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Abstract In this article, we propose a new framework for addressing multivariate time-

varying volatilities. By employing methods of differential geometry, our model respects

the geometric structure of the covariance space, i.e., symmetry and positive definiteness, in

a way that is independent of any local coordinate parametrization. Its parsimonious

specification makes it particularly suitable for large dimensional systems. Simulation

studies suggest that our model embraces much of the nonlinear behaviour of the covariance

dynamics. Applied to the US and the UK stock markets, the model performs well, espe-

cially when applied to risk measurement. In a broad context, our framework presents a new

approach treating nonlinear properties observed in the financial market, and numerous

areas of application can be further considered.
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1 Introduction

Since the introduction of the ARCH model by Engle (1982), time-varying volatility models

have played an important role in finance and have been successfully applied to various

financial problems. From a portfolio viewpoint, it is natural to extend the GARCH-type

models to a multivariate system, as first done by Bollerslev et al. (1988). Since their work,

various types of multivariate time-varying volatility models have flourished. Some of the

notable examples are the BEKK model of Engle and Kroner (1995), the DCC model of

Engle (2002), and the matrix exponential GARCH model of Kawakatsu (2006). For more

comprehensive references, we refer the reader to the survey papers by Bauwens et al.

(2006) and Silvennoinen and Teräsvirta (2009).

The areas of application of time-varying volatility models are extensive; potentially all

the areas where covariance dynamics comes into play, such as asset pricing and portfolio

optimization, can be considered. It was first applied to asset pricing by Bollerslev et al.

(1988), and later by Santis and Gerard (1998) and Hafner and Herwartz (1998). Cross

relations in volatilities of several markets were studied by Kearney and Patton (2000) and

Karolyi (1995), and Lien and Tse (2002) computed time-varying hedge ratios using a

multivariate GARCH model. Wang and Chen (2007) explore the dynamics between the

spot market and its derivative markets using a multivariate GARCH-M model.

Despite the wide areas of application, development of multivariate GARCH models has

been neither as active nor as rapid as univariate GARCH models. Perhaps the most obvious

reason for this is the proverbial ‘‘curse of dimensionality’’: because there are nðnþ 1Þ=2
elements in the covariance matrix of an n-variable system and the number of parameters to

be estimated, in the most general case, will be of Oðn4Þ, the computational burden rapidly

becomes untenable for even moderately large n.

Another important—and more subtle—difficulty in designing a time series model of a

covariance matrix is the need to preserve its geometric structure, i.e., positive definiteness

and symmetry. While symmetry can be easily guaranteed, ensuring that a covariance

matrix remains positive definite in a mathematically consistent way (we illuminate on this

point further below) is not necessarily straightforward. Earlier treatments have often been

ad hoc and not taken the underlying geometric structure of the positive definite matrices

into account. For example, the vech()-type model proposed by Bollerslev et al. (1988)

takes the crude and obvious approach of transforming the covariance matrix into a column

vector, and specifying the vector dynamics accordingly; in this case positive definiteness is

ensured only after imposing the relevant algebraic constraints on the vector parameters.

Some other recent models address the positive definiteness issue by imposing other sets of

assumptions: see, for example, Tse and Tsui (2002) and Engle (2002). The well-known

BEKK model of Engle and Kroner (1995) and its variants ensure positive definiteness by

assuming a quadratic form for each term in the dynamics equation.

More recently, in work that is particularly relevant to ours, Kawakatsu (2006) extends

the exponential GARCH model of Nelson (1991) to a multivariate system, and assumes a

vech()-type time series model for the log of the covariance matrix. Since the matrix

exponential of a symmetric matrix is always symmetric and positive definite, the geometric

structure of the covariance matrix is preserved in this model without additional constraints.

The exponential map, it turns out, plays a particularly important role in the geometric

characterization of matrix groups, and the work of Kawakatsu (2006) is a promising first

step that implies the important fundamental connections between geometry and the posi-

tive definite matrices.
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Why is taking geometry into account important? This point can perhaps be best illus-

trated via an example of a point moving on the surface of a sphere. In principle, one could

describe the motion of the point using standard three-dimensional Cartesian coordinates

x 2 R, with further imposition of the constraint that length of x be one, i.e., kxk ¼ 1.

Imposing the constraint is cumbersome, and it is more convenient to use a set of local two-

dimensional coordinates for the sphere; spherical coordinates immediately come to mind.

However, there are many alternative choices of two-dimensional coordinates that para-

metrize the sphere, e.g., stereographic projection. In principle, there should be no reason to

prefer one choice of local coordinates over another, as long as essential geometric quan-

tities like length of the curve, and the area of a patch, are preserved. In other words, it is

important to distinguish geometric properties from those that are coordinate-dependent.

Any meaningful analysis must take into account the geometric properties of the underlying

space, and preserve them in a coordinate-invariant way.

Likewise, the space of covariance matrices is not a vector space, but a curved space.

More precisely, it has the structure of a differentiable manifold that we denote PðnÞ. PðnÞ is
a differentiable Riemannian manifold and this fact motivates us to specify the dynamics of

the covariance matrix using an appropriate set of local coordinates, and also taking care to

ensure that the geometric structure of PðnÞ is always respected. In fact, there is well-

developed machinery to specify continuous-time dynamics on differentiable manifolds,

and we adopt this as the starting point for developing a general multivariate volatility

model.

Beyond the aesthetic appeal of describing the dynamics on a curved space in an intrinsic

fashion, however, the most critical reason, that also has a profound effect on computational

results, is that ignoring the geometric structure more often than not will lead to arbitrary

results without physical meaning. To illustrate this with an example pointed out by

Fletcher and Joshi (2004), one can define a linear average of a collection of positive

definite symmetric matrices by taking their sum and dividing by the number of elements.

This procedure ensures that the resulting average is also positive-definite. However, such

linear averages fail to interpolate natural properties. The linear average of matrices of the

same determinant, for example, can result in a matrix with a larger determinant. This issue

is even worse for second-order statistics. The standard principal component analysis as

formulated on vector spaces is no longer valid, since the ‘‘straight lines’’ corresponding to

the eigenmodes of variation do not remain on the space P(n)—standard vector space

principal component analysis fails to preserve positive-definiteness.

The aforementioned limitations of the traditional approaches can be overcome using

methods of differential geometry. With a proper Riemannian metric, a ‘‘straight line’’

(geodesic) connecting two covariance matrices that remains on PðnÞ can be defined, and

the distance can be measured. The notion of geodesic can then be utilized to define

statistics on PðnÞ, such as mean and covariance. A version of principal component analysis

for covariance matrices can also be developed. By employing these tools from differential

geometry, the objective of the paper is to propose a new framework for modelling

covariance dynamics from a differential geometry perspective, and develop multivariate

volatility models under the framework. Our models preserve symmetry and positive def-

initeness of the covariance matrix as it evolves, without imposing any ad hoc restrictions.

We demonstrate benefits of the framework via simulation studies and compare our models

with existing ones in empirical studies. Both simulation and empirical studies suggest that

our models perform well and possess properties desired for covariance dynamics.

The remainder of the paper is organized as follows. Section 2 reviews the geometry of

P(n), including its Riemannian structure, evaluation of geodesics in a given direction and
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also between two arbitrary points, and its natural extension to the computation of intrinsic

sample mean and covariance on P(n). Section 3 constructs differential equations on P(n),

with a focus on linear and quadratic equations—these are chosen for their ability to model

diverse correlation phenomena observed in various multivariate time series data, without

sacrificing analytic and computational tractability. From the differential equations, we

develop a geometrically well-defined multivariate volatility model. We also propose a

variation of the model by employing the principal component analysis. In Sect. 4, the

characteristics of our model are illustrated via simulation analysis and its performance is

assessed through empirical studies. We conclude in Sect. 5 with a discussion of open

problems and future extensions of this geometric approach to time-varying volatility.

2 Geometry of P(n)

In this section, geometric properties of the covariance space are briefly introduced. More

complete description can be found in Fletcher et al. (2003), Fletcher and Joshi (2004),

Moakher (2005), Lenglet et al. (2006).

The covariance space P(n) is defined as

PðnÞ ¼ P 2 Rn�n jP ¼ P>;P[ 0
� �

: ð1Þ

P(n) is a differentiable manifold whose tangent space at a point P 2 PðnÞ can be identified

with n� n symmetric matrices, SðnÞ. A basis for SðnÞ can be constructed in the usual way,

i.e., the basis element Eij 2 SðnÞ, where i� j, is a symmetric matrix whose ij and ji

elements are one, and the remaining elements zero.

A Riemannian structure can be constructed via the Riemannian metric given by

hX;YiP ¼ trðP�1XP�1YÞ, X;Y 2 SðnÞ. In terms of this metric, the length of a curve

PðtÞ 2 PðnÞ, a� t� b, is given by

LðPÞ ¼
Z b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr ðP�1ðtÞ _PðtÞÞ2
� �r

dt: ð2Þ

This notion of length is invariant not only under reparametrization of [a, b], but also under

congruent transformations of the formMPM>, whereM is any fixed element in the general

linear group, GL(n). Using the fact that P(n) is a complete space (i.e., the geodesics are

well-defined for all t), the minimal geodesic cðtÞ : ½0; 1� ! ½A;B� connecting two points

A;B 2 PðnÞ is given by

cðtÞ ¼ G G�1BG�>� �t
G>; ð3Þ

where GG> ¼ A; G 2 GLþðnÞ, the identity component of GL(n), i.e., a subgroup of GL(n)

with positive determinants. The tangent vector of the geodesic at A is defined by the

Riemannian log map

Log AðBÞ ¼ G log G�1BG�>� �
G>: ð4Þ

The inverse of the Riemannian log map, the Riemannian exponential map is also defined.

Given an element X 2 SðnÞ, the minimal geodesic emanating from some A 2 PðnÞ in the

direction of the tangent vector X can be computed as follows:

Exp AðXÞ ¼ G exp G�1XG�>� �
G>: ð5Þ
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Defining the distance between A and B in the usual way by the length of the above minimal

geodesic, we have

dðA;BÞ ¼ jj Log ABjj ¼
Xn

i¼1

ðlog kiÞ2
 !1=2

; ð6Þ

where jj � jj is the Frobenius norm, and k1; . . .; kn are the eigenvalues of the matrix AB�1.

Since AB�1 is symmetric positive-definite, the eigenvalues of AB�1 are all positive, and

log ki is well defined for each i. Note also that dðA; cðtÞÞ ¼ t dðA;BÞ.
With the above metric structure on P(n), we now discuss sample means and covariances

on P(n). A widely used formula for the sample mean of N symmetric positive-definite

matrices fP1; . . .;PNg is the arithmetic mean 1
N

PN
i¼1 Pi. While the arithmetic mean clearly

lies in P(n), it has a number of undesirable properties: e.g., the arithmetic mean of matrices

with an equal determinant can have a larger determinant. We therefore focus on the

intrinsic mean, defined as

arg min
�P2PðnÞ

XN

i¼1

dð�P;PiÞ2: ð7Þ

For the case of two points, the intrinsic mean is simply the midpoint of the minimal

geodesic. For arbitrary N, the above intrinsic mean is unique on P(n). Fletcher and Joshi

(2004) provides a simple steepest descent algorithm for numerically obtaining the intrinsic

mean, using the gradient of (7) given by
PN

i¼1 logð�PP�1
i Þ.

An intrinsic notion of sample covariance on P(n) can also be defined via the Rie-

mannian structure of P(n). Given N elements, P1; . . .;PN , and the intrinsic mean �P, the

covariance matrix relative to �P is defined by

R �P ¼ 1

N

XN

i¼1

XiX
>
i ; ð8Þ

where Xi is the tangent vector at �P of the geodesic connecting �P and Pi, i.e.,

Xi ¼ Log �PðPiÞ. Based on these mean and covariance formulas, a generalized normal

distribution on P(n) can be constructed by taking the curvature into account; see Lenglet

et al. (2006) for details.

The usual principal component analysis defined on vector spaces is no longer valid on

P(n). Instead, principal geodesic analysis (PGA), a version of principal component analysis

on P(n), can be defined by utilizing the notions of geodesic and intrinsic mean. PGA allows

us to identify the principal axes of variation of covariance matrices, which then can be used

to develop a parsimonious covariance dynamics model. Details of PGA is provided in

‘‘Appendix’’.

3 Geometrically well defined volatility models

Assume that an n-variable system, rt is governed by the following dynamics equation:

rt ¼ lþ et; et �Nð0;HtÞ; ð9Þ

where Ht 2 PðnÞ is the covariance matrix of et. We assume a constant mean and focus on

the covariance dynamics; generalization to a time-varying mean model should be
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straightforward. The covariance matrix of the shock is assumed to have dynamics of the

form

dHt ¼ Ft dt; ð10Þ

where Ft is a time-varying n� n symmetric matrix which depends on the information set

at t. As dHt is the differential of Ht, it is defined in the tangent space SðnÞ, and it suffices

for Ft to be symmetric.

P(n) is a Riemannian symmetric space that is geodesically complete, and as such the

minimal geodesics provide a natural way of discretizing general differential equations on

P(n). Using the Riemannian exponential map defined in (5), Ht can be obtained by the

formula

Ht ¼ Exp Ht�1
ðFtÞ: ð11Þ

Another class of dynamics we consider for Ht is based on the assumption that Ht is

mapped by Ft from a constant covariance matrix H1, i.e.,

Ht ¼ Exp H1ðFtÞ: ð12Þ

In the event that H1 is an identity matrix, this model nests the matrix exponential GARCH

model by Kawakatsu (2006). In (11), Ft is the tangent vector of the geodesic connecting

Ht�1 and Ht, and it is the tangent vector of the geodesic connecting H1 and Ht in (12).

Various specifications of Ft can be considered. The remainder of the section is devoted to

developing standard models for Ft.

3.1 Geometric GARCH models

We assume that Ft depends only on the current and past covariances and shocks. In this

case, a natural extension of the univariate GARCH model would yield the equation

Ft ¼
XP

p¼1

ApHt�p þHt�pA
>
p

� �
þ
XQ

q¼1

Bqet�qe
>
t�q þ et�qe

>
t�qB

>
q

� �
: ð13Þ

We can also construct a quadratic form

Ft ¼
XP

p¼1

ApHt�p þHt�pA
>
p þHt�pSpH

>
t�p

� �
þ
XQ

q¼1

Bqet�qe
>
t�q þ et�qe

>
t�qB

>
q

� �
: ð14Þ

In Eqs. (13) and (14),Ap; Sp andBq are n� nmatrices. In the event thatBq are zero, we have a

standard matrix Riccati equation in H, with well-known methods for obtaining solutions:

_H ¼ AH þHA> þHSH>: ð15Þ

The functional form of Ft can be easily extended to accommodate phenomena observed

in the market, e.g., asymmetric volatility effect as reported in Kroner and Ng (1998).

Asymmetric effect of shocks on Ft is modeled by augmenting Eq. (13) with terms of

gt ¼ jetj � et:
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Ft ¼
XP

p¼1

ApHt�p þHt�pA
>
p

� �
þ
XQ

q¼1

Bqet�qe
>
t�q þ et�qe

>
t�qB

>
q

� �

þ
XQ

q¼1

Cqgt�qg
>
t�q þ gt�qg

>
t�qC

>
r

� �
:

ð16Þ

Ft could be more generally specified by transforming it to a vector as in Kawakatsu (2006),

but the above specification is sufficient to capture the essential features of covariance

dynamics.

The proposed model is geometrically well-defined: the covariance matrix remains in

PðnÞ as it evolves without further restrictions on the dynamics, as long as the differential

dHt is an element of SðnÞ. We call this specification of time-varying volatilities Geometric

GARCH, or simply GGARCH model.

3.2 PCA based specifications

Another formulation of Ft we consider is based on the principal component analysis. The

PCA can be applied in two ways depending on the class of the covariance dynamics. For

the covariance dynamics defined in (11), the usual PCA can be applied to the tangent

vectors of the geodesics connecting Ht�1 and Ht. In conjunction with the dynamics

equation in (12), the PGA can be applied to the geodesics connecting H1, and Ht. In either

case, if the variation of the covariance matrix can be approximated by K\nðnþ 1Þ=2
principal directions, fVkg, Ft can be written in the form

Ft 	
XK

k¼1

aktVk; ð17Þ

where akt are time-varying factor loadings. We specify akt as a scalar function of the lagged
terms of the covariance matrix and residuals, fHt�p; et�qg. In particular, the following

functional form is considered.

aktðHt�p; et�qÞ ¼ tr
XP

p¼1

Ak;pHt�p þ
XQ

q¼1

Bk;qet�qe
>
t�q þ

XQ

q¼1

Ck;qgt�qg
>
t�q

 !

: ð18Þ

where Ap, Bq, and Cq are n� n upper triangular matrices. Another method worth con-

sideration is to use the distance function. For example, the following specification can be

considered.

aktðHt�p; et�qÞ ¼ d Ht�1;
XP

p¼1

ak;pHt�p þ
XQ

q¼1

bk;qet�qe
>
t�q þ

XQ

q¼1

ck;qgt�qg
>
t�q

 !

: ð19Þ

where ak;p, bk;q, and ck;q are nonnegative scalar coefficients.1 By defining the factor

loadings as the distance between the current covariance matrix and a function of the

residuals, this specification has a better geometric interpretation. If K is sufficiently small,

the PCA-based specifications ensure a parsimonious representation of the covariance

dynamics.

1 Ht�1 on the right hand side of (19) needs to be replaced byH1 under the covariance dynamics specified in
(12).
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Although the principal directions can, in principle, be obtained by applying PCA or

PGA to a series of covariance matrices, covariance matrices are unobservable and need to

be estimated. A good proxy would be a realized covariance obtained from high frequency

data. If high frequency data is not available, sample covariance matrix calculated from a

sub-sample could be used.

3.3 Parsimonious representations

The GGARCH models involve Oðn2Þ number of parameters in the most general case and

unless some restrictions are imposed, the models will be numerically untenable for a large

dimensional system. An obvious and popular practice is to restrict the coefficient matrices

to diagonal matrices or scalars. Table 1 compares the number of parameters in each

GGARCH specification and in some existing models. Note that, while BEKK and DCC

models have the number of parameters of Oðn2Þ regardless of the degree of restriction,

diagonal or more restricted versions of the GGARCH model have parameter numbers of

O(n) or a constant. This is because the covariance dynamics is defined in the tangent space

and there is no constant term in the dynamics equation. A constant term in the tangent

space would imply that the covariance matrix tends to move toward a certain direction

regardless of its current position, which is not intuitive. Empirical studies also support this:

while a constant matrix plays a dominant role in BEKK and DCC models, it turns out to be

insignificant in GGARCH models. This gives our model a huge benefit when applied to

large dimensional systems.

4 Empirical studies

In this section, we illustrate the characteristics of the proposed models via simulations.

They are then applied to a set of real market data and compared with widely used models,

i.e., BEKK and DCC. Although the case studies introduced in this section are far from

exhaustive, they convey some important lessons about our model and shed light on the

future directions of research.

4.1 Properties of the covariance space

Riemannian exponential map serves as a building block of our covariance dynamics

models and it is important to understand its properties in order to correctly specify the

tangent vector Ft. For illustration purposes, we consider a simple bivariate system; this

facilitates visualization and is still sufficient to understand the basic properties.

4.1.1 The shortest path

Consider two covariance matrices

H0 ¼
1 0

0 1

	 

; and H1 ¼

1 0:5
0:5 1

	 

;

and let

HðtÞ ¼ h11 h12
h12 h22

	 

; 0� t� 1;
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be a covariance matrix on the geodesic connecting H0 and H1. The geodesic is visualized

in Fig. 1. In the figure, the first panel plots the trajectory of h11 and h12, and the second

panel plots the distance between HðtÞ and Hðt þ 0:1Þ for t ¼ 0; . . .; 0:9, with Hð0Þ ¼ H0

and Hð1Þ ¼ H1. The solid lines represent the geodesic and the dotted lines represent the

linear interpolation. Interestingly, the trajectory of the variance term is convex and that of

the covariance term is slightly concave, contrary to the naive linear interpolation that yields

straight lines for both variance and covariance terms. This is because, under the Riem-

manian metric, the distance between two covariance matrices increases exponentially as

one matrix approaches singularity, i.e., perfect correlation, whereas HðtÞ moves at a

constant speed as shown in Fig. 1b: Convex h11 and concave h12 implies that the corre-

lation increases more rapidly at the beginning and more slowly later compared to the case

of linear interpolation. This results in the equal distance between two adjacent points along

the geodesic, contrary to the increasing distance between two adjacent points along the

linear interpolation line. This is a desired property of covariance dynamics since, for

example, an increase in correlation from 0.0 to 0.5 must be more likely than an increase

from 0.5 to 1.0. In fact, for H1 ¼
h0:5

0:5h

" #

, the minimum distance between H0 and H1 is

achieved when h is near 1.275, whereas it would be achieved when h ¼ 1 under a con-

ventional metric such as Frobenius norm. This suggests that an increase in covariance is

likely to involve an increase in variance more under the Riemannian metric compared to an

Euclidean metric, which is consistent with the fact that the correlations are much more

persistent than the variances. This is also supported by the empirical analysis demonstrated

later in this section, where the first principal component of covariance matrix variation

turns out to be simultaneous changes of the variance and covariance.

4.1.2 Riemmanian exponential map

We examine the movement of a covariance matrix when it is repeatedly subject to a

tangent vector. This is to assess the effect of repeated shocks in one direction. Suppose the

covariance matrix has the initial value

Table 1 Multivariate GARCH models and their number of parameters

Model Parameters Description

GGARCH PCA DIST 3K akt is defined as in (19)

GGARCH PCA DIAG 3nK In (18), coefficient matrices are diagonal

GGARCH PCA FULL ð1:5n2 þ nÞK In (18), coefficient matrices are upper triangular

GGARCH SCALAR 3 In (16), coefficient matrices are scalar

GGARCH DIAG 3n In (16), coefficient matrices are diagonal

GGARCH LINEAR 1:5n2 þ 1:5n In (16), coefficient matrices are symmetric and the matrix
product is the element-wise product

GGARCH FULL 3n2 In (16), coefficient matrices are arbitrary n� n matrices

BEKK SCALAR 0:5n2 þ 0:5nþ 3 BEKK model with scalar coefficients

BEKK DIAGONAL 0:5n2 þ 3:5n BEKK model with diagonal coefficients

BEKK FULL 3:5n2 þ 0:5n BEKK model with arbitrary n� n coefficients

DCC SCALAR n2 þ 4nþ 3 DCC model

All models are assumed to have an asymmetric component and be a function of only the first lags
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H0 ¼
1:0 0:5
0:5 1:0

	 

:

The covariance matrix is repeatedly updated by the Riemannian exponential map Ht ¼
Exp Ht�1

ðFÞ where F has one of three values,

F1 ¼
0:05 0:00

0:00 0:00

	 

; F2 ¼

0:05 0:05

0:05 0:05

	 

; or F3 ¼

0:05 �0:05

�0:05 0:05

	 

:

F1 implies a shock only on the first variable, while F2 (F3) implies shocks of an equal size

in the same (opposite) direction. The results are displayed in Figs. 2, 3, and 4. In each

figure, r1, r2, and q respectively denote the standard deviations of the two variables and

their correlation coefficient. When Ht is subject to F1, r1 increases while q decreases. This

is intuitive as independent shocks would imply reduced correlation. Note that r1 increases
at a reduced pace when it is high. This is desirable because when the variance is high, the

same shock would have a smaller impact. As F2 implies shocks in the same direction, the

correlation increases when Ht is subject to F2, and for the same reason, it decreases when

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

(b)

Fig. 1 Geodesic betweenH0 and
H1. In a, the lines at the top are
the trajectories of h11 and the
lines at the bottom are the
trajectories of h12. Solid lines
represent the geodesic and dotted
lines represent the linear
interpolation. a Trajectory of
HðtÞ. b dðHðtÞ;Hðt þ 0:1ÞÞ
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(a) σ1
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0.48

0.49
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Fig. 2 Movement of Ht subject
to F1. r1, r2, and q respectively
denote the SD of the two
variables and their correlation
coefficient
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Ht is subject to F3. However, the correlation decreases more rapidly, as we would expect

from the actual movements of covariance matrices.

While Riemmanian exponential map carries desired properties of covariance dynamics,

the behavior of the covariance matrix is not entirely clear due to the nonlinearity of the

matrix exponential. This makes specifying the tangent vector and calibrating the model

tricky: e.g., one may want to make correlations more persistent than variances. Although

the GGARCH model does not allow independent modelling of variances and correlations,

one workaround is to incorporate the GGARCH model into the DCC framework, i.e.,

estimate variances using a univariate GARCH model and estimate correlations using the

GGARCH model.

We have investigated various characteristics of the covariance space and related them to

some of the features observed in the market. Based on the promising simulation results, we

believe that, by correctly specifying the tangent vector, our model can be successfully

employed in many financial application domains in which volatilities are best modeled as

time-varying.

4.2 Global market correlation

In this section, we apply the GGARCH models to a set of real market data and compare

them with the BEKK and DCC models. We choose two stock market indexes, S&P500 and

FTSE100, both obtained from Thomson Reuters database. Daily index values are collected

from October 1, 2003 to September 30, 2013, from which daily log returns are calculated.

The sample mean and covariance matrix of the index returns are reported in Table 2. The

two markets are highly correlated during the sample period, and have a similar level of

mean and variance.

4.2.1 Test models

We consider six GGARCH specifications and compare them with two BEKK specifica-

tions (scalar and diagonal coefficient matrices) and a DCC specification. The most general

form of the BEKK model was also considered but excluded as the estimation results were

too sensitive to initial values and therefore unreliable. In all specifications, the covariance

matrix is assumed to be a function of only the first lags of the covariance matrix and the

residuals. As our primary interest lies in the covariance dynamics, we assume a constant

mean return for simplicity.

rt ¼ lþ et; et �Nð0;HtÞ; ð20Þ

Ht ¼ Exp Ht�1
ðFtÞ: ð21Þ

Table 2 Sample statistics of S&P500 and FTSE100 daily log returns

Mean Covariance Correlation

S&P500 FTSE100 S&P500 FTSE100

S&P500 1.924E-04 1.600E-04 0.872E-04 1.000 0.578

FTSE100 1.680E-04 0.872E-04 1.425E-04 0.578 1.000

Sample period is from October 1, 2003 to September 30, 2013
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The six GGARCH specifications are described below. For the details of the BEKK and

DCC models, please refer to Engle and Kroner (1995) and Engle (2002), respectively.

• GGARCH SCALAR

Ft ¼ AHt�1 þ Bet�1e
>
t�1 þ Cgt�1g

>
t�1; ð22Þ

where A, B, and C are scalar.

• GGARCH DIAG

Ft ¼ AHt�1 þHt�1A
> þ Bet�1e

>
t�1 þ et�1e

>
t�1B

> þ Cgt�1g
>
t�1 þ gt�1g

>
t�1C

>; ð23Þ

where A, B, and C are diagonal.

• GGARCH LINEAR

Ft ¼ A
Ht�1 þ B
 et�1e
>
t�1 þ C 
 gt�1g

>
t�1; ð24Þ

where A, B, and C are symmetric, and 
 is the element-wise matrix product.

• GGARCH FULL

Ft ¼ AHt�1 þHt�1A
> þ Bet�1e

>
t�1 þ et�1e

>
t�1B

> þ Cgt�1g
>
t�1 þ gt�1g

>
t�1C

>; ð25Þ

where A, B, and C are arbitrary n� n matrices.

• GGARCH PCA DIAG

Ft ¼
XK

k¼1

aktVk

akt ¼ trðAkHt�1 þ Bket�1e
>
t�1 þ Ckgt�1g

>
t�1Þ;

ð26Þ

where Ak, Bk, and Ck are diagonal matrices.

• GGARCH PCA FULL

Ft ¼
XK

k¼1

aktVk

akt ¼ tr AkHt�1 þ Bket�1e
>
t�1 þ Ckgt�1g

>
t�1

� �
;

ð27Þ

where Ak, Bk, and Ck are upper triangular matrices.

All the models are estimated via Quasi-Maximum Likelihood Estimation (QMLE).2

The PCA-based GGARCH models require a time series of covariance matrices in order

to apply PCA prior to model estimation. We generate a covariance matrix time series by

calculating sample covariance from the minimum size (two, in our case) subsample at each

time t. We tested larger subsamples but the results were qualititively similar. PCA results

are reported in Table 3. The first component explains almost 80% of the change and the

first two components combined together explain more than 95% of the change. Based on

this, we choose K ¼ 2. Brief inspection of the eigenvectors reveals an interesting obser-

vation: The first component is related to simultaneous changes of the variances and

covariance, the second component is related to independent changes of the variances, and

finally the third component is related to an independent change of the covariance. The first

2 BEKK and DCC models are estimated using MFE Matlab toolbox developed by Kevin Sheppard. The
toolbox can be downloaded from http://www.kevinsheppard.com/wiki/MFE_Toolbox.
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component implies that the principal variation of the covariance matrix is due to simul-

taneous changes of the variances while the correlation remaining still.

4.2.2 Estimation and diagnosis

Estimation and diagnosis results are reported in Tables 4, 5, 6 and 7. The models are

ranked in each table based on their performance: ***, **, and * represent the best three

performing models in descending order.

Table 4 compares the log-likelihood value of each model. The gain in the log-likelihood

value from increased model flexibility seems trivial. For example, the difference in the log-

likelihood values of GGARCH SCALAR and GGARCH LINEAR is mere 0.3%, even

though the former has only 3 parameters, whereas the latter has 9. This means that a model

selection criteria such as Bayesian Information Criteria (BIC) would favor the scalar

Table 3 PCA results of the tan-
gent vectors of the geodesics
connecting Ht�1 and Ht

1st component 2nd component 3rd component

Eigenvalue 1.703E-06 0.375E-06 0.092E-6

(78.479%) (17.281%) (4.240%)

0.6470 0.6938 0.3163

Eigenvector 0.4972 -0.0693 -0.8649

0.5781 -0.7168 0.3898

Table 4 Log-likelihood as a
result of QMLE

Log-likelihood

GGARCH SCALAR 1.7353E?04

GGARCH DIAG 1.7356E?04

GGARCH LINEAR 1.7409E?04

GGARCH FULL 1.7371E?04

GGARCH PCA DIAG 1.7404E?04

GGARCH PCA FULL 1.7478E?04

BEKK SCALAR* 1.7479E?04

BEKK DIAGONAL** 1.7509E?04

DCC SCALAR*** 1.7554E?04

Table 5 Ljung–Box autocorrela-
tion test results

Q denotes Ljung–Box Q statistic

Q p value

GGARCH SCALAR 76.8857 0.0000

GGARCH DIAG 71.4855 0.0004

GGARCH LINEAR 37.5462 0.0646

GGARCH FULL 65.4737 0.0012

GGARCH PCA DIAG 70.6275 0.0000

GGARCH PCA FULL 41.8565 0.0060

BEKK SCALAR* 21.7602 0.1427

BEKK DIAGONAL** 17.2584 0.2642

DCC SCALAR*** 14.5448 0.4504
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version within each model family. The difference between model families is also small.

Still, the DCC and BEKK models achieve higher log-likelihood values than the GGARCH

models.

Table 5 reports the results of the autocorrelation test proposed by Ledoit et al. (2003). If

a model is correctly specified, normalized residuals should be serially uncorrelated. The

test results are in favor of the DCC and BEKK models. The null hypothesis of zero

autocorrelation cannot be rejected in these models. Among other models, only the

GGARCH LINEAR passes the test at 5% level.

A minimum variance portfolio composed of the two market indexes is obtained from the

covariance estimate of each model. The portfolio is rebalanced every 22 business days and

held until the next rebalancing day. The results are reported in Table 6. It seems difficult to

distinguish the models based on the portfolio optimization results. Portfolio composition is

similar across the models and the standard deviation of the portfolio return is almost

indistinguishable. This is mainly due to the high correlation and the similar sizes of the

variances of the two market returns, as reported in Table 2. Nevertheless, subtle differ-

ences among the models can still be observed: The GGARCH family allocate consistently

Table 6 Minimum variance
portfolio

rr is the sample standard
deviation of the portfolio return,
q is the average correlation
estimate between the two indices,
and w1 and w2 are average
portfolio weights of S&P500 and
FTSE100, respectively

rr q w1 w2

GGARCH SCALAR*** 0.0109 0.577 0.5090 0.4910

GGARCH DIAG 0.0110 0.576 0.5076 0.4924

GGARCH LINEAR 0.0110 0.543 0.5046 0.4954

GGARCH FULL 0.0110 0.558 0.5168 0.4832

GGARCH PCA DIAG 0.0110 0.612 0.5055 0.4945

GGARCH PCA FULL 0.0110 0.578 0.4929 0.5071

BEKK SCALAR 0.0110 0.560 0.5215 0.4785

BEKK DIAGONAL 0.0110 0.546 0.5341 0.4659

DCC SCALAR 0.0110 0.520 0.5315 0.4685

Table 7 Value-at-risk test

20:80 50:50 80:20

0.05 0.01 0.001 0.05 0.01 0.001 0.05 0.01 0.001

GGARCH SCALAR* 0.0518 0.0180 0.0042 0.0541 0.0161 0.0050 0.0525 0.0188 0.0046

GGARCH DIAG 0.0525 0.0165 0.0042 0.0541 0.0165 0.0050 0.0521 0.0196 0.0050

GGARCH LINEAR 0.0548 0.0184 0.0046 0.0567 0.0180 0.0058 0.0579 0.0215 0.0050

GGARCH FULL 0.0529 0.0180 0.0042 0.0533 0.0176 0.0050 0.0560 0.0188 0.0042

GGARCH PCA
DIAG***

0.0514 0.0153 0.0035 0.0479 0.0138 0.0038 0.0502 0.0150 0.0023

GGARCH PCA
FULL**

0.0548 0.0192 0.0046 0.0521 0.0207 0.0035 0.0506 0.0188 0.0035

BEKK SCALAR 0.0537 0.0176 0.0031 0.0556 0.0192 0.0038 0.0541 0.0199 0.0050

BEKK DIAGONAL 0.0571 0.0207 0.0042 0.0579 0.0215 0.0046 0.0560 0.0219 0.0050

DCC SCALAR 0.0602 0.0211 0.0042 0.0590 0.0226 0.0050 0.0575 0.0226 0.0054

The first row indicates portfolio composition between S&P500 and FTSE100, and the second row indicates
probability level. The figures are probability of loss exceeding VaR
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lower weights on S&P500 compared to the BEKK and DCC models. Considering the fact

that the volatility of S&P500 is higher overall, and the objective is to minimize variance,

the allocations by the GGARCH family seem more plausible.

Finally, we calculate Value-at-Risk (VaR) of three portfolios at three different proba-

bility levels. Three portfolios are constructed by mixing the two market indexes at 20:80,

50:50, and 80:20 ratios, and VaR is computed at 95, 99, and 99.9% probability levels.

Assuming normality of the returns, VaR at time t is given by

VaRa;t ¼ za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w>Htw

p
; ð28Þ

where a is the probability level, za is the z-value at a, and w is the portfolio weights. VaR is

computed everyday and the probability of loss exceeding VaR is obtained by comparing

the VaR with the actual loss of the portfolio over the sample period. The results are

reported in Table 7. The values in the table are the probability of loss exceeding VaR. If

VaR is correctly estimated, the probabilityt will converge to the probability level a. The
models are ranked based on the overall performance across portfolios and probability

levels. It turns out that all the models underestimate VaR, except the GGARCH PCA

DIAG for 50:50 portfolio at 95% level. Nevertheless, the GGARCH family appear to

estimate VaR more accurately, and PCA-based GGARCH models, in particular, perform

best.

We have evaluated the proposed models using various diagnostic tools. The results are

mixed and do not consistently support any particular model. This could be because the

model specifications considered here are not correct, or more fundamentally, our geometric

framework has limitations in modelling covariance dynamics. It will remain inconclusive

until more exhaustive research is undertaken. Nevertheless, our models demonstrate clear

benefits over the existing models: While the BEKK and DCC models perform better in the

in-sample tests, GGARCH models are better performers in the out-of-sample tests, i.e.,

asset allocation and risk measurement, which are more important in practical applications.

Remarkably, this is achieved with fewer model parameters.

5 Conclusion

In this paper, we have proposed a new framework for addressing covariance dynamics

from a geometric perspective using differential geometry tools developed by Fletcher et al.

(2003), Fletcher et al. (2003), and Moakher (2005) among others. Our framework pre-

serves the geometric structure of the covariance matrix without any arbitrary restrictions by

respecting the inherent geometric features of the covariance matrix. It also possesses the

desired nonlinear nature of the covariance dynamics observed in the market. Based on our

geometric framework, we derived two types of covariance dynamics models, a general

geometric GARCH (GGARCH) model, and a PCA-based geometric GARCH (GGARCH

PCA) model. The major benefits of our model is (1) it allows us to specify the dynamics in

an intuitive manner; (2) the nonlinear nature of the covariance dynamics is naturally

implied; (3) a parsimonious specification can be easily achieved. The last feature is par-

ticularly important as it makes the model suitable for large dimensional systems.

Simulation studies reveal potential benefits of our model by showing that it captures

many well-known properties of the covariance dynamics. Empirical studies, however,

show mixed results and do not fully support our model against the widely recognized

BEKK and DCC models. Nevertheless, it is encouraging that our model outperforms these
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models when forecasting matters, as evidenced in the asset allocation and VaR estimation

tests. Different specifications of the dynamics within our framework could improve the

overall performance.

We have primarily focused on introducing a new framework and the underlying

mathematical concepts from a theoretical perspective, and demonstrated its potential

benefits through case studies. More comprehensive empirical studies and comparison

analysis are in order: numerous areas of application can be further considered, e.g., credit

risk modelling, asset pricing, and portfolio optimization among others. Particularly

intriguing is the possibility of a conditional CAPM model within the context of our

framework. Econometric theories in the covariance space, e.g., conditions for stationarity,

have yet to be established. Extensions of the fundamental models proposed in this paper

can also be considered: different specifications of the tangent vector is of particular

interest. Finally, a multivariate stochastic volatility model can be specified in the same

framework by adding a diffusion term to the continuous-time dynamics. We expect that the

geometric framework proposed here can serve as a building block for developing various

covariance dynamics models, and more broadly contribute to building a new paradigm for

economic modelling.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Principal geodesic analysis

Principal component analysis (PCA) finds a linear subspace in which the variability of the

data is best described. Similarly, principal geodesic analysis (PGA) seeks a submanifold

that best represents the variability of the data in a Riemannian manifold. Fletcher and his

colleagues investigate the PGA on a Lie group (Fletcher et al. 2003) and also on the space

PðnÞ (Fletcher and Joshi 2004). They first generalize three important concepts in PCA:

variance, subspace, and projection, and develop an algorithm for PGA. For completeness,

we briefly summarize the process; a more concrete derivation can be found in one of the

references cited above.

First, the variance of a set of data on a Riemannian manifold is defined as the expected

value of the squared Riemannian distance from the mean:

r2 ¼ E dð�P;PÞ2
h i

: ð29Þ

Given a sample of N data, the sample variance is defined as

s2 ¼ 1

N

XN

i¼1

dð�P;PiÞ2: ð30Þ

Secondly, the manifold counterpart of the linear subspace in the Euclidean space is defined.

A submanifold H of a manifold M is said to be geodesic at P 2 H, if all geodesics of H

passing through P are also geodesics ofM. Since a submanifold geodesic at P preserves the

distance from P, submanifolds geodesic at the mean can be regarded as the generalization

of the linear subspaces.
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We now define the projection operator to a manifold. Fletcher and Joshi (2004) define

the projection operator, pH : M ! H, as

argmin
Q2H

dðP;QÞ2: ð31Þ

Projection onto a geodesic submanifold at �P can be approximated in the tangent space to

the mean, T �PM. If V1; . . .;VK form an orthonormal basis for T �PH, then the projection

operator can be approximated by the formula

Log �PðpHðPÞÞ 	
XK

k¼1

hVk; Log �PðPÞi �P Vk: ð32Þ

With the concepts defined above, it can now be shown that PGA can be performed by

applying PCA to the tangent space of the manifold, TlM. The algorithm for PGA on P(n) is

summarized below.

• Given P1; . . .;PN 2 PðnÞ,
• Calculate the intrinsic mean of fPig and denote it �P.

• Compute the tangent vectors at �P of the geodesics connecting �P and Pi:

Xi ¼ Log �PðPiÞ:

• Apply PCA to fXig, i.e., find eigenvectors and eigenvalues, fvk; kkg of

S ¼ 1

N

XN

i¼1

xix
>
i

where xi ¼ vechðXiÞ. Vk ¼ vech�1ðvkÞ 2 SðnÞ are the principal directions and kk are

the corresponding variances.

Each observation Pi can be reproduced by the formula

Pi ¼ Exp �P

Xnðnþ1Þ=2

k¼1

akVk

 !

;

where ak ¼ v>k xi.
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