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Abstract
Close to equilibrium, the exchange of particles and heat betweenmacroscopic systems at different
temperatures and different chemical potentials is known to be governed by amatrix of transport
coefficients which are positive and symmetric.We investigate the amounts of heat and particles that
are exchanged between two small quantum systemswithin a given time, andfind them characterized
by a transportmatrix which neither needs to be symmetric nor positive. At larger times even
spontaneous transport can be observed in the total absence of temperature and chemical potential
differences provided that the two systems are different in size. All these deviations from standard
transport behavior can be attributed to the fact that work is done on the system in the processes
contacting and separating those parts of the system that initially possess different temperatures and
chemical potentials. The standard transport properties are recovered for vanishingwork and also in
the limit of large systems and sufficiently large contact times. The general results are illustrated by an
example.

1. Introduction

The exchange of quantities such as energy and particle numbers between different parts of a spatially extended
system is a fundamental phenomenon of physics, chemistry and biology. Being characteristic for systems out of
equilibrium an exchange is typically driven by a bias of affinities such as temperature or chemical potential
differences andmanifests itself in the formof heat or particle currents [1, 2]. The traditional treatment of
transport phenomena is based on the notion of local equilibrium. It is formulated in terms of transport
equations relating thermodynamic forces, which are caused by affinity biases, tofluxes which are defined as the
time rates of change of the average exchanged heat and particle number.

The recent characterization of transport phenomena in terms of fluctuation relations [3–9] provides an
alternative understanding from amore statisticalmechanical and less phenomenological point of view. For the
sake of simplicity we restrict ourselves to energy and particle exchange between two systems,A andB, each of
which is initially isolated and prepared in grand-canonical equilibrium states with temperatures b b,A B and
chemical potentials m m,A B. If the systems are brought into contact for a certain amount of time duringwhich
energy and particles can be interchanged, the joint probability density function (pdf) D D DD ( )P E E N, ,E A B of
the energy and particle number changesD aE andD aN , of both systems, a = A B, , respectively, obeys the
following exact symmetry relation:

D D D
-D -D -D

=
a

b mD

D =

D - Da a a a
( )

( )
( )( )P E E N

P E E N

, ,

, ,
e . 1E A B

E A B A B

E N

,

In deriving the above relation, it is assumed that the total number of particles is conserved, and hence
D = -D º DN N NA B . On the other hand, there is no restriction on the total energy change; the energy of the
whole systemmay not be conserved because the contact ismediated by switching an interactionHamiltonian on
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and off. In this way, work is done on both systemswhen they are being connected and separated. Thus,DEA and
DEB are left as separate, independent variables.

TheworkW supplied to the total system and the heatQ being transferred fromB toA can be expressed in
terms of linear combinations of energy and particle number differences Eα andDN [4] as

m= D + D = D - D - D( ) ¯ ( )W E E Q E E N, 2 , 2A B A B

where m m m= +( ) 2A B . Equation (1) can be rewritten for the joint probability D( )P W Q N, ,WQ ofQ,W and
DN yielding

D = - - -Db b b m+D - D D( ) ( ) ( )P W Q N P W Q N, , e , , 3WQ
W Q N

WQ

with b b b= +( ) 2A B , b b bD º -A B and m m mD º -A B. Yet other definitions of the affinity biases are
possible4 but will not be further considered. The corresponding joint pdf D( )P W Q N, ,WQ can be expressed in
terms of D D DD ( )P E E N, ,E A B as

m mD = + + D - - D DD ⎜ ⎟⎛
⎝

⎞
⎠( ) ¯ ¯ ( )P W Q N P W Q N W Q N N, ,

1

2
,

1

2
, . 4WQ E

Thefluctuation relation (3)was derived by various authors [6–8]. Inmost of these works, see in particular [6], it
is assumed that (i) the two systems are large and (ii) the time τ duringwhich the interaction between the two
systems is effective is sufficiently large so that a quasi-stationary statewith constantfluxeswill prevail during
most of the time. In other words, the heat aswell as the exchanged particle number become proportional to the
interaction-time, whereas thework, which is determined by the short periodswhen the interaction is turned on
and off again, is independent of τ. Under these conditions thework can be neglected in comparison to the heat.
As a consequence, for the averages of heat á ñQ and exchanged particle numbers áD ñN , one thenfinds the
standard directionalities bD á ñQ 0 if mD = 0 and m-áD ñDN 0 if bD = 0. For small biases the averages
of the transported quantities become linear in the affinities. i.e. b b má ñ = D + - D( ¯ )Q K K11 12 and

b b máD ñ = D + - D( ¯ )N K K21 22 hold. These equations are akin to standard transport equations [2]with the
difference that they describe finite amounts of exchanged heat and particle number rather than the respective
fluxes.However, in the limit of large τ, the transportmatrix ( )Kij corresponds to τ timesOnsagerʼs transport
matrix that relates the forces to the fluxes. The symmetry and positivity of the transportmatrix ( )Ki j, , whichwill
be reviewed below, therefore imply the corresponding properties of theOnsagermatrix, entailing both the
reciprocity relation ofOnsagerʼs transport coefficients, in short known as reciprocity relation, and the
directionality of the fluxes, which follows from the positivity of theOnsagermatrix.

One though has to keep inmind that, in particular for small systems, the establishment of a long-lived quasi-
stationary statemay not be achieved at all or does not prevail long enough. Therefore, it is not always justified to
neglect thework in comparison to the heat.We shall discuss that both the directionality of the heat and particle
flux, i.e. the positivity of thematrix of transport coefficients, as well asOnsagerʼs reciprocity relationsmay then
be violated.

The validity ofOnsagerʼs reciprocity relations is a subject that has been repeatedly discussed in the literature
[10]. The standard justification [2, 11] is based on a combination ofmicroscopic and phenomenological
arguments [12–14]: microscopic reversibility is one pillar towhich comes as the second pillar the assumption of
aGaussian andMarkovian dynamics of the considered set of variables such as heat and particle number in the
present situation. TheGaussian property can be justified by the assumption that only processes close to thermal
equilibrium are considered. TheMarkovian dynamics is imposed byOnsagerʼs regression hypothesis [11]which
postulates that the same dynamical laws are governing themean values and the spontaneousfluctuations. The
relevance of theMarkovian assumption for the validity of the reciprocal relationswas illustrated in [15] by an
example.

Themore recent characterization of transport phenomena bymeans of the fluctuation theorem also requires
microscopic reversibility but does notmake use of the assumptions regarding the dynamics of heat and particle
number: there is no restriction requiring that the considered transport processes should take place close to
thermal equilibrium andhence had to stay in the linear regime; nor is there any requirement restricting the
dynamics of the transported quantities apart frommicroscopic reversibility of the underlyingmicroscopic
dynamics as already emphasized. The second essential postulate assumes the existence of a long-lived quasi-
stationary current carrying state requiring sufficiently large systems and a large contact time duringwhich the
two systems quickly build up thementioned quasi-stationary state.

The paper is organized as follows: in section 2, the general setting is specified: two initially isolated systems
each of which is in thermal equilibriumwith possibly different temperatures and chemical potentials are
brought in contact and again separated after some time τ. For this setting equation (1) is obtained.Withwork
and heat identified as in equation (2) thefluctuation theorem (3) is expressed in terms of these quantities.

4
With the alternative definition bm b m b mD = -A A B B for the chemical affinity bias the corresponding expression for the heat becomes

d= - DQ̃ E EA B. The exponent on the right hand side of equation (4) then assumes the form b b bm+ D - D D¯ ˜W Q N .

2
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Section 3 is devoted to the discussion of the implications of work on the exchange properties. In a first
subsection, we consider the case of vanishingwork,W=0, and demonstrate how the directionality and the
Onsager relations follow from equation (3). For non-vanishingworkwefind that the transportmatrix is
asymmetric and need also not be positive.Moreover, a spontaneousflowof heat and particlesmay occur even in
the absence of any affinity bias as presented in the second subsection. In section 4, we consider an examplewhich
illustrates the findings of section 3. A summary concludes the paper in section 5.

2. Setting

Weconsider a total system that consists of two subsystemsA andBwithHamiltonians ĤA, ĤB and particle
number-operators N̂A, N̂B, respectively. For the sake of simplicity we consider only one sort of particles thatmay
reside in both systems. Up to the time t=0 the systemsA andB are isolated from each other and stay in states of
grand-canonical equilibrium. The initial densitymatrix is therefore given by

r =
a

b m
a

=

- -a a a aˆ ( ) ( )( ˆ ˆ )0 e 5
A B

H N

,

with a being the grand-canonical partition function of system a = A B, . The affinity parameters, i.e. the
inverse temperature ba and the chemical potential ma, can in general be different: b b¹A B and m m¹A B. The
Hamiltonians aĤ and particle number operators aN̂ commutewith each other, and, consequently have
simultaneous eigenstates with the corresponding eigenvalues Eα andNα satisfying: ñ = ña

a a a a aˆ ∣ ∣H E N E E N, ,i i i i i

and ñ = ña
a a a a aˆ ∣ ∣N E N N E N, ,i i i i i . For the sake of simplicity we assume that these states are non-degenerate. A

basis in theHilbert space of the total system ÅA B is spanned by the product states
ñ Ä ñ º ñ∣ ∣ ∣E N E N i, ,i

A
i
A

i
B

i
B , where the index i stands for a complete set of quantumnumbers. The probability Pi

tofind the set of quantumnumbers E E N N, , ,i
A

i
B

i
A

i
B in a jointmeasurement of ˆ ˆ ˆ ˆH H N N, , ,A B A B in the initial

state r̂ ( )0 is given by r= á ñ∣ ˆ ( )∣P i i0i and hence becomes

=
a

b m
a

=

- -a
a

a
a ( )( )P e . 6i

A B

E N

,

i i

We suppose that a coupling between the two systems, described by the interactionHamiltonian ĤC, is
turned on at time = +t 0 . The quantum state of the total system ÅA B subsequently evolves in time (for >t 0)
according to the total, time-reversal invariantHamiltonian5

= + +ˆ ˆ ˆ ˆ ( )H H H H . 7A B C

When the time t= -t has elapsed the coupling is switched off and immediately after, the energy and the particle
number of each system aremeasured. Thismeasurement projects the system state onto a common eigenstate of

aĤ and aN̂ , ñ º ñ Ä ñ∣ ∣ ∣f E N E N, ,f
A

f
A

f
B

f
B , where aEf and aNf are eigenvalues of theHamiltonians and particle

number operators of the respective isolated systems.
The exchange of energy and particles between the systems can be quantified in terms of themeasured

eigenvalues byD = -a a aE E Ef i andD = - = - +N N N N Nf
A

i
A

f
B

i
B, respectively, with aEj and aNj being

eigenvalues of theHamiltonians and particle number operators obtained in the initial ( j=i) and the final
( j=f )measurements. The joint probability tofind certain values ofD aE andDN is determined by

d dD D D = á D - + D - + ñ
a

a
a a

D
=

( ) ( ) ( ) ( )P E E N N N N E E E, , , 8E A B f
A

i
A

A B
f i

,

where á ñ = å· · ( )p f i,i f, denotes the averagewith respect to the joint probability ( )p f i, tofind the set of
eigenvalues i in the first and the set f in the secondmeasurement. The sum runs over all sets of eigenvalues i and f
and ( )p f i, is given by

=( ) ( )∣p f i T P, , 9f i i

where Pi is defined in equation (6) and ∣Tf i denotes the transition probability between the states ñ∣i and ñ∣ f and,
hence, is given by

t= á ñ∣ ∣ ˆ ( )∣ ∣ ( )∣T f U i . 10f i
2

The unitary time-evolution t = t-ˆ ( ) ˆU e Hi propagates the state of the total system from t=0 until t=t in
terms of the totalHamiltonian Ĥ specified by equation (7).We remark that the probabilitiesPi andPf of any two
energy and particle number configurations i and f are related to each other by

5
For the sake of simplicity we assume that q q =ˆ ˆH H , where θ is the time-reversal operator. Hence, we exclude the presence offields that

transformoddly under time-reversal such asmagneticfields andCoriolis forces.

3
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= ( )P Pe , 11i
M

ff i,

where

å b mº - - -
a

a
a a

a
a a[( ) ( )] ( )M E E N N 12f i f i f i,

depends only on the energy differences between the two configurations and the according number difference.
Note that there is no summation on the index f in equation (11). Note further that the exponential function ofM
appears on the right hand side of thefluctuation relation (1). Owing to the time-reversal invariance of the
Hamiltonian, the transition probability is symmetric with respect to the initial and the final state:

t t= á ñ = á ñ =∣ ∣ ˆ ( )∣ ∣ ∣ ∣ ˆ ( )∣ ∣ ( )∣ ∣T f U i i U f T . 13f i i f
2 2

Similar detailed balance like relations can also be derived undermore general conditions [16]. As long as the
protocol specifying how the interaction between the systemsA andB is switched on and off is symmetric in time
and the indices i and f specify non-degenerate states the simple form (13) holds unchanged.

Together with equation (13) the equation (11) implies an analogous relation for the joint probability ( )p i j,
reading

=( ) ( ) ( )p i f p f i, e , . 14Mi f,

Combinedwith equation (8) it yields

å



d

d

D D D = D - +

´ D - +

= -D - D -D

å

å

b m

a
a

a a

b m

D
D - D

=

D - D
D

a
a a a a

a
a a a a

( ) ( )

( )

( ) ( )

( )
∣

( )

P E E N T P N N N

E E E

P E E N

, , e

e , , 15

E A B
E N

i f
i f f f

A
i
A

A B
f i

E N
E A B

,

,

where the last equality is obtained by interchanging i and f. The above equation proves thefluctuation theorem
(1), which can be transformed into equation (3) upon using the definitions of work and heat, presented in
equation (2). It is worth noticing that, due to the symmetry of the switching process, the probabilities on both
sides of equation (15) and consequently also those entering the fluctuation relation (1) refer to the same process.

3.Generalities

Nextwe extract the essential properties of heat and number exchange from the particular formof the joint
particle and energy probability density (8) and thefluctuation theorem (3). In order to better understand the role
played by thework, we first assume a situation inwhich thework vanishes. In this particular case, the expected
directionality of heat fromhot to cold and of the particle flux fromhigh to low chemical potential follows. For
small affinity differences, the exchanged heat and particle number are linearly related to the affinities with
coefficients satisfyingOnsagerʼs symmetry relation. In cases inwhich thework is finite and cannot be neglected
in comparison to the exchanged heat or the energy related to particle transport, both properties need not hold
any longer.

3.1. Energy conserving process:W=0
Wehere consider processes for which thework done by turning the interaction on and off can be neglected
compared to the exchanged heat and the energy transported by the exchanged particles. The joint work-heat-
number pdf can then be approximated by dD » D( ) ( ) ( )P W Q N W P Q N, , ,WQ Q , where D( )P Q N,Q satisfies a
reduced formof thefluctuation theorem,

D = - -Db b mD - D D( ) ( ) ( )¯P Q N P Q N, e , . 16Q
Q N

Q

The integration of both sides of equation (16) overQ andDN yields the identity á ñ =b b m-D + D D¯e 1Q N .With
Jensenʼs inequality, á ñ á ñe ex x , one obtains

b b mD á ñ - D áD ñ¯ ( )Q N 0. 17

This implies the directionality ofmatter exchange: the average of heat, á ñQ , inducedby a positive bD with
mD = 0, is nonnegative, indicating that thepartwith higher temperature looses energywhich is transferred to the

partwith lower temperature, as statedbelow equation (3). Also, in the absence of a temperature difference
( bD = 0), fromequation (17) the averagenumber change caused by afinite chemical potential difference satisfies

mD áD ñN 0. This indicates that particles are transported from the region initially at high chemical potential to
the region at lower chemical potential.Note that thedirections intowhich heat andparticles are transported only
dependon those of the affinity biases but not on their sizes provided theworkW can beneglected.

4
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For processes driven by small affinities onemay expand the exponential factor on the right hand side of
equation (16) to yield

b b mD = + D - D D - -D( ) ( ¯ ) ( ) ( )P Q N Q N P Q N, 1 , . 18Q Q

Multiplying both sides by eitherQ orDN and integrating overQ andDN one obtains

b b má ñ = á ñ D - á D ñ D[ ¯ ] ( )Q Q Q N
1

2
, 19Q Q

2
0 0

b b máD ñ = á D ñ D - áD ñ D[ ¯ ] ( )N Q N N
1

2
, 20Q Q0

2
0

where òá ñ = D D· · ( )W N P Q Nd d ,Q Q0 represents the average in the absence of any bias ( m bD = D = 0).
These equations are akin to standard transport equationswith the difference that the latter describe the

transport behavior in terms of instantaneousfluxes caused by themomentary affinity biases while the
equations (19) and (20) quantify the total amounts of exchanged heat and particle numbers. In the standard
transport equations, the time tmay take any value from the beginning t=0 until the end =t tf of the
considered experiment, in contrast to the above relations, inwhich t = tf only refers to the immediate instant
of time after which the interaction is turned off. For transport phenomena in quantum systems, a continuous
observation of thefluxes is not feasible because the unavoidable back-action of the necessarymeasurement
would have a too strong impact on the result. A similar situation ismetwithworkmeasurements as discussed in
[17]. Also there, the least invasive process diagnosis is given by two energymeasurements, one immediately
before and the second one immediately after the process is completed.

With the assumption that after a time tt a quasi-stationary state has established [6, 8], the heat and
particle numberfluxes, Q̇ andDṄ , can be inferred from the totally exchanged heat and particle number as

t=Q̇ Q and tD = DṄ N , respectively. Accordingly, with the definition of transport coefficients
t t t= á ñ = = á D ñ = á D ñ( )L Q L L Q N L N, ,Q Q Q11

2
0 12 21 0 22

2
0 one recovers from the equations (19) and

(20) the standard formof linear transport equationswith a symmetricmatrix of transport coefficients in
accordancewithOnsagerʼs symmetry relations. The positivity of thematrix follows immediately from the fact
that it is proportional to the covariancematrix ofQ andDN with the positive proportionality factor t1 .

In summary, we find that, with the equations (19) and (20), the total amounts of heat and exchanged
particles follow the standard transport rules concerning symmetry and directionality provided that thework
applied to the system vanishes or can be neglected.

3.2. Energy non-conserving processes: ¹W 0
Nowwe focus our considerations to processes inwhichwork is performed on the total system, and hence its
energy differs at the end fromwhat it was in the beginning.

Wewill still assume that the affinity biases b b bD = -A B and m m mD = -A B are small compared to their
average values b b b= +¯ ( ) 2A B and m m m= +¯ ( ) 2A B , respectively. The only dependence of the joint pdf

D( )P W Q N, ,WQ on the affinity biases is contained in the initial distribution of energies and particle numbers,
Pi given by equation (6). For small affinity biasesPi can be expanded yielding up tofirst order in bD and b mD¯
the following expression

b b m= - D - - Db m( ( ¯ )) ( )P X X P1 , 21i i i i
0

where Pi
0 is the probability tofind the systemsA andB at equal temperature b̄ and chemical potential m̄, hence

reading

 =
a

b m

=

- -a a ( )¯ ( ¯ )P
1

e 22i
A B

E N0
0

,

i i

with 0 being the corresponding grand-canonical partition function. The coefficients in front of the affinity
biases are given by

d d md md= - - +b ( ¯ ¯ ) ( )X E E N N
1

2
, 23i i

A
i
B

i
A

i
B

d d= -m ( ) ( )X N N
1

2
. 24i i

A
i
B

Here d = -a a aE E Ei i and d = -a a aN N Ni i denote fluctuations of energies and particle numbers about their
averages in the bias-free initial state given by = åa aE E Pi i i

0 and = åa aN N Pi i i
0, respectively.

Thefluctuating heat and particle number exchange can be expressed as differences between the values of bXj

and mXj as they result from the first ( j=i) and thefinal ( j=f ) energy and particlemeasurements, yielding

= -b b ( )Q X X , 25f i

5
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D = -m m ( )N X X . 26f i

Accordingly, the averages ofQ andDN become

å
tá ñ = á - ñ

= -

b b

b b

( ) ( )
( ) ( )∣

Q X X

X X T P

0

, 27
i f

f i f i i
,

å
táD ñ= á - ñ

= -

m m

m m

( ) ( )
( ) ( )∣

N X X

X X T P

0

. 28
i f

f i f i i
,

Replacing now the initial probability Pi by its small affinity bias approximation (21) one obtains for these
averages up tofirst order in bD and mD

t b b má ñ = á - ñ + D + - Db b
b b b m( ) ( ) ( ¯ ) ( )Q X X C C0 , 290 , ,

t b b máD ñ = á - ñ + D + - Dm m
m b m m( ) ( ) ( ¯ ) ( )N X X C C0 , 300 , ,

where á ñ = å· · ∣T Pi f f i i0 ,
0 and

t= -á - ñc h
c c h[ ( ) ( )] ( ) ( )C X X X0 0 . 31, 0

This result differs in two respects fromOnsagerʼs standard transport theory:first, heat and particlesmay be
exchanged between the two systems even if the affinity biases vanish, and second, thematrix = c h( )C C ,

governing the transport caused by small affinity differences needs neither be symmetric nor positive. Here, both
indices c and hmay refer to b or m .

As already demonstrated above, in the absence of an affinity bias transport does not occur if the energy of the
total system remains constant under the influence of the coupling betweenA andB. This can also be seen from
the symmetry relation (14) of the joint probability which for vanishing biases bD = 0 and mD = 0 simplifies to

=b m b b mD = D = D = D =( ) ( ) ( )¯p i f p f i, e , , 32W0, 0 0, 0f i,

where = å -a
a aW E Ef i f i, is thework performedon the systemupona transition from i to f.When thiswork

vanishes for all possible transitions, i.e. for all those pairs i f, with ¹( )p f i, 0, the transition probability is
symmetric. Then, the averages of c ( )X t agree at t=0 and t=t , and hencewe recover that any transport of heat
andparticlesmay only occur due to affinity biases but not spontaneously.Here, the indexχmay refer toβorμ.

Because in the presence offinite work, the joint probability is no longer stationary, the averages tc ( )X and
c ( )X 0 will in general disagree, as already noted.Moreover, due to the non-stationarity of the joint probability
( )p i f, the auto-correlation functions tá ñ( ) ( )X X 0 0 may become larger than the secondmoment á ñ( )X 02

0,
where = +b mX aX bX , a b, real, is an arbitrary linear combination of bX and mX .With  tá ñ á( ) ( )X X02

0

ñ( )X 0 0 thematrix = c h( )C C , is no longer positive and hence the directionality of the affinity bias-induced
transportmay also differ from the standardOnsager rules.

Moreover, the reciprocity relations are in general violated by the presence of work rendering thematrixC
non-symmetric because in general t tá ñ ¹ á ñb m m b( ) ( ) ( ) ( )X X X X0 00 0 and hence ¹b m m bC C, , .

A positive and symmetricmatrix L determines the averages of heat and exchanged particle numbers if they
aremodified by the factor + b-( )¯1 e 2W .Multiplying both sides of thefluctuation relation (3) by b- ¯e W and
optionally by eitherQ orDN and integrating over allW,Q andDN one obtains tofirst order in the affinity
biases the expressions

b b m

b b m

á + ñ= D + - D

áD + ñ= D + - D

b
b b b m

b
m b m m

-

-

( ) ( ( ¯ ))
( ) ( ( ¯ )) ( )

¯

¯

Q L L

N L L

e 1 2 ,

e 1 2 , 33

W

W

, ,

, ,

where

t t= á - - ñc h
c c h h( ( ) ( ))( ( ) ( )) ( )L X X X X2 0 0 34, 0

coincides with the covariancematrix ofQ andDN when there is no affinity bias. The deviationD of the actual
transportmatrixC from L, = -D L C , is given by

t t= á - + ñc h
c c h h( ( ) ( ))( ( ) ( )) ( )D X X X X2 0 0 . 35, 0

Weconclude that thework that is performedwhen the two parts of the system are brought in contact and
finally are disconnected again gives rise to several unexpected effects such as spontaneous transport, non-
reciprocal cross-terms of the transportmatrix and deviations from the standard directionalities of transport.
Theworkwhich causes these anomalies is ameasure for the amount of the non-stationarity imposed by the time
limitation of the transport experiment.

In the following section, we consider a particular example and demonstrate that these deviations from the
conventional transport theory appear also forweakly coupled systems provided they are not too large.
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4. Example

4.1.Model system
In order to substantiate the existence of the nontrivial effects of workwe consider as partsA andB two Fermionic
systems that are described by tight bindingHamiltonians of the form:

åg a= - + =a
=

-

+ +
a

a

a a a a
ˆ [ ] ( )† †H c c c c A B, , , 36

x

M

x x x x
1

2

1 1

where -aM 1denotes the number of sites of the partα and the operator aĉx (
a

ˆ†cx ) annihilates (creates) a fermion
at the site ax of the systemα. The hopping energy γ determines the energy scale of the system.We assume that
the partial systemsA andB are identical except that theymay have differentMα. The particle numbers in each
system are specified by operators aN̂ defined by

å=a
=

-

a a

a

a a
ˆ ˆ ˆ ( )†N c c . 37

x

M

x x
1

1

The couplingHamiltonianwhich is turned on at = +t 0 is given by

g= - +ˆ (ˆ ˆ ˆ ˆ ) ( )† †H c c c c . 38C C 1 1 1 1A B B A

It connects the two end sites 1A and 1B enabling the exchange of particles between the two systems under the
constraint of a constant total particle number.

TheseHamiltonians describe various physical systems, like systems of electronswith negligible spin-degrees
of freedom [18], hard-core bosons in one-dimensional optical lattices [19] or quantum spin rotors [20]. This
class of systems can be solved exactly because there is no interaction between particles.We verify the presence of
spontaneousflow and deviations fromOnsager symmetry.

4.2.Method
Weare interested in the temporal changes of the energies and the particle numbers, which are determined by the
eigenvalues of the operators e= åa =

-
a
a

a a a
ˆ ˜ ˜†H c cn

M
n n n1

1 and = åa =
-

a
a

a a
ˆ ˜ ˜†N c cn

M
n n1

1 , respectively. Here, the Fermi

operators ac̃n diagonalize theHamiltonian aĤ . They are given by

å=
=

-

a

a

a

a a a˜ ˆ ( )c a c 39n
x

M

n x x
1

1

,

with the coefficients

p
=

a

a a

a
a a

⎛
⎝⎜

⎞
⎠⎟ ( )a

M

n x

M

2
sin . 40n x,

The energy eigenvalues result in e g p= - a aa ( )n M2 cosn . To obtain the time-evolution of the annihilation
operators in presence of the interactionwe consider theHeisenberg equations ofmotion, which are

 å

å

e= +

=

=

-

=

-

a a a

a a

a

a a a

a

a

a a a

¢¹

¢

¢ ¢

¢

¢

¢ ¢

˜ ( ) ˜ ( ) ˜ ( )

˜ ( ) ( )

t
c t c t V c t

H c t

i
d

d

, 41

n n n
n

M

n n n

n

M

n n n

1

1

,

1

1

,

where g= -a a¢V a an n n n, C ,1 ,1A A B B
determines the couplingHamiltonianwritten in terms of a{˜ }cn :

å= +ˆ (˜ ˜ ˜ ˜ ) ( )† †H V c c c c . 42
n n

n n n n n nC
,

,

A B

A B A B B A

The retardedGreenʼs function, defined by - = - á ñ
a a a a¢ ¢( ) {˜ ( ) ˜ ( )}†G t t c t c ti ,n n n n,

r
2 1 2 1 satisfies the following

equation ofmotion:

 å=
=

-

a a

a

a

a a a¢





 ( ) ( ) ( )
t

G t H G ti
d

d
43n n

n

M

n n n,
r

1

1

,
r

with the initial condition: d= -
a a a a¢ ¢( )G 0 in n n n,

r
, , following from = åa a a a a¢ ¢ ¢˜ ( ) ( ) ˜ ( )c t G t ci 0n n n n n,

r . Here, a a¢¢Hn n, is

thematrix element of the totalHamiltonian = + +ˆ ˆ ˆ ˆH H H HA B C with respect to the site basis generated by the
creation operators

a
†cx . The solution of equation (43) can be evaluated by exact diagonalization of a aHn n, . The

temporal behavior of several thermodynamic quantities can be expressed utilizing the retardedGreenʼs
function; for example, the average amount of energy change in the systemα,
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å

å å

e t t

e t d

áD ñ= á - ñ

= -

a

a¢=

a

a a a a a

a a

a a a a a a
¢

¢ ¢ ¢

˜ ( ) ˜ ( ) ˜ ( ) ˜ ( )

[∣ ( )∣ ] ( )

† †E c c c c

G f

0 0

, 44

n
n n n n n

n n
n n n n n n

1

2

,
,

r 2
,

and the average number of particle change,

å å t dáD ñ = -a
a= a a

a a a a a
¢

¢ ¢ ¢
[∣ ( )∣ ] ( )N G f , 45

n n
n n n n n

1

2

,
,

r 2
,

arewritten in terms of t
a a¢

( )Gn n,
r with the Fermi–Dirac distribution func-

tion = á ñ = +b e m- - -
a a a

a a a˜ ( ) ˜ ( ) [ ]† ( )f c c0 0 e 1n n n
1n .

Then the average heat and exchanged particle number can be expressed as

å t dá ñ = -b

¢
¢ ¢ ¢[∣ ( )∣ ] ( )Q x G f , 46

s s
s s s

r
s s s

,
,

2
,

å t dáD ñ = -m

¢
¢ ¢ ¢[∣ ( )∣ ] ( )N x G f , 47

s s
s s s

r
s s s

,
,

2
,

where the summation indices s and ¢s run over the energy levels of both systems. Depending onwhether s
indicates a level of systemA orB the coefficients bxs are defined as

e m

e m

= -

=- -

b

b

( )

( ) ( )

x

x

2

2, 48

n n A

n n B

A A

B B

whereas

= =m m ( )x x1, 0. 49n nA B

The covariancematrix L2 ofQ andDN , as defined in equation (34), can bewritten as

*

*

å

å

t t t t

t t d d

t t d d

= á - - ñ

= -

´ - á ñ

c h
c h

c h
¢

¢ ¢ ¢ ¢ ¢

¢
¢

¢ ¢ ¢ ¢

[ ( ) ( ) ( ) ( )][ ( ) ( ) ( ) ( )]

[ ( ) ( ) ]

[ ( ) ( ) ] ( )

† † † †

† †

L x x c c c c c c c c

x x G G

G G c c c c

2 0 0 0 0

, 50

s s
s s s s s s s s s s

i j k l s s
s s s i s j s i s j

s k s l s k s l i j k l

,
,

0

, , , , ,
, , , ,

, , , , 0

where the summations extend over all energy levels of both systems. The equilibrium averages of the fourths
moments of creation and annihilation operators can be expressed in terms of the Fermi–Dirac distribution
function: d d d dá ñ = + -( )† †c c c c f f f f1i j k l i j k l i k i l j k i k0 , , , , ,finally yielding

åt t t t d d

t t d d

= á - ñ á - ñ + -

´ - -

c h
c c h h c h

¢
¢

*

¢
*

¢ ¢ ¢

( ( ) ( )) ( ( ) ( )) [ ( ) ( ) ]

[ ( ) ( ) ] ( ) ( )

L X X X X x x G G

G G f f

2 0 0

1 , 51
s s i k

s s s i s k s i s k

s k s k s k s i i k

, 0 0
, , ,

, , , ,

, , , ,

where tá - ñ = á ñb b( ) ( )X X Q0 0 0 and tá - ñ = áD ñm m( ) ( )X X N0 0 0 according to equations (27) and (28),
respectively.

In the next subsectionwe determine the relative deviationD of the actual transportmatrixC from the
symmetricmatrix L. The calculation of the secondmoments implies four summations. Accordingly, the time
required for the calculation growswith the system size proportionally to +( )M MA B

4 which is still feasible for
the relatively small systems considered here.

4.3. Results
We illustrate the spontaneous transport as well as the asymmetry property of the transportmatrix for relatively
small systemswith =M 100, 200B and different sizes ofA. As in the recent study [21], the interaction gC is
chosen small compared to the hopping energy γ. Likewise, the chemical potentials are also relatively small
compared to the hopping energy.

Figure 1 illustrates the spontaneous transport of average heat (left panel) and average exchanged particle
numbers (right panel) for equal temperatures (b b b= =A B ) and equal chemical potentials m m m= =A B as a
function of time.Here, the heat is given in units of thermal energy, b-1, while the number of exchanged particles
is unscaled. The time is given in units of t g= MB B which is the shortest round trip time of a particlemoving
atmaximumgroup velocity in the systemB [21]. Note, that the partB is assumed to be smaller thanA, and hence
the round trip time ofB is shorter than that ofA.

Between the systemsA andBwith the same number of sites, neither heat nor particles can flow (see the red
line infigure 1). Because the two parts of the system aswell as their initial states are identical, no preferred
direction offlow exists. Even ifMA andMB differ from each other, heat or particles do notflowbefore t t= B.
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This is so because for times less than the round trip time tB, the system can be considered as infinite and
symmetric, as discussed in the previous work [21]. Only for t t> B, thefiniteness of the systemsmanifests itself,
and the asymmetry becomes apparent.

The green and blue lines infigure 1 display particle and heat transport when the systems differ in size by two
and six, respectively. For times larger than tB, almost instantly a non-vanishing amount of spontaneously
transmitted heat and particle number exchange sets in. Both heat and particle number remain almost constant
up to the time t2 B when they again change in an almost step-likemanner. At larger times a partial reversal and
more erratic behavior of the transferred heat and particle number can be observed as illustrated in figure 2 for

- =M M 2A B . However, also for larger contact times heat and particles are always transferred from the larger to
the smaller system.

For larger size differences, such asD = - =M M M 30A B , the transferred heat and particle number
exchange becomes considerably smaller (violet lines infigure 1). It can, however, recover larger values even for
largeDM ifMA andMB satisfy the commensurability condition = + ( )pM qM O 1B A with integers p q, . For
example, if = +M M2 2A B (cyan line infigure 1),D = +M M 2B is large, butMA andMB satisfy the
commensurability conditionwith p=2 and q=1, a relatively large amount of particles and heat flows
spontaneously. In this case, the systembehaves similarly as forD =M 2, apart from the latent period, which is
twice as long, before the spontaneous transport sets in. The similarity of theD =M 2 and = +M M2 2A B cases,
can also be seen in the transmission property, which has previously been studied [21].

In the presence of an affinity bias, spontaneous and bias-induced heat andmatter transport contribute
additively in agreement with equations (29) and (30). This leads to an increase of heat in proportion to the time τ
up to tB where the slope suddenly changes to remain constant up to t2 B, see figure 3 of [21].

The contribution of the spontaneous heatflow remains significant in comparison to the affinity biased
contributions as long as bD is sufficiently small. Figure 3 displays the total amount of exchanged heat in panel
(a) and particle number in panel (b) relative to the respective spontaneous values for systemswithD =M 2 and
for a contact time t t= 1.5 B.While the spontaneously transmitted heat is transferred from the largerA to the

Figure 1.The amounts of heat (left panel) and number of particles (right panel) thatflow spontaneously in the absence of any affinity
bias are displayed as functions of the total time of contact τ between the two systemsA andBwith various sizes. Their behavior
depends on the difference of sitesD = - = +M M M M0, 2, 6, 30, 2A B B . The systemB has a fixed number of sites, =M 100B , the
temperatures and chemical potentials of both systems are b b b g= = = 10A B and m m g= = 0.2A B , respectively. The coupling
strength betweenA andB is g g= 0.1C . The time is scaled by the round trip time t g= MB B . Heat is given in units of thermal
energy b-1 and the number of exchanged particles is unscaled.

Figure 2.The large time behavior of the spontaneous heat (left panel) and particle (right panel)flow at vanishing affinity biases for the
parameter valuesD =M 2, b g= 10 .
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smallerB part, a positive inverse temperature bias favors the transfer in the opposite direction. For relative
inverse temperature differences b bD ⪅ M1.5 B the spontaneous contribution dominates in determining the
direction.Only at larger temperature differences the heatflows in the expected direction fromhot to cold. A
similar behavior can be observed for the transferred particle numberwhich is oppositely oriented to the
‘common’ direction as long as m dD -⪆ 1.5 e where d g= M2e B is the level-spacing near the band center. Both
the relative transferred heat á ñ á ñQ Q 0 and particle number áD ñ áD ñN N 0 as functions of b bD ¯MB and of the
scaled chemical potential difference m dD e only insignificantly depend on the temperature and the size of the
part B.

The impact of thework on the bias-induced transport properties can be quantified by thematrixD
introduced in equation (35)which is the difference between the actual transportmatrixC, see equation (31), and
the symmetric and positive referencematrix L, defined in equation (34), i.e. = -D L C . Figure 4 displays the
elements of the deviationmatrixDnormalized by the respective elements of thematrix L as a functions of the
contact time τ.

Starting from an initially large value, the relative deviation decays as the contact time increases. As already
mentioned, for contact times less than tB thefiniteness of the system is not effective due to the finite propagation
speed of the perturbation caused by the contact. Hence, the decay behavior is independent of the sizeMB and the
differenceDM up to tB. Only at larger contact times, a weak dependence of the decay of thematrix elements

c hD , onMB andDM can be observed, where bothχ and ηmay denoteβ orμ. The decay of the relative
deviations c h c hD L, , is solely caused by the growth behavior of thematrix elements of Lwhile the difference
matrixD is essentially constant apart from a very short interval near t = 0 as shown infigure 5.Within this
short interval of small contact times, thematrix elements ofD and L perform rapid oscillations resulting in a
small offset followed up by constant, τ-independent values in the case of thematrixD, and by a linear increase of
the diagonal elements of L and a linear decrease of the off-diagonal element b mL , up to the contact time tB.
Within a small vicinity of tB thematrix elements ofD perform small oscillations to assume the previous value
also for larger values of τ. The diagonal elements of L resume a constant growth rate, which, however, is larger
for t t> B than it was for t t< B. The off-diagonal element b mL . displays a rapid deflection near tB followed by a
steeper decrease than before. At the considered small values of the interaction parameter gC thematricesD and L

are proportional to gC
2 up to the contact time tB. Therefore, for contact times t t< B the elements of thematrix

L arewell approximated by the following linear laws:

g g b bg k bg t t= +b b b b b b
- ℓ( ) [ ( ) ( ) ] ( )L , 52, C

2 2
, , 0

g g b bg k bg t t= +b m b m b m
- ℓ( ) [ ( ) ( ) ] ( )L , 53, C

2 1
, , 0

g g bg k bg t t= +m m m m m mℓ( ) [ ( ) ( ) ] ( )L 54, C
2

, , 0

with t g=0 being the hopping time between neighboring sites. This time is independent of the size of the
system. The coefficients c hℓ , and kc h, are dimensionless functions of bg , which are plotted infigure 6 for a range
of low temperatures, bg > 4, which yet are large compared to the level-spacing de such that bd  1e . Apart
from m mℓ , which grows logarithmically as bg=m mℓ ( )0.20 ln, all other coefficients can bemodeled in this
temperature range by algebraic functions: bg=b bℓ ( )0.034,

2, bg=m bℓ 0.011, , k bg=b b
-( )2.0,

1,
k bg=m b

-( )0.20,
2 and k bg=m m

-( )0.62,
1.

Figure 3.The heat á ñQ and particle number áD ñN that are exchanged between systems of sizes =M 100, 200B andD =M 2 during
the contact time t t= 1.5 b are scaled by the according instantaneous values á ñQ 0 and áD ñN 0. These ratios are displayed in panel (a)
and (b), respectively, as functions of the corresponding scaled affinity biases b bD ¯MB and m d-D e where d g= M2e B denotes the
level spacing ofHBnear the band center. The average temperature is chosen as b g g=¯ 10 , 15 ; the coupling strength is g g= 0.1C .
At smaller affinity biases the spontaneous contribution dominates the direction of transport pointing in the direction opposite to the
one dictated by the corresponding biases. The dependence on the size and the average temperature is rather weak.
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The τ-independent contributions of b bℓ , and b mℓ , are dominant for very small contact times, t t B,
rendering thematrix elements b bL , and b mL , almost independent of b . In this regime of very small τ, thematrix
elements c hD , and c hL , have similar values, and therefore the ratios c h c hD L, , are close to 1 as illustrated in
figure 4 for bg = 10. The same behavior can also be observed for other temperature valueswith bg > 4.
According tofigure 5, in the contact timewindow t t< <0 B, the behavior ofD canwell be represented as

gb b D 0.034, C
2 , g g+m b b m ( )D D 2 0.011, , C

2 and bgm m  ( )D 0.20 ln, . For a discussion of the asymmetry of
Dwe refer tofigure 7 and to the according text below it. For sufficiently large values of τ, which are still less than
tB, the τ-independent contributions to L can be neglected yielding g g b g t tb b

- - ( )L 2, C
2 3 1

0,
g g b g t tb m

- - ( )L 0.2, C
2 3 2

0, and g g bg t tm m
- ( ) ( )L 0.62, C

2 1
0.

For the same range of contact times t t< B excluding very short ones, the diagonal elements and the
symmetrized non-diagonal element of the actual transport coefficients follow from = -c h c h c hC L D, , , with the
above expressions for thematrix elements of L andD. For contact times t t> B the dependence of L on τ
becomes nonlinear. Though, a scaling of t t µ( )L MB B continues to hold. In this nonlinear region, small
deviations from the proportionality to gC

2 can be observed for thematrix LwhileD remains unaffected.
Finally we focus on the violation of the reciprocity relationwhich can be quantified in terms of the difference

of the non-diagonal elements of thematrixD, which, due to the symmetry of thematrix L, coincides with the
respective difference of the non-diagonal elements ofC.We consider symmetric systemswith equal numbers of
sites, º =M M MA B. In panel (a) offigure 7 the relative degree of asymmetry, -m b b m b m( )D D L, , , , is displayed
as function of t tB for different values of the coupling strength gC, inverse temperatureβ, and sizeMB. For short
contact times τ it shows an oscillatory behavior which turns into amonotonic decay.

While, at the considered low temperatures bg > 4, the diagonal ( b bD , , m mD , ) and the symmetrized
+b m m b( )D D 2, , elements ofD are virtually independent of temperature, the difference of the non-diagonal

elements -b m m bD D, , grows proportionally to the temperature as can be inferred from the data collapse
displayed infigure 7(b) upon a scaling of the difference by g g b-( )C

1. The decrease of the relative difference
-b m m b b m( )D D L. , , becomes faster with increasing system sizeMB due to the proportionality of L toMB and the

MB-independence ofD. The dependence of the relative asymmetry degree on the coupling constant gC is rather

insignificant on short times because bothmatricesD and L are proportional to gC
2 in leading order.

For larger contact times t t> B, higher orders of the coupling strengths contribute to thematricesD and L.
Yet by using t t g gº BC C as a unit of time and, asmentioned above, scaling the difference -b m m bD D, , with
g g b-( )C

2 1one finds a collapse of the off-diagonal elements onto a single curve, apart form a superposition of
spikes at integermultiples of tB as displayed in panel (b) offigure 7. Likewise an almost perfect data collapse is
found in panel (c) for the off-diagonal element b mL , scaled by b g( )MB

3 2 as a function of t tC. The displayed

Figure 4.The deviation = -D L C relative to the positive and symmetric referencematrix L is component-wise displayed as a
function of the scaled time t tB forD =M 0, 2, 6, 30 and = +M M2 2A B . The other parameters are the same as in figure 1.
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Figure 5.The components of thematricesD and L are displayed as functions of the scaled contact time t tB for different interaction
strengths g g g= 0.01 , 0.1C , and system sizes = =M M 100, 200A B at the inverse temperature b g= 10 . The diagonal b b( ), - and
m m( ), -components are given in units of g g bC

2 2 2 and g gC
2 2, respectively, and the non-diagonal b m( ), - and m b( ), -components in

units of g g bC
2 2 . The insets present the respective behavior for short contact times t t< <0 0.5 B.

Figure 6.The dimensionless coefficients kc h, and c hℓ , specifying thematrix L for times t t< B according to the equations (52)–(54)
are represented as functions of bg . In all cases but for m mℓ , the coefficients depend algebraically on bg as can be seen from the doubly
logarithmic plots in the insets yielding k bgµb b

-( ),
1, k bgµb m

-( ),
2, k bgµm m

-( ),
1, bgµb bℓ ( ),

2, bgµb mℓ , . The remaining
coefficient is well approximated as bgµm mℓ ( )log, . The numbers above the insets indicate the respective exponent that is determined
from the slope of the doubly logarithmic graph displayed in the inset.
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large time behavior, however, will depend on the specific nature of the interacting partsA andB. For example for
systems that equilibrate after a sufficiently large time thematricesC and L are expected to approach values
independent of the contact time. In any case, at times larger than tB thematricesC and L are no longer linearly
proportional to the contact time. Therefore, a comparisonwith the transport behavior following from standard
transport theory is no longermeaningful.

We conclude that, in agreementwith our general analysis, the transport of heat and particle numbers
between two linear systems described by the tight bindingHamiltonians (36) deviates from the standard
behavior by the presence of spontaneous transport occurring in the absence of any affinity bias, and by an
asymmetry of the transportmatrix signaling a violation ofOnsagerʼs reciprocity relation.

5. Summary

We scrutinized the basic assumptions underlying theOnsager relations for the transport of heat and particles
in relatively small systems. Our analysis is based on the standard assumption, see e.g. [6], that the two parts of a
system are prepared in grand-canonical equilibrium states with generally different temperatures and chemical
potentials. In this initial state the energies and the particle numbers are separately determined, and then the
two parts are brought into contact such that energy and particles can be exchanged between them. After a
prescribed time τ the interaction of the two parts is switched off and energies and particle numbers are
measured again.

In contradistinction to standard transport theory [2]we found spontaneous transport in the absence of a
temperature and chemical potential difference of the two systems and also deviations from the reciprocity
relations. Both effects have their origin in the fact that with bringing the parts of the system into contact and
separating them again, work is done on the total system.Only if this work identically vanishes these deviations
exactly disappear andOnsagerʼs standard transport theory follows from afluctuation theorem. The
spontaneous transport becomes visible only after a characteristic timewhich growswith the size of the system.
The deviation from the reciprocity relations however, ismost pronounced during this initial period. The
presence of work is tantamount to the breaking of time-translational symmetry. This leads to non-symmetric
transport coefficients and hence a violation ofOnsagerʼs reciprocity relations. The same conclusions also hold
for the alternative definitions of affinity biases and corresponding transport quantities (see footnote 4).

Both the general analysis presented in the first part of this work as well as the illustrative example are
expressed in quantummechanical terms.However, also systems governed by the laws of classicalmechanics
experience a change of energy imposed by contacting and disconnecting the parts of the system. Therefore, we
expect that the deviations of the transport properties from standard transport theory also apply for small
classical systems.

Figure 7.The asymmetry of the transport coefficients is illustrated for symmetric systems (D =M 0)with various parameters gC, b̄
andMB as specified in panel (a). In panel (a) the ratio of theOnsager asymmetry, -m b b mD D, , , and the reference, symmetric transport
coefficient m bL , , is displayed as a function of time t tB in range of t t< <0 B. In panel (b) the asymmetry is scaled in units of
b g g- ( )1

c
2 and the time in units of t g gB C yielding an approximate data collapse for different gC,β, andMB onto a periodicmaster

function. The spikes are located at integermultiples of the round trip time tB. The inset displays amagnification of the scaled
asymmetry for times t t g< <0 0.2 B C. The non-diagonal element b mL , is presented in units of b gMB

3 2 as a function of the scaled
time g t gt( )BC as evidenced in panel (c). The inset exhibits the behavior at short times.
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