Steering of Real-Time Systems Based on Monitoring and Checking

*

Oleg Sokolsky, Sampath Kannan, Moonjoo Kim, Insup Lee, and Mahesh Viswanathan
Department of Computer and Information Science
University of Pennsylvania
{sokolsky,kannan,moonjoo,lee,maheshv} @saul.cis.upenn.edu

Abstract

We present an approach to enhance fault-tolerance
of real-time systems through steering. Steering means
external alteration of the system’s behavior in response
to a deviation from requirements. The steering tech-
nique is embedded into a framework of monitoring and
checking (MaC). MaC allows the users to perform run-
time analysis of the current execution of a system with
respect to formally specified requirements. We describe
our current and future work on steering, including the
language to specify steering actions and system instru-
mentation that enables steering. A prototype imple-
mentation for monitoring and steering of Java pro-
grams is also presented.

1 Introduction

This paper addresses the problem of run-time cor-
rectness of a computer system. Current state of the
art in system analysis and verification does not guar-
antee that the execution of a system will comply with
its requirements. On the one hand, formal verification
analyzes all executions of the system, but the analy-
sis is performed on the specification of the system, not
its implementation. In addition, state-of-the-art ver-
ification techniques still do not scale up to large real
systems. On the other hand, testing performs analysis
of the system implementation, but does not guarantee
that all behaviors are analyzed. Whatever approach is
used to analyze the system before its deployment, it is
possible that the system will misbehave at run time.

Our approach to alleviate this problem is to de-
tect deviations of the system behavior from its require-
ments, and correct it by means of external intervention.
The goal is to let the system continue with its execution

*This research was supported in part by ONR N00014-97-
1-0505 (MURI), NSF CCR-9619910, ARO DAAG55-98-1-0393,
ARO DAAG5H5-98-1-0466

without resorting to a full reset. Instead, the run-time
data of the system are adjusted in order to eventually
restore the system to a correct execution. We call this
on-line correction steering. The property provided by
the steering component should be that after a period
of incorrect behavior the system is always restored to
normal operation.

The design philosophy of our steering approach is
that the system has been analyzed before execution.
Therefore, its behavior is mostly correct, except maybe
for a few subtle cases. Therefore, the steering compo-
nent does not try to take over the control algorithm
of the system. Instead, it attempts to help the system
recover from the detected violation by tuning parame-
ters of the algorithm or by adjusting the state of one
of the system components.

An example of a problem that can be corrected by
steering is given by a system of two processes com-
municating through a faulty medium. Communication
protocols are designed with certain assumptions about
the behavior of the medium. An unlikely combination
of faults may violate these assumptions and cause the
processes to lose synchronization and spend their time
in useless retransmissions. The conflict can be resolved
by steering. Possible steering actions in this situation
are to cause the receiver to drop some of the messages
from the incoming queue or to force the sender to pro-
duce a modified message that will be accepted by the
receiver.

There are several steps that need to be carried out
by the implementation of steering: 1) Requirements to
system executions need to be stated in such a way as to
permit run-time detection of violations, giving enough
information to diagnose the source of the problem. 2)
The system needs to be monitored in order to collect
the data for the detection and diagnosis. 3) Appropri-
ate corrective measures need to be identified based on
the diagnostic data. 4) Correction has to be introduced
into the running system in such a way that would not
interfere with the execution.

Monitoring, needed in step 2), is an important part
of steering. To leverage research and development ef-
fort with the results of prior work, we are implement-
ing steering within the monitoring and checking (MaC)
framework [6]. The MaC framework has been designed
to test run-time compliance of an execution of a real-
time system with its formal requirements. MaC op-
erates by extracting low-level run-time data from the
system execution and converting them into a stream
of high-level events. The event stream is checked for
compliance with requirements expressed in a formal
language. Requirement violations are reported to the
user.

The MaC framework provides us with a tool to solve
tasks 1) and 2) outlined above. In this paper, we dis-
cuss the issues concerning the other two steering tasks
and describe their implementation by means of an ex-
tension to MaC. The rest of the paper is organized as
follows: Section 2 gives an overview of the MaC frame-
work; Section 3 we outline the concepts underlying
steering. Section 4 introduces the scripting language
for steering. In Section 5 we discuss the prototype im-
plementation of MaC with steering. We conclude with
an outline of directions of ongoing and future research.

2 The Monitoring and
Framework

Checking

The structure of the MaC framework is demon-
strated in Figure 1. The user specifies the requirements
of the system in a formal language. Requirements are
expressed in terms of high-level events and conditions.
In addition, a monitoring script relates these events
and conditions with low-level data manipulated by the
system at run time. Based on the monitoring script,
the system is automatically instrumented to deliver the
monitored data to the ewvent recognizer. The event
recognizer, also generated from the monitoring script,
transforms this low-level data into abstract events and
delivers them to the run-time checker. The run-time
checker verifies the sequence of abstract events with
respect to the requirements specification and detects
violations of requirements.

The reason for keeping the monitoring script dis-
tinct from the requirements specification is to main-
tain a clean separation between the system itself, im-
plemented in a certain way, and high-level system re-
quirements, independent of a concrete implementation.
Implementation-dependent event recognition insulates
the requirement checker from the low-level details of
the system implementation. This separation also al-
lows us to perform monitoring of heterogeneous dis-
tributed systems. A separate event recognizer may be

supplied for each module in such system. Each event
recognizer may process the low-level data in a way spe-
cific to the respective module. For example, an event
recognizer that is associated with a software compo-
nent will work very differently from the one that pro-
cesses traffic on a bus. But all event recognizers deliver
high-level events to the checker in a uniform fashion.

In keeping with this design philosophy, two lan-
guages have been designed for use in the MaC frame-
work. The Meta-Event Definition Language (MEDL)
is used to express requirements. It is based on an exten-
sion of a linear-time temporal logic. It allows to express
a large subset of safety properties of systems, including
real-time properties. Monitoring scripts are expressed
in the Primitive Event Definition Language (PEDL).
PEDL describes primitive high-level events and condi-
tions in terms of system objects. PEDL, therefore, is
tied to the implementation language of the monitored
system in the use of object names and types. MEDL
is independent of the monitored system.

Run-time monitoring provides for efficient detection
of violations of system requirements and raise an alarm
when a violation happens. At the same time, the vast
information collected during monitoring in order to de-
tect requirement violations allows us to go one step fur-
ther. The same information can be used to diagnose
the problem that has lead to the violation and suggest
a remedy for it. In order to apply this remedy, we
need the means to provide feedback from the run-time
checker back into the system. The MaC framework
gives us, in addition to the run-time information about
the system behavior, instrumentation facilities that can
be used to automatically establish this feedback and in-
fluence the system behavior to restore compliance with
the requirements. Steering provides the means to es-
tablish the feedback from the checker into the moni-
tored system.

The work to incorporate steering into the MaC
framework consists of the following steps: (1) require-
ments for the steering module have been formulated;
(2) a scripting language for specification of actions in-
volved in steering has been designed; (3) the Java-
based MaC prototype has been extended to incorporate
steering.

3 Steering Concepts

Steering a system at run time involves three neces-
sary steps: 1) detect a problem, 2) diagnose the mal-
function, and 3) invoke steering. Each stage requires
a number of design decisions to be made. An im-
portant question is, how tight the integration between
the system and the monitor should be? Tighter cou-

object names
Code

instrumentation

Running low-level
System information

compilation

Figure 1. MaC framework

monitored events

Monitoring

conditions

Requirement

Script

events and

Specification

Event condition changes(Check
ecker

Recognizer

Monitoring

Code .
object names

Steering

compilation

low-level
steering

low-level
information

Script

steering
actions

monitored events
and conditions

Requirement

Script

Event
Recognizer

steering action

Specification

events and
condition changes

Injector

invocations (
Checker

Figure 2. The monitoring and steering framework

pling makes communication between the system and
the monitor more efficient and thus decreases steering
latency, that is, the time between the occurrence of a
malfunction and the steering action to correct it. On
the other hand, tight coupling means that the system
and the monitor will compete for the same computa-
tional resources, potentially inhibiting the system per-
formance. In our approach, we assume that the system
has limited computational resources and cannot accom-
modate a local monitor. Moreover, we assume that the
system under consideration has been already designed,
implemented and deployed, so it is impossible to incor-
porate the monitor into the system itself.

Detection of requirement violations is accomplished
by monitoring events used in the requirement specifica-
tion. In addition, additional data need to be monitored
for diagnostic purposes. For example, if a receive event
did not follow the send event soon enough, it may either
mean that the other party did not respond or that the
medium failed to propagate the response, and different
actions need to be taken.

The main vehicle for steering is a steering action.
Steering actions are specified by the user. Steering
actions are invoked by the monitor after requirement
violations. Action invocations are transmitted to the
system and “injected” into the system execution. Ac-
tions are then executed locally within the system, and
have access to all objects of the system.

System objects that are modified by steering actions
are called steered objects. A steering action can mod-
ify any variable inside any object that the user can
specify unambiguously in the steering script (discussed
in the next section). There are several ways to as-
sign a new value to the steered variable. A value may
be computed statically, so that a constant is assigned
to the variable at run time. This is the most effi-
cient and the least powerful way. Alternatively, the
value may be computed at run time by the monitor.
The drawback of the monitor-side computations is that
it may require to transfer system objects used in the
intermediate computations that are not necessary for
detection and diagnosis. Additional transfer of data
creates excessive communication load between the sys-
tem and the monitor, potentially increasing steering
latency. The most efficient way may to perform the
run-time computations on the system side, provided
they do not require inordinate amounts of CPU time,
by calling a procedure already existing in the system
code. To provide for this, a steering action may invoke
methods of a steered object. In addition to reducing
the system/monitor communication, system-side com-
putation saves the user from repeating in the steering
script the computation that may already be provided

by a method in the steered object. From a pure object-
oriented point of view, it may be cleaner to restrict
steering actions to method calls. This would guarantee
that integrity of every steered object is preserved by
all steering actions. However, an object may have an
overly restrictive interface that will not allow an action
to perform steering. Finally, the monitor can intro-
duce, through instrumentation, additional code that is
executed within the system in response to steering ac-
tion invocations. Although the most powerful, this last
method is also the most dangerous and should be used
with caution.

The basic underlying premise for steering in our ap-
proach is that steering will be needed infrequently. Be-
cause of this, it is important that the framework satis-
fies the conservativeness property. That is, the system
does not suffer a significant performance degradation
as long as steering is not invoked.

Another important requirement is effectiveness. It
ensures that a steering action cannot be ignored by
the system. One aspect of this requirement is that the
steering component must be able to change every ob-
ject that it needs to change in order to perform the
action. Another, more subtle, aspect is that the sys-
tem should not be able to “undo” the effect of a steer-
ing action. This can happen if the system modifies an
object shortly after it has been modified by a steering
action. Because of this, the steering framework must
ensure that an action is invoked when it will be ef-
fective, delaying its execution if necessary. There is
another reason why steering actions cannot be allowed
to be invoked at arbitrary moments. Execution of a
steering action can interfere with the system execution
and cause harm instead of correcting the system’s be-
havior.

Steering scripts, give the user the ability to control
the moment when a steering action is executed, thereby
ensuring its effectiveness. This is done by means of
steering conditions associated with each action. Exe-
cution of a steering action is delayed until its condition
is satisfied. Steering conditions can be either static
or dynamic. Static conditions are fully evaluated dur-
ing instrumentation, while dynamic conditions depend
on run-time information. Dynamic conditions provide
for finer control of action invocations. On the other
hand, additional effort to evaluate the conditions at
run time can compromise conservativeness of steering.
In the current prototype, only static conditions are im-
plemented.

Implementation of steering actions may be differ-
ent depending on the target system and the goals of
steering. Two approaches are possible: threaded and
procedural actions. Threaded steering actions are exe-

cuted concurrently with the system activity in a sepa-
rate thread, while procedural actions are invoked by a
system thread at specific points during the execution,
determined by instrumentation. Each method has its
advantages and limitations.

The procedural approach can use only static steer-
ing conditions since locations for the steering actions
must be decided before the execution. When steering
conditions yield large regions of code where steering
is allowed, a procedural implementation may be ineffi-
cient, either because it may delay a steering action un-
necessarily, or because it checks for action invocations
multiple times within the steering region. On the other
hand, since the steering action is executed within the
system thread, there is no need for steering synchro-
nization and all objects accessible to that thread can
be used in steering actions.

By contrast, threaded steering can utilize both static
and dynamic steering conditions, and can invoke a
steering action as soon as its condition is satisfied.
However, synchronization between the system thread
and the steering thread is required, bringing additional
overhead. When steering conditions are tight, that is,
steering is allowed only for short intervals, this over-
head can be very high. Moreover, certain objects that
are local to the system thread may be inaccessible to
the steering thread. For example, when steering Java
programs, a separate steering thread cannot affect local
variables of a method. These concerns led us to imple-
ment procedural steering in our current prototype.

The structure of the MaC framework extended with
steering is shown in Figure 2. The steering script is pro-
vided by the user in addition to the monitoring script.
The steering script describes steering actions and con-
ditions for their invocation. Like the monitoring script,
the steering script deals with the low-level informa-
tion about system objects and therefore depends on
the system implementation. The requirement specifi-
cation now additionally has to specify which steering
action is triggered by a requirement violation. Only the
invocation of a steering action is described, based on
action names exported by the steering script. There-
fore, the requirement specification is still independent
of the system implementation.

The functionality of the run-time checker is ex-
tended with the ability to invoke steering actions and
pass them to a new run-time component called the in-
jector, which is incorporated into the running system
during instrumentation. The injector accepts invoca-
tions of steering actions and translates them into low-
level steering of the objects of the system according to
the steering script.

steering script mav

steered objects
Air MAV:air;
Point MAV:position;

steering action controlRepulsion(boolean tf) =
{ call (MAV:air).setRepulse(tf); }
before write MAV:position;

end

Figure 3. A sample steering script

4 A Language for Steering Actions

To specify steering actions, we designed a special
scripting language SADL (Steering Action Definition
Language). The steering scripts written in SADL spec-
ify how the system objects are affected by a steering
action. Figure 3 shows a sample script, taken from a
study in steering of artificial physics algorithms [3]. In
the example, a pattern of particles is being formed by
applying forces of attraction and repulsion between the
particles. If a problem is discovered, the checker steers
the system by manipulating the force of repulsion.

The script consists of two main sections: declara-
tion of steered objects (that is, system objects that
are involved in steering) and definition of steering ac-
tions where the declared objects are used. Since steer-
ing is performed directly on the system objects, SADL
scripts are by necessity dependent on the implemen-
tation language of the target system. Our prototype
implementation of the monitoring and steering frame-
work (described in the next section) aims at systems
implemented in Java. Because of this, SADL scripts
used in the prototype are also tied to Java.

The first section of the script defines steered objects.
Objects used to express steering conditions are also de-
clared in this section. The steered objects can be fields
and methods of Java classes as well as local variables
of methods. In the example, steered objects are the
Air object, a repository of the algorithm parameters
shared by all particles, which is used by the steering
action, and the variable representing the position of a
particle, used in the steering condition.

The second section of the steering script defines
steering actions and specifies steering conditions. An
action can have a set of parameters that are computed
by the checker and passed to the system together with
the action invocation. The body of an action is a col-
lection of statements, each of which is either a call to

ReqSpec mav

import action controlRepulsion(boolean);

alarm noPattern = ...;

noPattern -> { invoke controlRepulsion(true); }

end

Figure 4. Action invocation in the MEDL
script

a method of the system or an assignment to a system
variable. In the example, the steering action calls a
method that controls repulsion between particles, and
is allowed to happen every time the position of a par-
ticle is about to be updated.

In addition to a steering script, the requirement
specification language is extended to provide for in-
vocation of steering actions. An action is invoked in
response to an occurrence of an event or an alarm. Fig-
ure 4 presents a fragment of the MEDL script of the
artificial physics example. It shows the declaration of
the steering action controlRepulsion, imported from
the steering script, and the alarm noPattern that is
raised by the checker when it detects a violation of
the pattern formation. The definition of the alarm is
rather complex and is omitted for clarity. When the
alarm is raised, the steering action is invoked with the
true value of its parameter, which suspends repulsion
between particles and triggers the process of restoring
the pattern.

5 Steering in the MaC Prototype

A prototype implementation of the MaC framework
has been implemented and tested on a number of ex-
amples. The prototype is targeted towards monitoring
and checking of programs implemented in Java. Java
has been chosen as the target implementation language
because of the rich symbolic information that is con-
tained in Java class files, the executable format of Java
programs. This information allows us to perform the
required instrumentation easily and concentrate on the
more fundamental aspects of the monitoring and check-
ing framework implementation. Figure 5 shows the de-
sign of the Java-based MaC prototype.

The PEDL language of the prototype allows the user
to define primitive events in terms of the objects of
a Java program: updates of program variables (fields

of a class or local variables of a method) and method
calls. Automatic instrumentation guarantees that all
relevant updates are detected and propagated to the
event recognizer.

The prototype uses interpreters for PEDL and
MEDL. Each interpreter includes a parser for the re-
spective language and works on a parsed version (the
abstract syntax tree) of a script. The MEDL inter-
preter is the run-time checker. It accepts primitive
events sent by the event recognizer and re-evaluates all
events and condition described in the MEDL script.
The PEDL interpreter is the event recognizer. It ac-
cepts the low-level data sent by the instrumented pro-
gram and, based on the definitions in the monitoring
script, detects occurrence of the primitive events and
delivers them to the run-time checker. In addition, the
PEDL interpreter produces the instrumentation data
that is used to automatically instrument the system.

The MaC instrumentor is based on JTREK class li-
brary [5], which provides facilities to explore a Java
class file and insert pieces of bytecode, preserving in-
tegrity of the class. During instrumentation, the in-
strumentor detects updates to monitored variables and
calls to monitored methods and inserts code to send a
message to the event recognizer. The message contains
the name of the called method and its parameter val-
ues, or the name of the updated variable and its new
value. Each message contains a time stamp that can
be used in checking of real-time properties.

In order to implement steering in the MaC proto-
type [6], we had to add the following components:

e A parser for SADL. The parser produces two com-
ponents: 1) a list of actions together with their
conditions in the form that can be used by the in-
strumentor; 2) a new class, Injector, discussed
below.

e The injector is the component responsible for com-
munication with the checker. When the system is
started, the injector is loaded into the virtual ma-
chine of the monitored system. At run time, when
a steering action happens, the injector receives a
message from the checker and sets a flag to indi-
cate that the steering action has happened. The
bodies of the steering actions are also represented
in the prototype as methods of the Injector class.

e The functionality of the instrumentor is extended
to insert the additional code at the positions pre-
scribed by the steering conditions. The code tests
the flag for action invocations and makes calls to
the injector to execute the action.

e The run-time checker is extended to handle action

Steering script Program Monitoring script Requirements
(SADL) (Java byte code (PEDL) (MEDL)
SADL PEDL MEDL
parser parser parser
Instrumentation| Instrumentatio O MaCware
data data
E> run-time
dataflow
Instrumentor —— compile-time
dataflow

Java virtual machine

Instrumented
Program

‘ Injector ‘

Il

Event
recognizer

Checker

Figure 5. Java-based MaC prototype

invocations. A connection between the checker
and the injector is established at system start-
up. The MEDL interpreter processes invocation
instructions and sends the corresponding messages
to the injector.

6 Conclusions

We have described an approach to perform run-time
correction of system behavior by means of steering ac-
tions. Steering is embedded into a monitoring and
checking framework, which detects violations of formal
requirements in the observed execution of the moni-
tored system. Monitoring, in conjunction with steer-
ing, provides an additional layer of fault tolerance in
the system.

Related work. Program steering has been exten-
sively explored in the context of performance optimiza-
tion and resource management. Systems such as Fal-
con [4], MOSS [1], Autopilot [7] aim at steering of large
distributed systems. Most of these systems rely on in-
teractive steering, where decisions are made by a hu-
man user, although automatic control is also possible.
MaC, on the other hand, emphasizes automatic pro-
cedures both during instrumentation and at run time.
Another significant distinction of MaC is that it tar-
gets correctness of the system execution rather than

its performance, and relies on formal specification of
correct behaviors.

MacC is also distinguished from other approaches to
fault tolerance (see, for example, [2]). Although the
goals and some of the methods are similar, we are not
trying to provide an alternative to fault-tolerant com-
ponents within the system itself. It is clear that such
components are likely to be more efficient than an ex-
ternal layer such as MaC. Rather, MaC should be used
when the system requirements change after the sys-
tem has been designed, implemented and deployed, or
the environment is more demanding than anticipated
at design time. In this case, incorporating additional
fault tolerance into the system itself may be impossible
and an external solution is justified.

Current and future research. The work on the
steering framework is actively under way. Our current
goal is to achieve a better understanding of the the-
oretical basis for steering. Questions that need to be
answered include:

e what problems can be resolved by means of steer-
ing? Clearly, we cannot reverse catastrophic fail-
ures. However, faults can be detected and cor-
rected before they develop into a failure. We are
developing a fault model that will characterize
faults amenable to correction by steering.

e what is the right way to reason about steering? We
need to perform high-level analysis of effects of a
particular steering action. In order to do this, we
are working on a high-level state-machine model of
the steering component. Together with the fault
model, a precise behavioral description of steering
will allow users to perform analysis of the system
together with steering.

The current prototype will serve as an important ve-

hicle in exploring the possibilities and shortcomings of
steering. Several case studies in monitoring and steer-
ing of systems is under way, and we expect to gain
much experience from them.

References

[1]

[2]

[3]

[4]

[6]

[7]

G. Eisenhauer and K. Schwan. An object-based in-
frastructure for program monitoring and steering.
In Proceedings of the 2nd SIGMETRICS Sympo-
sium on Parallel and Distributed Tools, Aug. 1998.

F. C. Géartner. Fundamentals of fault-tolerant
distributed computing in distrbuted environments.
ACM Computing Surveys, 31(1), Mar. 1999.

D. Gordon, W. Spears, O. Sokolsky, and I. Lee.
Distributed spatial control and global monitoring
of mobile agents. In Proceedings of the IEEE Inter-
national Conference on Information, Intelligence,
and Systems - ICIIS’99, to appear, Nov. 1999.

W. Gu, G. Eisenhauer, K. Schwan, and J. Vet-
ter. Falcon: On-line monitoring for steering parallel
programs. Concurrency: Practice and Ezxperience,
10(9):699-736, Aug. 1998.

Java Technology Center, = Compaq Corp.
Compaq JTrek . Online documentation:
http://www.digital.com/java/download/jtrek/.

M. Kim, M. Viswanathan, H. Ben-Abdallah,
S. Kannan, I. Lee, and O. Sokolsky. Formally spec-
ified monitoring of temporal properties. In Pro-
ceedings of the European Conference on Real-Time
Systems - ECRTS’99, pages 114-121, June 1999.

R. Ribler, H. Simitci, and D. Reed. The Autopilot
performance-directed adaptive control system. Fu-
ture Generation Computer Systems, 1999. To ap-
pear.

