ,n

i
1:k,u

j
t

)
= 0

}
(10)

Thus, we eliminate the outliers inzd
t using the RANSAC when estimating the rela-

tive pose,ut , and the outliers inzc
t when computing the likelihood values.

4.6 Data-Driven Proposal Distribution

It is especially insufficient to represent the posterior distribution using the limited
number of particles in the 6-dimensional space. In our approach, we use multiple
hypotheses that are generated in the RANSAC step. The RANSAC is an efficient
technique for determining a good hypothesis, but unfortunately the hypothesis se-
lected with the best score (the number of inliers) does not always correspond to
the correct estimate. Therefore, in our approach, instead of selecting an unique hy-
pothesis, we propagate multiple reasonable hypotheses to the subsequent frames to
re-estimate the posterior distribution by using more observations. Fig. 7 shows the
projections of 3D camera poses that have the best score, i.e., the maximum number
of inliers computed using the RANSAC. We represent the posterior distribution of
the relative pose using these hypotheses and their weights according to the number
of inliers, as shown in Eq. (11).

p
(

u j
t |zd

t

)
∝ N j

inlier

Ntotal
, ∑

j
p
(

u j
t |zd

t

)
= 1 (11)

whereN j
inlier is the number of inliers foru j

t , andNtotal is the total number of cor-
respondences inzd

t . This means that the multiple hypotheses on the camera pose
generated by the RANSAC are probabilistically evaluated by using more incoming
observations than just two views.
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Fig. 7 Hypotheses of the camera pose that have the same score when using the RANSAC

4.7 Path Generation

Whenever we have a new key-frame image, we elongate the path using the previous
posterior distribution of the camera trajectory and the relative pose as follows:

n
Nj×i+ j
1:k+1 ←

{
ni

1:k,
(

ni
1:k⊕u j

t

)}
,

p
(

n
Nj×i+ j
1:k+1 |z1:t ,d1:t

)
∝ p

(
u j

t |zd
t

)
p
(
ni

1:k|z1:t ,d1:t
)
,

(12)

whereNj is the number of particles for the relative pose. Here, before adding the
relative pose to the particles of the camera path, we prune some hypotheses on the
camera path on the basis of their weights. In our implementation, only the 10 best
particles remain.

4.8 Landmark Estimation

When designating an incoming image as a key-frame image, we update the posterior
distributions of the landmarks. We model the posterior distribution of each landmark
p(ml |n1:k,zl

1:k,d1:k) defined in Eq. (4) using a optimized 3D landmark location,m̂l ,
and its uncertainty ,el , in the image space; we re-triangulate 3 observations (first two
stereo views and the last view) corresponding to each landmark for each particle of
the camera path by using SVD [9] to computem̂l , as shown in Fig. 8, andel is
determined by the projection error of̂ml for the pose of the last key-frame image
nN, as shown in Eq. (13).
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el =
∥∥∥zl

N−z(m̂l ,nN)
∥∥∥+e0 (13)

whereN is the number of observations at the key-frame locations for each landmark,
ande0 is a pre-defined initial projection uncertainty of the landmark.

5 Experimental Results

For experiments, we used a stereo camera with a 12cm baseline and a 6mm lens,
which provide a narrow field of view. The resolution of the images is320× 240
pixels. Fig. 9 shows the path obtained by using visual odometry (red line) and the
hypotheses on the trajectory computed by using the proposed SLAM method (blue
lines). For this experiment, we captured 552 images by driving a robot over a dis-
tance of 10m in an indoor environment and to evaluate the performance, we added
the first image to the end of the image sequence so that the initial and final locations
are identical. At the final location, we choose the pathnm

1:k and the relative poseun
t

that maximize the posterior distributions as follows:

m= argmax
i

p
(
ni

1:k|z1:t ,d1:t
)
, wherep

(
ni

1:k|z1:t ,d1:t
)

= ∑
j

p
(

ni
1:k,u

j
t |z1:t ,d1:t

)

n = argmax
j

p
(

u j
t |z1:t ,d1:t

)
, wherep

(
u j

t |z1:t ,d1:t

)
= ∑

i
p
(

ni
1:k,u

j
t |z1:t ,d1:t

) (14)

Table 1 lists the errors of the final camera pose for visual odometry and the pro-
posed method. Fig. 11(a) shows the path computed by visual odometry and the cor-
responding global map obtained by integrating the structures computed by stereo
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Fig. 9 Camera trajectories estimated by visual odometry only (red line) and by using the proposed
method (blue lines)

Table 1 Pose errors for visual odometry and the proposed method (mm)

x y z total
visual odometry only-182.08-147.70-50.50239.83

proposed -53.67 5.33 30.57 61.99

matching over time. In this experiment, many images (102 from the 312 images)
were influenced by motion blur because we captured images by using a hand-held
stereo camera that underwent erratic motion; the images are shown in Fig. 10. In
addition, a camera re-visited the scene where it first observed. We can easily find
the inconsistency in the global map caused by error accumulation of the path. How-
ever, the map produced by using the proposed method is more consistent than that
obtained by visual odometry, as shown in Fig. 11(b). Here, we randomly selected
500 sets of 3 correspondences to obtain 500 hypotheses of which we only chose a
maximum of 50 hypotheses on the basis of their weights (the number of inliers).
Fig. 12(a) shows the map computed by visual odometry using the same sequence of
images. In this experiment, we generated only 300 hypotheses of which we retained
a maximum of 50 hypotheses on the basis of their weights. Because the number
of hypotheses is small, this map has a larger error than the previous result. How-
ever, we can compensate for error accumulation by using the proposed method, as
shown in Fig. 12(b). Moreover, we can observe that the results obtained by using the
proposed method are more consistent than those obtained by visual odometry be-
cause the proposed method is not strongly affected by randomness. Fig. 13 (a) and
(b) show the global maps and the camera paths computed by visual odometry and
by using the proposed method, respectively. For this experiment, we captured more
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Fig. 10 Some images affected by motion blur

(a) The top-down view of the 3D map and
camera trajectory estimated by visual odom-
etry

(b) The top-down view of the 3D map and
camera trajectory estimated by the proposed
method

Fig. 11 The top-down view of the 3D map and camera trajectories obtained for 500 hypotheses in
the RANSAC step

than 3000 images while walking more than 200m in the outdoor environment with
the stereo camera in hand. We can see that the results obtained with the proposed
visual SLAM approach, in which the visual odometry and stochastic filtering are
combined, are much better than those obtained by only visual odometry. To evalu-
ate the consistency, we overlap the maps and paths with the corresponding google
map as shown in Fig 13(c) and (d). The proposed SLAM algorithm can process
approximately 10 frames per second when using a 2.4 GHz CPU. Table 2 lists the
computational complexities for visual odometry and stochastic filtering.
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(a) The top-down view of the 3D map and
camera trajectory estimated by visual odom-
etry

(b) The top-down view of the 3D map and
camera trajectory estimated by the proposed
method

Fig. 12 The top-down view of the 3D map and camera trajectories obtained for 300 hypotheses in
the RANSAC step

Table 2 Average processing time for visual odometry and proposed stochastic filtering when run-
ning 500 frames (ms)

operation processing time
visual odometry (partially 27.655

implemented by MMX programming)
stochastic filtering 75.733

total 103.388

6 Conclusion

We have presented a novel 3D visual SLAM method in which visual odometry and a
stochastic filtering approach are combined to cope with sudden camera motion and
to obtain consistent maps. To ensure that the process and the measurement noise are
independent, we simply divide observations into two categories: common features
observed in the consecutive key-frame images and new features detected in the cur-
rent key-frame image. The proposed stochastic filtering technique can be adopted in
existing motion estimation approaches to avoid error accumulation. In addition, our
approach is especially efficient in the following sense:

• Dimensionality — we use a data-driven proposal distribution computed by the
RANSAC approach with the 3-point algorithm to efficiently represent the poste-
rior distribution of the camera pose.

• Scalability — we reduce the number of possible camera poses in the path by
formulating the key-frame SLAM, and our SLAM approach is based on the Rao-
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(a) The top-down view of the 3D map and
the key-frame locations estimated by visual
odometry

(b) The top-down view of the 3D map and
the key-frame locations estimated by using the
proposed method

(c) The results obtained by visual odome-
try overlapped with the corresponding google
map

(d) The results obtained by using the proposed
method overlapped with the corresponding
google map

Fig. 13 The global map and the key-frame locations for the outdoor environment
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Blackwellized particle filter that can manage more landmarks than the EKF and
particle filter-based approaches.
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