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Abstract

Close to equilibrium, the exchange of particles and heat between macroscopic systems at different
temperatures and different chemical potentials is known to be governed by a matrix of transport
coefficients which are positive and symmetric. We investigate the amounts of heat and particles that
are exchanged between two small quantum systems within a given time, and find them characterized
by a transport matrix which neither needs to be symmetric nor positive. Atlarger times even
spontaneous transport can be observed in the total absence of temperature and chemical potential
differences provided that the two systems are different in size. All these deviations from standard
transport behavior can be attributed to the fact that work is done on the system in the processes
contacting and separating those parts of the system that initially possess different temperatures and
chemical potentials. The standard transport properties are recovered for vanishing work and also in
the limit of large systems and sufficiently large contact times. The general results are illustrated by an
example.

1. Introduction

The exchange of quantities such as energy and particle numbers between different parts of a spatially extended
system is a fundamental phenomenon of physics, chemistry and biology. Being characteristic for systems out of
equilibrium an exchange is typically driven by a bias of affinities such as temperature or chemical potential
differences and manifests itself in the form of heat or particle currents [1, 2]. The traditional treatment of
transport phenomena is based on the notion of local equilibrium. It is formulated in terms of transport
equations relating thermodynamic forces, which are caused by affinity biases, to fluxes which are defined as the
time rates of change of the average exchanged heat and particle number.

The recent characterization of transport phenomena in terms of fluctuation relations [3-9] provides an
alternative understanding from a more statistical mechanical and less phenomenological point of view. For the
sake of simplicity we restrict ourselves to energy and particle exchange between two systems, A and B, each of
which is initially isolated and prepared in grand-canonical equilibrium states with temperatures 3, G and
chemical potentials 1, j15. If the systems are brought into contact for a certain amount of time during which
energy and particles can be interchanged, the joint probability density function (pdf) Pag(AEs, AEg, AN)of
the energy and particle number changes AE, and AN,,, of both systems, &« = A, B, respectively, obeys the
following exact symmetry relation:

Pap(AEy, ABp AN) [] eH@EnAN) 1)
PAE(_AEAr _AEB) _AN) a=A,B

In deriving the above relation, it is assumed that the total number of particles is conserved, and hence
ANy = —ANg = AN. On the other hand, there is no restriction on the total energy change; the energy of the
whole system may not be conserved because the contact is mediated by switching an interaction Hamiltonian on
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and off. In this way, work is done on both systems when they are being connected and separated. Thus, AE, and
AEjg are left as separate, independent variables.

The work W supplied to the total system and the heat Q being transferred from B to A can be expressed in
terms of linear combinations of energy and particle number differences E, and AN [4] as

W= AEy + AE;, Q= (AEy — AEp)/2 — RAN, ©))

where i = (14 + pp) /2. Equation (1) can be rewritten for the joint probability Py (W, Q, AN)of Q, Wand
AN yielding

Pwo(W, Q, AN) = e/W+AIR=FAAND o (—W, —Q, —AN) 3)

with 3 = (B4 + 38)/2, AB = By — Bgand A = p, — p. Yetother definitions of the affinity biases are
possible” but will not be further considered. The corresponding joint pdf Py (W, Q, AN) can be expressed in
terms of Pap(AE,, AEg, AN)as

1 1
Pwo(W, Q, AN) = PAE(EW + Q 4 AN, W= Q — AN, AN). (4)

The fluctuation relation (3) was derived by various authors [6—8]. In most of these works, see in particular [6], it
is assumed that (i) the two systems are large and (ii) the time 7 during which the interaction between the two
systems is effective is sufficiently large so that a quasi-stationary state with constant fluxes will prevail during
most of the time. In other words, the heat as well as the exchanged particle number become proportional to the
interaction-time, whereas the work, which is determined by the short periods when the interaction is turned on
and off again, is independent of 7. Under these conditions the work can be neglected in comparison to the heat.
Asaconsequence, for the averages of heat (Q) and exchanged particle numbers (AN ), one then finds the
standard directionalities AG(Q) > 0if Ay = 0Oand —(AN)Ap > 0if AS = 0. For small biases the averages
of the transported quantities become linear in the affinities. i.e. (Q) = Kj; A3 + Ki,(—BAu)and

(AN) = K31 AB + Ky (—BAmu) hold. These equations are akin to standard transport equations [2] with the
difference that they describe finite amounts of exchanged heat and particle number rather than the respective
fluxes. However, in the limit of large 7, the transport matrix (Kj;) corresponds to 7 times Onsager’s transport
matrix that relates the forces to the fluxes. The symmetry and positivity of the transport matrix (K; ;), which will
be reviewed below, therefore imply the corresponding properties of the Onsager matrix, entailing both the
reciprocity relation of Onsager’s transport coefficients, in short known as reciprocity relation, and the
directionality of the fluxes, which follows from the positivity of the Onsager matrix.

One though has to keep in mind that, in particular for small systems, the establishment of a long-lived quasi-
stationary state may not be achieved at all or does not prevail long enough. Therefore, it is not always justified to
neglect the work in comparison to the heat. We shall discuss that both the directionality of the heat and particle
flux, i.e. the positivity of the matrix of transport coefficients, as well as Onsager’s reciprocity relations may then
be violated.

The validity of Onsager’s reciprocity relations is a subject that has been repeatedly discussed in the literature
[10]. The standard justification [2, 11] is based on a combination of microscopic and phenomenological
arguments [ 12—14]: microscopic reversibility is one pillar to which comes as the second pillar the assumption of
a Gaussian and Markovian dynamics of the considered set of variables such as heat and particle number in the
present situation. The Gaussian property can be justified by the assumption that only processes close to thermal
equilibrium are considered. The Markovian dynamics is imposed by Onsager’s regression hypothesis [11] which
postulates that the same dynamical laws are governing the mean values and the spontaneous fluctuations. The
relevance of the Markovian assumption for the validity of the reciprocal relations was illustrated in [ 15] by an
example.

The more recent characterization of transport phenomena by means of the fluctuation theorem also requires
microscopic reversibility but does not make use of the assumptions regarding the dynamics of heat and particle
number: there is no restriction requiring that the considered transport processes should take place close to
thermal equilibrium and hence had to stay in the linear regime; nor is there any requirement restricting the
dynamics of the transported quantities apart from microscopic reversibility of the underlying microscopic
dynamics as already emphasized. The second essential postulate assumes the existence of along-lived quasi-
stationary current carrying state requiring sufficiently large systems and a large contact time during which the
two systems quickly build up the mentioned quasi-stationary state.

The paper is organized as follows: in section 2, the general setting is specified: two initially isolated systems
each of which is in thermal equilibrium with possibly different temperatures and chemical potentials are
brought in contact and again separated after some time 7. For this setting equation (1) is obtained. With work
and heat identified as in equation (2) the fluctuation theorem (3) is expressed in terms of these quantities.

4~With the alternative definition ABp = By, — Bp i for the chemical affinity bias the corresponding expression for the heat becomes
Q = 0E4 — AEg. The exponent on the right hand side of equation (4) then assumes the form BW + QAB — ANABu.
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Section 3 is devoted to the discussion of the implications of work on the exchange properties. In a first
subsection, we consider the case of vanishing work, W = 0, and demonstrate how the directionality and the
Onsager relations follow from equation (3). For non-vanishing work we find that the transport matrix is
asymmetric and need also not be positive. Moreover, a spontaneous flow of heat and particles may occur even in
the absence of any affinity bias as presented in the second subsection. In section 4, we consider an example which
illustrates the findings of section 3. A summary concludes the paper in section 5.

2. Setting

We consider a total system that consists of two subsystems A and Bwith Hamiltonians H, Hy and particle
number-operators Nj, Ni, respectively. For the sake of simplicity we consider only one sort of particles that may
reside in both systems. Up to the time t = 0 the systems A and B are isolated from each other and stay in states of
grand-canonical equilibrium. The initial density matrix is therefore given by

pO) = ] ertlnlo)z, (5)

a=A,B

with Z, being the grand-canonical partition function of system o« = A, B. The affinity parameters, i.e. the
inverse temperature (3, and the chemical potential o> CAN in general be different: 8, = Bgand p, = p5. The
Hamiltonians H,, and particle number operators N, commute with each other, and, consequently have
simultaneous eigenstates with the corresponding eigenvalues E,, and N, satisfying: H,|E", N} = EP|Ef, Nf)
and N,|E?, Nf*) = NP|E®, Nf). For the sake of simplicity we assume that these states are non-degenerate. A
basis in the Hilbert space of the total system A & B is spanned by the product states

|EA, N @ |EP, NP) = |i), where the index i stands for a complete set of quantum numbers. The probability P;
to find the set of quantum numbers EiA, EiB , NiA, MB in ajoint measurement of FIA, ﬁB, NA, NB in the initial
state p(0) is given by P: = (i]p(0)|i) and hence becomes

Pi= [[ entinin/z, (6)
a=A,B

We suppose that a coupling between the two systems, described by the interaction Hamiltonian He, is
turned on at time t = 0T. The quantum state of the total system A @& B subsequently evolves in time (for ¢t > 0)
according to the total, time-reversal invariant Hamiltonian®

A= H,y + Hz + He. (7)

When the time ¢t = 7 has elapsed the coupling is switched off and immediately after, the energy and the particle
number of each system are measured. This measurement projects the system state onto a common eigenstate of
HA,and N, | f) = |EfA, Nf> ® |EJ§ , Nf ), where Ef and N are eigenvalues of the Hamiltonians and particle
number operators of the respective isolated systems.

The exchange of energy and particles between the systems can be quantified in terms of the measured
eigenvaluesby AE® = Ef — E{*and AN = Nf NA = Njf-3 + NP, respectively, with E and N;" being
eigenvalues of the Hamiltonians and particle number operators obtained in the initial (j = i) and the final
(j = f) measurements. The joint probability to find certain values of AE, and AN is determined by

Pap(AEs, AEg, AN) = (6(AN — Nf + Ny [ 6(AE, — Ef + E)), (8)

a=A,B

where (-) = 3=, - - p(f, i) denotes the average with respect to the joint probability p(f, i) to find the set of
eigenvalues 7 in the first and the set fin the second measurement. The sum runs over all sets of eigenvalues i and f
and p(f, i)is given by

p(f, 1) = TpiP;, C)]

where P;is defined in equation (6) and Tj); denotes the transition probability between the states |i) and | f) and,
hence, is given by

Tpi = [{F1IU (D) P (10)

The unitary time-evolution U () = e~7/% propagates the state of the total system from t = O until t = 7 in
terms of the total Hamiltonian H specified by equation (7). We remark that the probabilities P;and Prof any two

energy and particle number configurations i and fare related to each other by

5 . .. o A . .
For the sake of simplicity we assume that HO = H, where 6 is the time-reversal operator. Hence, we exclude the presence of fields that
transform oddly under time-reversal such as magnetic fields and Coriolis forces.
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P, = erv'Pf, (11)
where

My =) Bal(Ef — Ef) — pt,(Nf — N (12)

depends only on the energy differences between the two configurations and the according number difference.
Note that there is no summation on the index fin equation (11). Note further that the exponential function of M
appears on the right hand side of the fluctuation relation (1). Owing to the time-reversal invariance of the
Hamiltonian, the transition probability is symmetric with respect to the initial and the final state:

T = AU P = 100 @DIf) P = Ty (13)

Similar detailed balance like relations can also be derived under more general conditions [16]. As long as the
protocol specifying how the interaction between the systems A and B is switched on and off is symmetric in time
and the indices i and fspecify non-degenerate states the simple form (13) holds unchanged.

Together with equation (13) the equation (11) implies an analogous relation for the joint probability p(i, j)
reading

pG, ) = eMup(f, i). (14)
Combined with equation (8) it yields
B (AEq—p1, AN,
PAp(AE4, AEg, AN) = o AR )Z T Pr6(AN — Nf' + N
if
x [l 6(AE,— Ef + E)
a=A,B

> BUAE,—p, AN,)

=e5 Pap(—AE4 — AEg, —AN), (15)

where the last equality is obtained by interchanging i and f. The above equation proves the fluctuation theorem
(1), which can be transformed into equation (3) upon using the definitions of work and heat, presented in
equation (2). Itis worth noticing that, due to the symmetry of the switching process, the probabilities on both
sides of equation (15) and consequently also those entering the fluctuation relation (1) refer to the same process.

3. Generalities

Next we extract the essential properties of heat and number exchange from the particular form of the joint
particle and energy probability density (8) and the fluctuation theorem (3). In order to better understand the role
played by the work, we first assume a situation in which the work vanishes. In this particular case, the expected
directionality of heat from hot to cold and of the particle flux from high to low chemical potential follows. For
small affinity differences, the exchanged heat and particle number are linearly related to the affinities with
coefficients satisfying Onsager’s symmetry relation. In cases in which the work is finite and cannot be neglected
in comparison to the exchanged heat or the energy related to particle transport, both properties need not hold
any longer.

3.1. Energy conserving process: W = 0

We here consider processes for which the work done by turning the interaction on and off can be neglected
compared to the exchanged heat and the energy transported by the exchanged particles. The joint work-heat-
number pdf can then be approximated by Py (W, Q, AN) ~ §(W)Py(Q, AN), where P(Q, AN) satisfiesa
reduced form of the fluctuation theorem,

Po(Q, AN) = eAQ-FAAND, (—Q, —AN). (16)

The integration of both sides of equation (16) over Qand AN yields the identity (e-2/Q+FAANY — 1 With
Jensen’s inequality, (e*) > el®), one obtains

AB(Q) — BAH{AN) > o. (17)

This implies the directionality of matter exchange: the average of heat, {Q), induced by a positive A3 with

Ap = 0,isnonnegative, indicating that the part with higher temperature looses energy which is transferred to the
part with lower temperature, as stated below equation (3). Also, in the absence of a temperature difference

(A = 0), from equation (17) the average number change caused by a finite chemical potential difference satisfies
Ap{AN) < 0. Thisindicates that particles are transported from the region initially at high chemical potential to
the region at lower chemical potential. Note that the directions into which heat and particles are transported only
depend on those of the affinity biases but not on their sizes provided the work W can be neglected.

4
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For processes driven by small affinities one may expand the exponential factor on the right hand side of
equation (16) to yield

Po(Q, AN) = (1 + AB Q — BAu AN)Po(=Q, —AN). (18)
Multiplying both sides by either Q or AN and integrating over Qand AN one obtains
(Q) = JUQar A5 — (QAN)ou B, (19)
1 _
(AN) = 5[<QAN>QoAﬁ — (AN?)qofAu], (20)

where (-)g0 = f dWdAN - Po(Q, AN) represents the average in the absence of any bias (Ap = AS = 0).

These equations are akin to standard transport equations with the difference that the latter describe the
transport behavior in terms of instantaneous fluxes caused by the momentary affinity biases while the
equations (19) and (20) quantify the total amounts of exchanged heat and particle numbers. In the standard
transport equations, the time ¢ may take any value from the beginning t = 0 until theend t = t of the
considered experiment, in contrast to the above relations, in which 7 = #; only refers to the immediate instant
of time after which the interaction is turned off. For transport phenomena in quantum systems, a continuous
observation of the fluxes is not feasible because the unavoidable back-action of the necessary measurement
would have a too strong impact on the result. A similar situation is met with work measurements as discussed in
[17]. Also there, the least invasive process diagnosis is given by two energy measurements, one immediately
before and the second one immediately after the process is completed.

With the assumption that after a time ¢ < 7 a quasi-stationary state has established [6, 8], the heatand
particle number fluxes, Q and AN, can be inferred from the totally exchanged heat and particle number as
Q = Q/7and AN = AN /7, respectively. Accordingly, with the definition of transport coefficients
Ly = {Q%qo /7> Liz = Ly = (QAN)q /7, Ly = ((AN)*)qp /T one recovers from the equations (19) and
(20) the standard form of linear transport equations with a symmetric matrix of transport coefficients in
accordance with Onsager’s symmetry relations. The positivity of the matrix follows immediately from the fact
that it is proportional to the covariance matrix of Qand AN with the positive proportionality factor 1 /7.

In summary, we find that, with the equations (19) and (20), the total amounts of heat and exchanged
particles follow the standard transport rules concerning symmetry and directionality provided that the work
applied to the system vanishes or can be neglected.

3.2. Energy non-conserving processes: W = 0
Now we focus our considerations to processes in which work is performed on the total system, and hence its
energy differs at the end from what it was in the beginning.

We will still assume that the affinity biases AG = 84 — Bgand Ap = i, — pip are small compared to their
averagevalues 3 = (4 + (p)/2and i = (u, + pp) /2, respectively. The only dependence of the joint pdf
Pyo(W, Q, AN) on the affinity biases is contained in the initial distribution of energies and particle numbers,
P; given by equation (6). For small affinity biases P; can be expanded yielding up to first orderin A3 and SAp
the following expression

Pi= (1 — X/AB — X}'(=BAW)P/, @D
where P! is the probability to find the systems A and B at equal temperature 3 and chemical potential /2, hence
reading

0 1

P =— H e~ BE— N (22)
Z a=A,B

with Z9being the corresponding grand-canonical partition function. The coefficients in front of the affinity
biases are given by

7 = Lo — 858 — oy -+ N, =

Xt = %(mf‘ — 6NPy. (24)

Here E* = Ef* — E%and 6N{* = N{* — N© denote fluctuations of energies and particle numbers about their
averages in the bias-free initial state given by E* = 3, E*P? and N® = 3_, N P, respectively.

The fluctuating heat and particle number exchange can be expressed as differences between the values of X ]‘-3
and X" as they result from the first (j = 7) and the final (j = f) energy and particle measurements, yielding

Q=X/ - X/, (25)

5
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AN = X} — X/ (26)

Accordingly, the averages of Qand AN become
(Q) = (X"(1) — X5(0))

= > (X} = X)) TyiP, 27)
if
(AN) = (X"() — X"(0))
= Z(X}l — Xi/l)Tf|iPi~ (28)
if

Replacing now the initial probability P; by its small affinity bias approximation (21) one obtains for these
averages up to firstorderin A and Ap

(Q) = (X7(7) = X7(0))o + Cs,3A08 + Cpp(—BAW), (29)
(AN) = (X*(1) — X" (0))o + CupAB + Cuu(—BAW), (30)

where (-)g = 37, - Ty;P{ and
Cyy = —([XX(1) — XX(0)]1X"(0))o. (31)

This result differs in two respects from Onsager’s standard transport theory: first, heat and particles may be
exchanged between the two systems even if the affinity biases vanish, and second, the matrix C = (C,,))
governing the transport caused by small affinity differences needs neither be symmetric nor positive. Here, both
indices y and n may referto 5 or p.

As already demonstrated above, in the absence of an affinity bias transport does not occur if the energy of the
total system remains constant under the influence of the coupling between A and B. This can also be seen from
the symmetry relation (14) of the joint probability which for vanishing biases A3 = 0 and Ay = 0 simplifies to

pAﬂ:O,A,u,:O(I', f) —_ eBWf,,vaﬂ:O,Au:O(f’ i), (32)

where Wy; = > Ef' — E;" is the work performed on the system upon a transition from to f. When this work
vanishes for all possible transitions, i.e. for all those pairs 7, f with p(f, i) = 0, the transition probability is
symmetric. Then, the averages of XX (¢) agreeatt = 0 and t = 7, and hence we recover that any transport of heat
and particles may only occur due to affinity biases but not spontaneously. Here, the index y may refer to 5 or p.

Because in the presence of finite work, the joint probability is no longer stationary, the averages XX (7) and
XX(0) will in general disagree, as already noted. Moreover, due to the non-stationarity of the joint probability
p(, f) the auto-correlation functions (X (7) X (0)), may become larger than the second moment (X?(0)),,
where X = aX? 4+ bX*, a, breal, isan arbitrary linear combination of X” and X*. With (X2(0)), < (X(7)
X (0))o the matrix C = (C,,,) is no longer positive and hence the directionality of the affinity bias-induced
transport may also differ from the standard Onsager rules.

Moreover, the reciprocity relations are in general violated by the presence of work rendering the matrix C
non-symmetric because in general (X (1) X*(0)); = (X*(7)X"(0))o and hence Cg,, = C, .

A positive and symmetric matrix L determines the averages of heat and exchanged particle numbers if they
are modified by the factor (1 + ey /2. Multiplying both sides of the fluctuation relation (3) by e and
optionally by either Q or AN and integrating over all W, Q and AN one obtains to first order in the affinity
biases the expressions

(Qe™™ + 1)) = 2(Ly sAB + Ly u(—BAW)),
(AN (e + 1)) = 2(L, sAB + Ly, (— BAW), (33)
where
2L, = ((XX(7) — XX(0)(X"(T) — X"(0))o (34)

coincides with the covariance matrix of Q and AN when there is no affinity bias. The deviation D of the actual
transport matrix CfromL, D = L — C,isgiven by

2Dy, = ((XX(1) = XX (0)X"(7) + X"(0)))o- (35)

We conclude that the work that is performed when the two parts of the system are brought in contact and
finally are disconnected again gives rise to several unexpected effects such as spontaneous transport, non-
reciprocal cross-terms of the transport matrix and deviations from the standard directionalities of transport.
The work which causes these anomalies is a measure for the amount of the non-stationarity imposed by the time
limitation of the transport experiment.

In the following section, we consider a particular example and demonstrate that these deviations from the
conventional transport theory appear also for weakly coupled systems provided they are not too large.

6
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4. Example

4.1.Model system
In order to substantiate the existence of the nontrivial effects of work we consider as parts A and B two Fermionic
systems that are described by tight binding Hamiltonians of the form:

M,—2
Hy=—v ) [C;ﬂ Cxor1t C:cr(.+lcxu]’ a=A, B, (36)

Xo=1

where M,, — 1denotes the number of sites of the part o and the operator ¢, (E;ﬂ) annihilates (creates) a fermion
at the site x,, of the system «. The hopping energy v determines the energy scale of the system. We assume that
the partial systems A and B are identical except that they may have different M,,. The particle numbers in each
system are specified by operators N, defined by

M,—1
= > &l e (37)
Xa=la

The coupling Hamiltonian which is turned on at = 0% is given by

He = —c( &, + & &) (38)
It connects the two end sites 14 and 13 enabling the exchange of particles between the two systems under the
constraint of a constant total particle number.

These Hamiltonians describe various physical systems, like systems of electrons with negligible spin-degrees

of freedom [18], hard-core bosons in one-dimensional optical lattices [19] or quantum spin rotors [20]. This

class of systems can be solved exactly because there is no interaction between particles. We verify the presence of
spontaneous flow and deviations from Onsager symmetry.

4.2.Method
We are interested in the temporal changes of the energies and the particle numbers, which are determined by the
eigenvalues of the operators H, = Zﬁffll EnEr &y, and N, = fo{ 7' &l &, ,respectively. Here, the Fermi

operators ¢, diagonalize the Hamiltonian H,,. Theyare given by

M,—1
Enu = Z Anox é\xa (39)
Xo=1
with the coefficients
2 . [nymx
Ay, = [ sin| ———|. (40)
M, M,
The energy eigenvalues resultin ¢, = —2 cos(n,7/M,,). To obtain the time-evolution of the annihilation

operators in presence of the interaction we consider the Heisenberg equations of motion, which are

—1

8, ()= 3,60, (0) + 5 Vs (®
t

No/za=1

My—1

Z Hypn€ny (1), 1)

ny=1
where V,, . = —7:4au,1,an,1, determines the coupling Hamiltonian written in terms of {¢,,_}:

He= 3" Viuy B, Eny + 1,20, (42)
1, 1B
The retarded Green’s function, definedby G, , (t, — ) = —i({&,, (t2), EJG, (#)}) satisfies the following
equation of motion:
My—1

hj s 0= 32 Houn Gy (0 3)
=1

with the initial condition: G}

oy (0) = — ,,mnn,, followmg from¢, (1) =iy, G, ,. ()&, (0).Here, H, , .is
the matrix element of the total Hamlltonlan H = Hy + Hg + Hc with respect to the site basis generated by the
creation operators ¢, . The solution of equation (43) can be evaluated by exact diagonalization of H, . The
temporal behavior of several thermodynamic quantities can be expressed utilizing the retarded Green’s

function; for example, the average amount of energy change in the system «,

nLk
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(AE) = en (&1 (1) (T) — &} (0)E,,(0))

n(}

2
=2 2 anllGhu M = dun S,

(44)
a’'=1ngnd ‘
and the average number of particle change,
2
<AN0/> = Z Z [|G7§mﬂu’ (T) |2 - 5nu,n&f]fn({ > (45)
a=1n.,ny
arewritten in terms of G, ,, () with the Fermi-Dirac distribution func-
tion f, = (&} (0)&,,(0)) = [e™HEm—r) 4 1]71,
Then the average heat and exchanged particle number can be expressed as
(Q) = 2w UGLADP = 6s1fys (46)
s,s
(AN) => " xM'IGLy (D = 801fs (47)
s,s’
where the summation indices sand s” run over the energy levels of both systems. Depending on whether s
indicates alevel of system A or B the coefficients x.” are defined as
Xy = (Eny = 114) /2
Xy = —(Eny — 115) /2, (48)
whereas
xfh =1, xi =0 (49)
The covariance matrix 2L of Qand AN, as defined in equation (34), can be written as
2Ly = 3o xXx M (Me(m) = OO (T)ea(r) = c[(0)ee(0)])o
s,s
= Z xSXxJZ [Gst(T) Gs,j(T) — (55,,'(55,1']
ij,k,1,s,s"
X [GI(T)Gya(T) — beibeil (¢ cicl cr)os (50)

where the summations extend over all energy levels of both systems. The equilibrium averages of the fourths
moments of creation and annihilation operators can be expressed in terms of the Fermi—Dirac distribution
function: (c/ ¢i¢/a)o = 6k if. i + 6:10;uf;(1 — f,), finallyyielding

2Ly = ((XX(T) = XX(O))o ((X"(T) — XNO0N)o + D xXxJ[Gei(T) Gor(T) — 85,i64x]

s,s' i,k

X [Gg (1) Gy k(1) — 0 xb5,ilf;(1 — £o), (51)

where (X?(1) — X?(0))y = (Q)oand (X*(1) — X*(0))y = (AN)oaccordingto equations (27) and (28),
respectively.

In the next subsection we determine the relative deviation D of the actual transport matrix C from the
symmetric matrix L. The calculation of the second moments implies four summations. Accordingly, the time
required for the calculation grows with the system size proportionally to (M, + Mp)* which is still feasible for
the relatively small systems considered here.

4.3. Results

We illustrate the spontaneous transport as well as the asymmetry property of the transport matrix for relatively
small systems with Mg = 100, 200 and different sizes of A. As in the recent study [21], the interaction 7 is
chosen small compared to the hopping energy . Likewise, the chemical potentials are also relatively small
compared to the hopping energy.

Figure 1 illustrates the spontaneous transport of average heat (left panel) and average exchanged particle
numbers (right panel) for equal temperatures (34, = 3 = () and equal chemical potentials 1, = p; = prasa
function of time. Here, the heat is given in units of thermal energy, 3!, while the number of exchanged particles
is unscaled. The time is given in units of 73 = Mgh/~ which is the shortest round trip time of a particle moving
at maximum group velocity in the system B [21]. Note, that the part B is assumed to be smaller than A, and hence
the round trip time of Bis shorter than that of A.

Between the systems A and B with the same number of sites, neither heat nor particles can flow (see the red
line in figure 1). Because the two parts of the system as well as their initial states are identical, no preferred
direction of flow exists. Even if M4, and My differ from each other, heat or particles do not flow before 7 = 73.

8



10P Publishing

NewJ. Phys. 19 (2017) 093006 EJeonetal

0.005 0.005
I A
0.000 4=l AVAM 0.000 -
S J =
<> -0.005 % -0.005
Q ~N
AM= 0 — AM= 0 S
-0.010 |} AM=2 -0.010 AM= 2
AM= 6 — AM= 6 -
AM=30 — AM=30
M,=2M,+2 M= 2M,+2
-0.015 -0.015
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
T/TB T/TB

Figure 1. The amounts of heat (left panel) and number of particles (right panel) that flow spontaneously in the absence of any affinity
bias are displayed as functions of the total time of contact 7 between the two systems A and B with various sizes. Their behavior
depends on the difference of sites AM = My — My = 0, 2, 6, 30, My + 2. The system B has a fixed number of sites, M = 100, the
temperatures and chemical potentials of both systems are 34 = O = 3 = 10/yand i, = pz = 0.2, respectively. The coupling
strength between A and Bis ~, = 0.17. The time is scaled by the round trip time 73 = Mp//y. Heat is given in units of thermal
energy 3! and the number of exchanged particles is unscaled.
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Figure 2. The large time behavior of the spontaneous heat (left panel) and particle (right panel) flow at vanishing affinity biases for the
parameter values AM = 2, 5 = 10~.

This is so because for times less than the round trip time 73, the system can be considered as infinite and
symmetric, as discussed in the previous work [21]. Only for 7 > 73, the finiteness of the systems manifests itself,
and the asymmetry becomes apparent.

The green and blue lines in figure 1 display particle and heat transport when the systems differ in size by two
and six, respectively. For times larger than 73, almost instantly a non-vanishing amount of spontaneously
transmitted heat and particle number exchange sets in. Both heat and particle number remain almost constant
up to the time 27 when they again change in an almost step-like manner. At larger times a partial reversal and
more erratic behavior of the transferred heat and particle number can be observed as illustrated in figure 2 for
M, — Mg = 2.However, also for larger contact times heat and particles are always transferred from the larger to
the smaller system.

For larger size differences, suchas AM = My — Mg = 30, the transferred heat and particle number
exchange becomes considerably smaller (violet lines in figure 1). It can, however, recover larger values even for
large AM if M 4 and M satisfy the commensurability condition pM; = gM, + O(1) with integers p, g. For
example, if My = 2Mp + 2 (cyanline in figure 1), AM = My + 2 islarge, but M, and M satisfy the
commensurability condition with p = 2and q = 1, arelativelylarge amount of particles and heat flows
spontaneously. In this case, the system behaves similarly as for AM = 2, apart from the latent period, which is
twice as long, before the spontaneous transport sets in. The similarity of the AM = 2 and My = 2Mjp + 2 cases,
can also be seen in the transmission property, which has previously been studied [21].

In the presence of an affinity bias, spontaneous and bias-induced heat and matter transport contribute
additively in agreement with equations (29) and (30). This leads to an increase of heat in proportion to the time 7
up to 75 where the slope suddenly changes to remain constant up to 273, see figure 3 of [21].

The contribution of the spontaneous heat flow remains significant in comparison to the affinity biased
contributions aslongas A [ is sufficiently small. Figure 3 displays the total amount of exchanged heat in panel
(a) and particle number in panel (b) relative to the respective spontaneous values for systems with AM = 2 and
foracontacttime 7 = 1.575. While the spontaneously transmitted heat is transferred from the larger A to the
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Figure 3. The heat (Q) and particle number (AN) that are exchanged between systems of sizes My = 100, 200 and AM = 2 during
the contact time 7 = 1.57; are scaled by the according instantaneous values (Q)o and (AN )o. These ratios are displayed in panel (a)
and (b), respectively, as functions of the corresponding scaled affinity biases A3Mjg /3 and — A /8, where & = 27y/Mjg denotes the
level spacing of Hy near the band center. The average temperature is chosenas 3 = 10/, 15/+; the couplingstrengthis 7. = 0.17.
At smaller affinity biases the spontaneous contribution dominates the direction of transport pointing in the direction opposite to the
one dictated by the corresponding biases. The dependence on the size and the average temperature is rather weak.

smaller B part, a positive inverse temperature bias favors the transfer in the opposite direction. For relative
inverse temperature differences A3/3 S 1.5/Mj the spontaneous contribution dominates in determining the
direction. Only at larger temperature differences the heat flows in the expected direction from hot to cold. A
similar behavior can be observed for the transferred particle number which is oppositely oriented to the
‘common’ direction aslongas Ay g —1.58, where ¢, = 2y/Mjp is the level-spacing near the band center. Both
the relative transferred heat (Q) /(Q), and particle number (AN) / (AN, as functions of A3Mjg /3 and of the
scaled chemical potential difference A/ 8, only insignificantly depend on the temperature and the size of the
part B.

The impact of the work on the bias-induced transport properties can be quantified by the matrix D
introduced in equation (35) which is the difference between the actual transport matrix C, see equation (31), and
the symmetric and positive reference matrix L, defined in equation (34),i.e. D = L — C. Figure 4 displays the
elements of the deviation matrix D normalized by the respective elements of the matrix L as a functions of the
contacttime 7.

Starting from an initially large value, the relative deviation decays as the contact time increases. As already
mentioned, for contact times less than 75 the finiteness of the system is not effective due to the finite propagation
speed of the perturbation caused by the contact. Hence, the decay behavior is independent of the size My and the
difference AM up to 7. Only at larger contact times, a weak dependence of the decay of the matrix elements
D,,,on Mgand AM can be observed, where both x and 7 may denote 3 or 1. The decay of the relative
deviations D, , /L, , is solely caused by the growth behavior of the matrix elements of L while the difference
matrix D is essentially constant apart from a very short interval near 7 = 0 as shown in figure 5. Within this
short interval of small contact times, the matrix elements of D and L perform rapid oscillations resultingin a
small offset followed up by constant, 7-independent values in the case of the matrix D, and by a linear increase of
the diagonal elements of L and a linear decrease of the off-diagonal element Lg ,, up to the contact time 73.
Within a small vicinity of 75 the matrix elements of D perform small oscillations to assume the previous value
also for larger values of 7. The diagonal elements of L resume a constant growth rate, which, however, is larger
for 7 > 7 thanitwasfor 7 < 73. The off-diagonal element Ls , displays a rapid deflection near 73 followed by a
steeper decrease than before. At the considered small values of the interaction parameter . the matrices D and L
are proportional to 7(2: up to the contact time 7. Therefore, for contact times 7 < 75 the elements of the matrix
L are well approximated by the following linear laws:

L = (vc¢/V)*B*€5,5(BY) + Ka,s(BY)T/70], (52)
Lﬁ,,u = ('VC/'Y)Zﬁil[fﬁ,u(ﬁfy) + ﬁﬂ,u(ﬁ'}/)T/TO]) (53)
L;L,u = (’YC/PY)Z [ﬁt,# (5’7) + K’M,}L(B’-Y)T/TO] (54)

with 75 = A/~ being the hopping time between neighboring sites. This time is independent of the size of the
system. The coefficients 7, ; and &, are dimensionless functions of 3y, which are plotted in figure 6 for a range
oflow temperatures, 3y > 4, which yet are large compared to the level-spacing ¢, such that 38, < 1. Apart
from 7, ,, which grows logarithmically as £, , = 0.20In(37) all other coefficients can be modeled in this
temperature range by algebraic functions: ¢ 3 = 0.034(8v)% £,,3 = 0.01137, kg3 = 2.0(5y)"},

Ky = 0.20(8v) *and K, = 0.62(3) .
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Figure 4. The deviation D = L — C relative to the positive and symmetric reference matrix L is component-wise displayed as a
function of the scaled time 7 /75 for AM = 0, 2, 6, 30 and My = 2Mj + 2. The other parameters are the same as in figure 1.

The 7-independent contributions of 3 3 and ¢3,;, are dominant for very small contact times, 7 < 73,
rendering the matrix elements Lj g and Lg, , almost independent of 3. In this regime of very small 7, the matrix
elements D, , and L, , have similar values, and therefore the ratios D, ,,/L,,, are close to 1 asillustrated in
figure 4 for By = 10. The same behavior can also be observed for other temperature values with Gy > 4.
According to figure 5, in the contact time window 0 < 7 < 73, the behavior of D can well be represented as
Dg g =~ 0.0347?:, (D3 + Dg,ﬂ)/Z ~ 0.01 l'yé/q/ and D, ,, =~ 0.20 In(37). For a discussion of the asymmetry of
Dwe refer to figure 7 and to the according text below it. For sufficiently large values of 7, which are still less than
75, the 7-independent contributions to L can be neglected yielding Lg 3 ~ 2(-/7)*8>y 7 /70,

Lg, >~ 02(vc /9B >y *1/m,and Ly, = 0.62(yc/1)*(BY) '/

For the same range of contact times 7 < 7 excluding very short ones, the diagonal elements and the
symmetrized non-diagonal element of the actual transport coefficients follow from C, ,, = L,,,, — D, ,, with the
above expressions for the matrix elements of L and D. For contact times 7 > 75 the dependence of Lon 7
becomes nonlinear. Though, a scaling of L(7/75) o< Mg continues to hold. In this nonlinear region, small
deviations from the proportionality to *yé can be observed for the matrix L while D remains unaffected.

Finally we focus on the violation of the reciprocity relation which can be quantified in terms of the difference
of the non-diagonal elements of the matrix D, which, due to the symmetry of the matrix L, coincides with the
respective difference of the non-diagonal elements of C. We consider symmetric systems with equal numbers of
sites, M = M, = Mp. In panel (a) of figure 7 the relative degree of asymmetry, (D, 3 — Dg,,,) /L3, .» is displayed
as function of 7 /73 for different values of the coupling strength -, inverse temperature 3, and size M. For short
contact times 7 it shows an oscillatory behavior which turns into a monotonic decay.

While, at the considered low temperatures 3y > 4, the diagonal (D3 3, D,,,,,) and the symmetrized
(Ds,, + D, 3) /2 elements of D are virtually independent of temperature, the difference of the non-diagonal
elements Dy, — D, g grows proportionally to the temperature as can be inferred from the data collapse
displayed in figure 7(b) upon a scaling of the difference by (7. /) 6. The decrease of the relative difference
(D — Dy,3) /L, becomes faster with increasing system size M due to the proportionality of L to Mg and the
Mjg-independence of D. The dependence of the relative asymmetry degree on the coupling constant . is rather
insignificant on short times because both matrices D and L are proportional to ’yZC inleading order.

For larger contact times 7 > 7, higher orders of the coupling strengths contribute to the matrices D and L.
Yet by using 7c = 757/ as a unit of time and, as mentioned above, scaling the difference Dy, — D, 3 with
(%c/7)*5~" one finds a collapse of the off-diagonal elements onto a single curve, apart form a superposition of
spikes at integer multiples of 75 as displayed in panel (b) of figure 7. Likewise an almost perfect data collapse is
found in panel (c) for the off-diagonal element Lg , scaled by Mg /(5*y?) as a function of 7/7¢. The displayed
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Figure 5. The components of the matrices D and L are displayed as functions of the scaled contact time 7 /75 for different interaction
strengths 4 = 0.017, 0.17, and system sizes My = My = 100, 200 at the inverse temperature 3 = 10/7. The diagonal (3, 3)-and
(p, p)-components are given in units of fyé / ~v*3% and 'yé / ~2, respectively, and the non-diagonal (3, p)-and (i1, (3)-components in
units of 'yzc / ~23. The insets present the respective behavior for short contact times 0 < 7 < 0.57.
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Figure 6. The dimensionless coefficients «,, and 7, , specifying the matrix L for times 7 < 73 according to the equations (52)—(54)
are represented as functions of 3y.In all cases but for £, ,, the coefficients depend algebraically on 3y as can be seen from the doubly
logarithmic plots in the insets yielding #3,3 o (37)™!, K3, &< (BY)72, Ky o (B7)7L €35 < (BY)?, €3, o 3. The remaining
coefficient is well approximated as £}, , o< log(37). The numbers above the insets indicate the respective exponent that is determined
from the slope of the doubly logarithmic graph displayed in the inset.
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Figure 7. The asymmetry of the transport coefficients is illustrated for symmetric systems (AM = 0) with various parameters ., 3
and Mpas specified in panel (a). In panel (a) the ratio of the Onsager asymmetry, D, 3 — Dj,,, and the reference, symmetric transport
coefficient L, 3, is displayed as a function of time 7 /7 in range of 0 < 7 < 73. In panel (b) the asymmetry is scaled in units of
371(y./v)? and the time in units of 737/, yielding an approximate data collapse for different 4, 3, and My onto a periodic master
function. The spikes are located at integer multiples of the round trip time 7. The inset displays a magnification of the scaled
asymmetry for times 0 < 7 < 0.275 /7. The non-diagonal element Lg,,, is presented in units of Mg /(3*y? asa function of the scaled
time ~.7/(y7p) as evidenced in panel (c). The inset exhibits the behavior at short times.

large time behavior, however, will depend on the specific nature of the interacting parts A and B. For example for
systems that equilibrate after a sufficiently large time the matrices C and L are expected to approach values
independent of the contact time. In any case, at times larger than 7 the matrices Cand L are no longer linearly
proportional to the contact time. Therefore, a comparison with the transport behavior following from standard
transport theory is no longer meaningful.

We conclude that, in agreement with our general analysis, the transport of heat and particle numbers
between two linear systems described by the tight binding Hamiltonians (36) deviates from the standard
behavior by the presence of spontaneous transport occurring in the absence of any affinity bias, and by an
asymmetry of the transport matrix signaling a violation of Onsager’s reciprocity relation.

5. Summary

We scrutinized the basic assumptions underlying the Onsager relations for the transport of heat and particles
in relatively small systems. Our analysis is based on the standard assumption, see e.g. [6], that the two parts of a
system are prepared in grand-canonical equilibrium states with generally different temperatures and chemical
potentials. In this initial state the energies and the particle numbers are separately determined, and then the
two parts are brought into contact such that energy and particles can be exchanged between them. After a
prescribed time 7 the interaction of the two parts is switched off and energies and particle numbers are
measured again.

In contradistinction to standard transport theory [2] we found spontaneous transport in the absence of a
temperature and chemical potential difference of the two systems and also deviations from the reciprocity
relations. Both effects have their origin in the fact that with bringing the parts of the system into contact and
separating them again, work is done on the total system. Only if this work identically vanishes these deviations
exactly disappear and Onsager’s standard transport theory follows from a fluctuation theorem. The
spontaneous transport becomes visible only after a characteristic time which grows with the size of the system.
The deviation from the reciprocity relations however, is most pronounced during this initial period. The
presence of work is tantamount to the breaking of time-translational symmetry. This leads to non-symmetric
transport coefficients and hence a violation of Onsager’s reciprocity relations. The same conclusions also hold
for the alternative definitions of affinity biases and corresponding transport quantities (see footnote 4).

Both the general analysis presented in the first part of this work as well as the illustrative example are
expressed in quantum mechanical terms. However, also systems governed by the laws of classical mechanics
experience a change of energy imposed by contacting and disconnecting the parts of the system. Therefore, we
expect that the deviations of the transport properties from standard transport theory also apply for small
classical systems.

13



10P Publishing

NewJ. Phys. 19 (2017) 093006 EJeonetal

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea
government (MSIP) (Grant No. NRF-2017R1A2B4007608). PT acknowledges the support from the Deutsche
Forschungsgemeinschaft via the projects HA 1517/35-1 and DE 1889/1-1.]Y acknowledges the support from
the National Research Foundation of Korea (NRF) grant funded by the Korea government (MOE) (Grant No.
NRF-2017R1D1A1B03029903).

References

[1] Ashcroft N Wand Mermin N D 1976 Solid State Physics (Philadelphia: Saunders College Publishing)
[2] De Groot S R and Mazur P 1984 Non-Equilibrium Thermodynamics (New York: Dover)
[3] Bochkov G N and KuzovlevY E 1981 Physica A 106 443
[4] Jarzynski C and Wojcik D K 2004 Phys. Rev. Lett. 92 230602
[5] Saito Kand UtsumiY 2008 Phys. Rev. B78 115429
[6] Andrieux D, Gaspard P, Monnai T and Tasaki S 2009 New J. Phys. 11 043014
[7] Esposito M, Harbola U and Mukamel S 2009 Rev. Mod. Phys. 81 1665
[8] Campisi M, Hiinggi P and Talkner P 2010 Phys. Rev. Lett. 105 140601
[9] Campisi M, Hinggi P and Talkner P 2011 Rev. Mod. Phys. 83 771
Campisi M, Hinggi P and Talkner P 2011 Rev. Mod. Phys. 83 1653
[10] MeixnerJ 1973 Adv. Mol. Relax. Process. 5 319
[11] Onsager L 1931 Phys. Rev. 37 405
Onsager L 1931 Phys. Rev. 38 2265
[12] TiszaLand ManningI 1957 Phys. Rev. 105 1695
[13] Zwanzig R 1965 Annu. Rev. Phys. Chem. 16 67
[14] Grmela M 2002 Physica A 309 304
[15] Geigenmiiller U, Titulaer UM and Felderhof B U 1983 Physica A119 53
[16] Talkner P, Morillo M, Yi]J and Hanggi P 2013 New J. Phys. 15 095001
[17] Venkatesh B P, Watanabe G and Talkner P 2015 New J. Phys. 17 075018
[18] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[19] CazalillaM A, Citro R, Giamarchi T, Orignac E and Rigol M 2011 Rev. Mod. Phys. 83 1405
[20] Auerbach A 1992 Interacting Electrons and Quantum Magnetism (New York: Springer)
[21] JeonE,YiJand Kim Y W 2016 Phys. Rev. E94 022136

14


https://doi.org/10.1016/0378-4371(81)90122-9
https://doi.org/10.1103/PhysRevLett.92.230602
https://doi.org/10.1103/PhysRevB.78.115429
https://doi.org/10.1088/1367-2630/11/4/043014
https://doi.org/10.1103/RevModPhys.81.1665
https://doi.org/10.1103/PhysRevLett.105.140601
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1103/RevModPhys.83.1653
https://doi.org/10.1016/0001-8716(73)80004-5
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRev.38.2265
https://doi.org/10.1103/PhysRev.105.1695
https://doi.org/10.1146/annurev.pc.16.100165.000435
https://doi.org/10.1016/S0378-4371(02)00564-2
https://doi.org/10.1016/0378-4371(83)90145-0
https://doi.org/10.1088/1367-2630/15/9/095001
https://doi.org/10.1088/1367-2630/17/7/075018
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1103/PhysRevE.94.022136

	1. Introduction
	2. Setting
	3. Generalities
	3.1. Energy conserving process: W = 0
	3.2. Energy non-conserving processes: W≠0

	4. Example
	4.1. Model system
	4.2. Method
	4.3. Results

	5. Summary
	Acknowledgments
	References



