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Abstract

In this study, we design a superposition polar code that can achieve the capacity region of binary-input less-noisy broadcast channels
asymptotically. Simulation results show that a better rate region is achievable by superposition polar coding than by time sharing between two
point-to-point channel polar codes.
c⃝ 2016 The Korean Institute of Communications Information Sciences. Publishing Services by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The broadcast channel (BC), introduced by T.M. Cover [1],
consists of a single transmitter and K receivers, where the
transmitter transmits K independent messages to receivers. For
the general broadcast channel, the capacity region remains un-
known. Superposition coding proposed by T.M. Cover is known
to be optimal in classes of degraded, less noisy, more capable
broadcast channels, and in a broadcast channel with degraded
message sets [2].

Polar codes, invented by Arikan [3], is the first known
code to achieve the capacity of the binary-input memoryless
symmetric-output channels with low decoding complexity. In
polar codes, a codeword is a transformed version of a message
sequence via multiplication through a specifically designed ma-
trix. A polar code decodes the message sequence successively
from the received output sequence. Arikan proved that condi-
tioned on the output sequence and its previous bits, the distri-
bution of each bit of the message sequence either converges to a
constant or a uniform distribution as the blocklength goes to in-
finity. Furthermore, he showed that the fraction of the message
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bits converging to a constant converges to the mutual informa-
tion of the channel. This design is further generalized to achieve
the capacity region of various channels, such as the binary-input
asymmetric channel [4] and the binary-input multiple access
channel [5]. Recently, N. Goela et al. [6] proved that polar codes
can be designed to achieve the superposition coding bound and
Marton’s binning region for the binary input broadcast chan-
nel under the condition of degrade-ness between two channels
p(y1|v) and p(y2|v) where V is given as an auxiliary random
variable. Later, Mondelli et al. [7] designed polar codes for the
general binary-input broadcast channels.

The scheme proposed by Goela et al. shows lower con-
struction and decoding complexity compared to the scheme on
a general broadcast channel when p(y2|v) is degraded from
p(y1|v). Therefore, to apply the simpler broadcast channel po-
lar coding scheme into practical broadcast channels, we have
to check the degrade-ness between the channels induced by the
auxiliary random variable V . Such a procedure is exhaustive as
there is no simple formula to check the degrade-ness between
two channels.

In this study, we extend the degrade-ness condition between
p(y1|v) and p(y2|v) to the classes of less noisy broadcast chan-
nels to alleviate such problems. In addition, we provide the
simulation result, which is in our knowledge, the first simula-
tion result of polar coding for less noisy broadcast channels.
From the result, we show that the proposed polar codes achieve
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Fig. 1. Two-user broadcast channel.

a better rate region than time sharing between two point-to-
point channel polar codes.

2. Preliminaries

2.1. Superposition coding

Let us consider the private message communication system
with a discrete, memoryless channel p(y1, y2|x) depicted in
Fig. 1. Given the messages M1 ∈ {0, 1}

N R1 and M2 ∈

{0, 1}
N R2 , the encoder determines the input sequence X N

∈

{0, 1}
N . Decoders 1 and 2 decode messages 1 and 2 from the

received output sequences Y N
1 and Y N

2 , respectively. Then, the
superposition coding bound is characterized as follows.

Theorem 1 (Superposition coding bound [1]). Rate pair
(R1, R2) is achievable for the broadcast channel p(y1, y2|x)

if
R1 < I (X; Y1|V )

R2 < I (Y2; V )

R1 + R2 < I (X; Y1)

for some pmf p(v, x).
The key idea of superposition coding is to treat the message

for decoder 2 as a common message that can be decoded by
both receivers. Naturally, superposition coding is optimal in
case where a strictly dominating relationship exists between the
two channels, such as degraded, less noisy, and more capable
condition.

Definition 1. Given a broadcast channel PY1,Y2|X , let S:
p(y1|x) and T : p(y2|x). Then,

• Channel p(y1, y2|x) is degraded (denoted as p(y1|x) ≻

p(y2|x)) when X → Y1 → Y2 forms a Markov chain.
• S is less noisy than T when I (U ; Y1) ≥ I (U ; Y2) for all

p(u, x) such that U → X → (Y1, Y2).
• S is more capable than T when I (X; Y1) ≥ I (X; Y2) for all

p(x).

For such channels, superposition coding achieves the
capacity region of the broadcast channel as shown below.

Theorem 2 (Capacity region of degraded, less noisy, or more
capable broadcast channel [2]). The private-message capacity
region of the degraded, less noisy, or morecapable broadcast
channel is the set of rate pairs (R1, R2) such that

R1 < I (X; Y1|V )

R2 < I (V ; Y2)

for some pmf p(v, x).
2.2. Construction of superposition polar codes

In this subsection, we introduce the superposition coding
scheme proposed by Goela et al. for broadcast channels where
p(y2|v) is degraded with respect to p(y1|v). However, we need
certain conditions on the broadcast channel to make the scheme
achieve every superposition coding bound of the broadcast
channel.

We first review the main theorem in [6].

Theorem 3 ([6]). Assume a two-user broadcast channel with
binary input X and outputs Y1 and Y2. Let V denote a binary
random variable satisfying the following.

• V → X → (Y1, Y2) forms a Markov chain.
• p(y1|v) ≻ p(y2|v).

Then, there exists a polar broadcast code that achieves the
following rate pair

(I (X; Y1|V ), I (V ; Y2)).

For the remaining subsection, we summarize the polar
coding scheme in [6]. Suppose we send N = 2n bits through
the channel p(y1, y2|x). Then, we set binary sequences U N

1 ,
U N

2 as U N
1 = X N G N , U N

2 = V N G N , where G N is the
multiplication of the nth Kronecker product of polarization

matrix F ,


1 0
1 1


and a bit-reversal matrix BN . Then, we

construct the polarization sets for each channel as follows for
δ = 2−Nβ

where 0 < β < 1
2 .

H (N )
X |V (δ) , {i ∈ [1 : N ] : Z(U1(i) | U 1:i−1

1 , V N ) ≥ 1 − δ},

L(N )
X |V Y1

(δ) , {i ∈ [1 : N ] : Z(U1(i) | U 1:i−1
1 , V N , Y N

1 ) ≤ δ},

H (N )
V (δ) , {i ∈ [1 : N ] : Z(U2(i) | U 1:i−1

2 ) ≥ 1 − δ},

L(N )
V |Y j

(δ) , {i ∈ [1 : N ] : Z(U2(i) | U 1:i−1
2 , Y N

j ) ≤ δ}

( j = 1, 2).

Then, we select the message sets M(N )
1 and M(N )

2 by the
selected polarization sets.

M(N )
1 , H (N )

X |V (δ) ∩ L(N )
X |V Y1

(δ) (1)

M(N )
2 , H (N )

V (δ) ∩ L(N )
V |Y2

(δ) . (2)

Here, Z(W ) =


y∈Y PY (y)


PX |Y (0|y)PX |Y (1|y) is de-
fined as the Bhattacharyya parameter of the channel W : X →

Y . Besides, we can interpret the set HX |Y and L X |Y , for ex-
ample, as the sets of deterministic indices and random indices
of X given the information of the previous indices and out-
put Y N . From the channel polarization theorem on binary-input
asymmetric channels, we can assure that the cardinalities of the
message sets divided by the blocklength N converge to the su-
perposition coding bound I (X; Y1|V ) and I (V ; Y2) [6], respec-
tively.

Now we start the transmission via the selected message sets.
The block diagram of the encoding and decoding process of
the two-user superposition polar code is illustrated in Fig. 2.



S. Choi, S.-Y. Chung / ICT Express 3 (2017) 111–114 113
Fig. 2. Block diagram of the superposition polar codes.
Suppose we transmit messages M1 ∈ {1, 2, . . . , 2N R1} and
M2 ∈ {1, 2, . . . , 2N R2}. At the encoder side, we first encode
U2i successively from the message M2.

U2i =

message for the 2nd user if i ∈ M(N )
2

argmax
u2i ∈{0,1}

P


U2i = u2i |U
1:i−1
2


if i ∉ M(N )

2 . (3)

Then, by applying the binary polar transform V N
= U N

2 G N ,
we can obtain V N . Next, we encode U1i successively from the
message M1 and sequence V N using the following rule.

U1i =

message for the 1st user if i ∈ M(N )
1

argmax
u1i ∈{0,1}

P


U1i = u1i |U
1:i−1
1 V N


if i ∉ M(N )

1 . (4)

Then, we take the binary polar transform X N
= U N

1 G N and
send the sequence X N to channel p(y1, y2|x). At the first
decoder, we first decode Û2i successively from the received
sequence Y N

1 as follows.

Û2i =


argmax
u2i ∈{0,1}

P


Û,i = u2i |Û
1:i−1
2 Y N

2


if i ∈ M(N )

2

argmax
u2i ∈{0,1}

P


Û2i = u2i |Û
1:i−1
2


if i ∉ M(N )

2 .
(5)

By applying the binary polar transform V̂ N
= Û N

2 G N , we
construct V̂ N . Finally, we decode Û1i successively from the
received sequence Y N

1 and V̂ N .

Û1i =


argmax
u1i ∈{0,1}

P


Û1i = u1i |Û
1:i−1
1 Y N

1 V̂ N


if i ∈ M(N )
1

argmax
u1i ∈{0,1}

P


Û1i = u1,i |Û
1:i−1
1 V N


if i ∉ M(N )

1 .
(6)

The same procedure is repeated for the second decoder to
decode Û2,i , except that we use Y N

2 instead of Y N
1 . Finally, we

reconstruct the message sequences M̂1 and M̂2 via Û N
1 and Û N

2 .

3. Extended sufficient condition for alignment

The proposed scheme requires the broadcast channel
p(y1, y2|v) to be degraded as a sufficient condition to ensure
that the message decodable from the second decoder can also be
decoded by the first decoder, i.e., HV (δ)∩ LV |Y1(δ) ⊇ HV (δ)∩

LV |Y2(δ). This relationship is called an alignment between
polarization sets LV |Y1 and LV |Y2 . From two independent
works [8,9], it was also proven that less noisy condition also
ensures alignment as follows.
Lemma 4 (Alignment between polarization sets with less noisy
condition [8,9]). Suppose p(y1|v) is less noisy than p(y2|v) for
discrete memoryless channels p(y1|v) and p(y2|v). Then, for
any δ ∈ (0, 1), we have

LV |Y1(δ) ⊇ LV |Y2(δ). (7)

Applying the results of Lemma 4 into Theorem 3, we get the
proposition below.

Proposition 5. Assume a two-user broadcast channel with
binary input X and outputs Y1 and Y2. Let V denote a binary
random variable satisfying the following.

• V → X → (Y1, Y2) forms a Markov chain.
• p(y1|v) is less noisy than p(y2|v).

Then, there exists a polar broadcast code that achieves the
following rate pair

(I (X; Y1|V ), I (V ; Y2)).

By Proposition 5, we can extend the sufficient condition
for alignment from degraded-ness to less noisy relationship
between channels p(y1|v) and p(y2|v). Furthermore, we
provide a sufficient condition for channel p(y1, y2|x) such that
alignment holds for any auxiliary binary random variable V .

Proposition 6 (Alignment between polarization sets for the less
noisy broadcast channel). Suppose p(y1|x) is less noisy than
p(y2|x), where X is binary and V → X → (Y1, Y2) forms a
Markov chain for a binary random variable V . Then for any
δ ∈ (0, 1),

LV |Y1(δ) ⊇ LV |Y2(δ). (8)

This proposition can be easily proved by the definition of
less noisy channels.

4. Simulation results

We performed numerical simulations for superposition polar
codes for binary-input degraded and less noisy broadcast
channels. Figs. 3 and 4 demonstrate achievable rate regions
of superposition polar coding for degraded and less noisy
broadcast channels. Each point on the achievable region
is constructed by simulating codes with different auxiliary
random variables to find maximal transmission rate under a
specific target frame error rate (FER). Channel construction
for selecting message bits of each decoder is done by the
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Fig. 3. Achievable region of the degraded broadcast channel under
superposition polar coding and achievable points under time sharing between
point-to-point channel polar codes, both with blocklength of 215.

quantization method described in [10]. The rate of each user
is chosen by selecting δ to minimize the difference between
the assumed transmission sum rate R1 + R2 and the sum rate

of the selected message set

M(N )
1

+M(N )
2


N . In addition, as a

baseline, we construct achievable points under time sharing
between point-to-point channel polar codes with error rates
equal to the given FER. The time-sharing scheme divides the
whole blocklength of N bits into N1 and N2 bits to transmit
point-to-point channel polar codes, each designed for channel
p(y1|x) and channel p(y2|x).

First, we show simulation results for degraded broadcast
channels. In Fig. 3, we assume p(y1|x) is the binary symmetric
channel (BSC) with transition probability of 10−5 and p(y2|x)

is BSC(0.25), where p(y2|x) is degraded with respect to
p(y1|x). Then, we can find in [2] that the optimal auxiliary
random variable V for achieving the capacity region of the
broadcast channel p(y1, y2|x) is given as

V ∼ Bern


1
2


, P (X − V = x − v|V = v) ∼ Bern(α) (9)

where α ∈ [0, 1
2 ].

For each simulation in Fig. 3, the number of simulations is
104 and the blocklength is 215. The target frame error rate is set
as 0.1. This corresponds to the default target block error rate in
the LTE standard [11].

Next, we perform simulation for less noisy broadcast
channels. In Fig. 4, we assume p(y1|x) is the binary erasure
channel (BEC) with erasure probability of 0.51 and p(y2|x) is
BSC(0.25). Owing to the well-known results on the relationship
between BSC and BEC [2], we can check that p(y1|x) is
less noisy than p(y2|x), but not degraded. We use the same
design criteria and auxiliary random variable V as before and
compare the results to that obtained with time sharing, except
that simulation is performed with a blocklength of 217.

In Figs. 3 and 4, superposition polar codes achieve bigger
rate regions than time-sharing point-to-point channel polar
codes.
Fig. 4. Achievable region of the less noisy broadcast channel under
superposition polar coding and achievable points under time sharing between
point-to-point channel polar codes, both with blocklength of 217.

5. Conclusion

We have studied polar code that achieves the superposition
coding region of the two-user binary-input broadcast channel.
Our scheme is optimal if the channel is less noisy and the
capacity-achieving auxiliary random variable is binary. Simula-
tion results show the advantage of the superposition polar codes
over the point-to-point channel polar codes. Furthermore, we
note that our approach can be extended to more than two users.
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