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Empathy is the ability to identify with or vicariously experi-
ence another person’s feelings or thoughts.1 Previous studies 
have reported that various brain regions are involved in em-
pathy, such as the anterior cingulate cortex (ACC), anterior in-
sula, inferior parietal lobe, premotor cortex, posterior superior 
temporal sulcus, medial prefrontal cortex (mPFC), posterior 
cingulate cortex, precuneus, temporal pole, and temporopari-
etal junction.2-5 However, the intrinsic interactions of these em-

pathy-related regions has not been reported, as studies have 
typically been conducted using participants performing spe-
cific empathy-related tasks.6 To overcome this limitation, rest-
ing state functional neuroimaging studies of empathy should 
be performed.

The default mode network (DMN) consists of the ACC, mPFC, 
posterior cingulate cortex, inferior parietal lobule, and precu-
neus7 and, accordingly, overlaps with several empathy-related 
regions, as shown in previous task-based magnetic resonance 
imaging (MRI) studies.5,8 The DMN is thought to play a role in 
internally focused thought processes, including the construc-
tion of mental simulations based on previous personal experi-
ences.9,10 Given that empathy is achieved by simulating the 
mental processes that are likely to be operating in others11 and/
or by using personal memories to understand situations of oth-
er,12 the DMN is a clear candidate network underlying empa-
thy. On this premise, we hypothesized that low resting-state 
functional connectivity within the DMN might exist in low-em-
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pathy participants. To address this question, we used resting-
state functional MRI to evaluate DMN functional connectivity 
in low- versus medium-empathy individuals.

A total of 484 student participants from a local university 
were screened using the Korean version of the Interpersonal 
Reactivity Index (IRI).13 Lower IRI scores indicated a weaker 
degree of empathy. After all individual IRI scores were calculat-
ed, the participants with IRI scores in the 15th percentile and the 
30th to 70th percentile were selected as low- or medium-empa-
thy candidates, respectively. The medium-empathy group was 
chosen as a control group, because this group was more likely 
to represent the general population. Due to a significant sex dif-
ference in IRI scores, different cutoff scores were applied ac-
cording thereto. Sex was balanced across groups in final anal-
ysis. All participants were healthy with normal cognitive function 
and showed no signs of psychiatric illness (as confirmed by a 
psychiatric interview). The exclusion criteria included a histo-
ry of psychiatric or neurologic disorder, left-handedness, and 
the presence of an MRI-incompatible implant. 

Twenty low-empathy participants and 19 medium-empa-
thy participants were included in the study. However, the data 
of only 19 low-empathy participants and 18 medium-empathy 
participants were included in the final analysis: two partici-
pants (one from each group) were excluded due to excessive 
head movement during the MRI scan. Verbal IQ was assessed 
using the verbal scales of the Wechsler Adult Intelligence Scale. 
As depression and anxiety may be associated with abnormal 
levels of empathy14,15 and abnormal DMN connectivity,16,17 the 
Hamilton Depression Rating Scale (HAM-D)18 and Hamilton 
Anxiety Scale (HAM-A)19 were used to assess current symp-
toms of depression and anxiety. All participants provided writ-
ten informed consent prior to study participation. The study 
protocol was approved by the Konyang University Hospital 
Medical Ethics Committee.

The IRI is a self-reported instrument that measures trait em-
pathy.20 It is composed of four subscales: Perspective Taking, 
Fantasy, Personal Distress, and Empathic Concern. Perspective 
Taking measures the tendency to voluntarily think from anoth-
er individual’s psychological perspective. Fantasy examines the 
tendency to feel the emotions of people in fictional situations. 
Personal Distress measures self-oriented anxiety and interper-
sonal discomfort. Empathic Concern evaluates other-oriented 
feelings, including compassion and sympathy. Each subscale 
contains eight items with each item measured on a five-point 
Likert scale ranging from 0 (“Does not describe me well”) to 4 
(“Describes me very well”). 

During resting state scanning, participants were instructed 
to lie still with their eyes open. Functional MRI data were ac-
quired with a Philips 3T scanner (Philips Intera, Philips Medi-
cal System, Best, the Netherlands) equipped with an eight-
channel SENSE head coil. Resting state functional images were 
acquired using a gradient echo-planar imaging sequence with 
the following parameters: 116 volumes (348 s); repetition time 

(TR)=3000 ms; echo time (TE)=35 ms; 33 slices; no gap; flip 
angle=90°; field of view (FOV)=230 mm; voxel size=1.80×1.80×4 
mm. Structural images were also acquired with the following 
parameters: TR=536 ms; TE=10 ms; flip angle=70°; 33 slices; 
voxel size 0.45×0.45×4 mm; FOV=230 mm. 

Preprocessing was performed using Statistical Parametric 
Mapping software (SPM5; Wellcome Department of Imaging 
Neuroscience, London, UK). The first five images were discard-
ed to allow for the equilibration of longitudinal magnetization. 
Individual scans were realigned and slice time-corrected, nor-
malized to a standard SPM5 template based upon the Mon-
treal Neurological Institute (MNI) reference brain, and spa-
tially smoothed using a 10-mm isotropic Gaussian kernel with 
standard SPM methods. Motion parameters for each individ-
ual were visually inspected, and only data with translation mo-
tion less than 2 mm and rotational movement less than 2° in 
any direction were included. 

Independent component analysis (ICA) is a data-driven meth-
od to identify spatially independent components of brain areas 
with hemodynamic time courses that closely covary. Thus, the 
regions comprising each component are conceptualized as 
parts of a specific network with highly synchronous time cours-
es.21 For group comparisons, a separate group ICA may not be 
optimal, because it is biased towards false-positive results.21,22 
Therefore, images of all participants were decomposed into 
sets of independent components using the Group ICA FMRI 
Toolbox (GIFT) and the Infomax algorithm.21 

The group ICA was carried out in three stages: data reduc-
tion, application of the ICA algorithm, and backwards recon-
struction for each participant. First, data from each participant 
underwent a principal component analysis to reduce compu-
tational complexity. Next, the reduced participant data were 
concatenated over the time domain. To determine the number 
of independent components, a dimensionality estimation was 
performed using the minimum description length criteria.23 
The ICA estimation identified 18 components. In the second 
stage of the analysis, we used the Infomax algorithm to run the 
ICA and a mask based on all participants. In the final stage of 
backwards reconstruction, time courses and spatial maps were 
reconstructed and converted to Z-scores to normalize signals.24 

Selection of the DMN component was completed in two 
stages. First, each of the 18 components identified by the group 
ICA was manually inspected for the presence of obvious arti-
facts. Then, the individual independent components were 
spatially sorted using a DMN mask provided within the GIFT 
toolbox. The mask consisted of the posterior cingulate cortex 
[Brodmann areas (BAs) 23 and 31], posterior parietal cortex 
(BAs 7, 39, and 40), dorsolateral and superior frontal cortices 
(BAs 8, 9, and 10), ACC (BAs 11 and 32), and inferior temporal 
gyrus (BAs 19 and 37). The component that showed the highest 
correlation with the DMN template was selected as the DMN 
(r=0.58). 

Independent t-tests and chi-square tests were applied to 
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test for significant group differences in demographic and clin-
ical variables. Selected best-fit components were entered into 
a second level random-effects analysis in SPM5. Two sample 
t-tests examined group differences in the degree of regional 
functional connectivity. The statistical threshold for these 
analyses was set at p<0.001, uncorrected, with an extent thresh-
old of 20 voxels. Anatomical regions and denominations are 
reported according to the atlases of Talairach and Tournoux.25 
All coordinates are reported in the MNI space.

Table 1 shows the demographic and clinical data of the 19 
low-empathy participants and 18 medium-empathy partici-
pants that were included in our study. There were no signifi-
cant differences in age, sex, education, or verbal IQ, HAM-D, 
and HAM-A scores between the two groups. For the IRI, the 
overall scores of the medium-empathy group were significantly 
higher than those of the low-empathy group; moreover, the 
IRI subscale scores of the medium-empathy group were higher 
than those of the low-empathy group for all subscales, except 
for Perspective Taking. 

Table 2 shows the anatomical location and Talairach coordi-
nates for the peak activation voxel in each brain region (x, y, z), 
as well as the t scores from our random effects analyses [p<0.05 

family-wise error (FWE)-corrected, k>40 voxels]. Individuals 
in the low-empathy group showed a lower functional connec-
tivity of the mPFC/ACC within the DMN (BAs 9 and 32, x=15, 
y=39, z=15, t=4.51, k=23 voxels, uncorrected p<0.001) than 
that of the medium-empathy group (Fig. 1).

The functional connectivity strength of the mPFC/ACC was 
positively correlated with the scores of the IRI and all IRI sub-
scales (r=0.59, p<0.001 for IRI; r=56, p<0.001 for Empathic Con-
cern; r=0.48, p<0.01 for Fantasy; r=0.37, p<0.05 for Personal 
Distress), with the exception of Perspective Taking.

The aim of the present study was to investigate resting state 
differences in DMN connectivity between low- and medium-
empathy participants. Direct group comparisons revealed low-
er functional connectivity of the mPFC/ACC within the DMN 
of low-empathy participants. Therefore, a decreased function-
al connectivity of the mPFC/ACC within the DMN might un-
derlie specific deficits in empathy.

According to the internal mentation hypothesis, the DMN 
consists of two distinct interacting subsystems;10 one is the 
medial temporal lobe subsystem, which is activated during the 
successful retrieval of old information from memory,26,27 and 
the other is the mPFC subsystem, which is activated during 

Table 1. Demographic and Clinical Characteristics

Low-empathy participants (n=19) Medium-empathy participants (n=18) p value
Age   22.6±2.5   22.1±2.9 0.519
Male:female 12:7 10:8 0.638
Education period   14.7±1.8   14.8±2.1 0.949
WAIS, verbal IQ 114.4±8.1 113.9±9.1 0.867
IRI total scores   42.9±9.0   67.5±4.7 0.000

Fantasy     8.2±3.5   17.9±4.2 0.000
Perspective Taking   15.1±3.8   15.6±3.5 0.646
Personal Distress   10.2±3.7   16.4±4.0 0.000
Empathic Concern     9.5±5.2   17.6±3.8 0.000

HAM-D     2.9±2.0     2.9±3.1 0.954
HAM-A     3.6±2.5     3.9±2.8 0.676
WAIS, Wechsler Adult Intelligence Scale; IRI, Interpersonal Reactivity Index; HAM-D, Hamilton Depression Rating Scale; HAM-A, Hamilton Anxiety Scale. 

Table 2. The Anatomical Location and Talairach Coordinates for Voxels Whose Resting State Time-Course Best Fit the DMN Component (x, y, z), and t 
Scores from Random Effects Analyses for Low- or Medium-Empathy Group (p<0.05 FWE-Corrected, k>40 Voxels, for the Purpose of Illustration)

Activated regions
Low-empathy group Medium empathy group

Primary peak location Primary peak location
x y z t k* x y z t k*

mPFC (BA 8, 9, 10)
Left -9  45 33 21.05 487 -9  48 30 31.26 392
Right 9  51 27 16.36 287  6  63 24 18.18 295

PCC (BA 23, 31)
Left -3 -51 24 8.56   47 -3 -57 21   9.49   40
Right 3 -57 21 8.07   40  3 -57 21 11.16   46

MTG (BA 39)
Left -54 -69 21 10.42   67

mPFC, medial prefrontal cortex; PCC, posterior cingulate cortex; MTG, middle temporal gyrus; DMN, default mode network; FWE, family-wise error.
*Number of voxels.
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self-referential mental simulation.28,29 Buckner, et al.10 inter-
preted self-referential mental simulation as thinking about the 
complex interactions among people that are perceived as be-
ing socially, interactively, and emotively similar to those of one-
self. This interpretation suggests that empathy is, at least in 
part, based on self-referential mental simulation and requires 
the ability to relate to the feelings or thoughts of others with-
out losing sight of one’s own feelings or thoughts.30 Given our 
results regarding mPFC connectivity and the abovementioned 
role of the mPFC in self-referential mental simulation, the pres-
ent study suggests that low-empathy individuals may have im-
paired or decreased self-referential mental simulation during 
the resting state. In other words, low-empathy individuals may 
show decreased functional connectivity among regions of the 
DMN responsible for self-referential mental simulation, where-
as connectivity is better sustained in normal medium-empa-
thy individuals.

Previous studies have reported altered DMN connectivity in 
various psychiatric disorders associated with a lack of empa-
thy, including autistic spectrum disorder,31 schizophrenia,32 and 
antisocial personality disorder.33 Of note, the present study 
identified low DMN connectivity in low-empathy participants 
of a general population rather than a clinical population. Con-
sistent with this finding, a previous study reported altered func-
tional connectivity of the DMN in general population partici-
pants with alexithymia.34 Therefore, various features of DMN 
connectivity may be related to individual trait differences among 
individuals from the general population, making the DMN a 
useful target for the investigation of personality traits, specifi-
cally empathy.

The limitations of our study should be noted. First, partici-
pants could have made an error in measuring the degree of 
their own empathy, thus the IRI, as a self-report assessment, 
may not have been valid. Using objective measurements for 
empathy could overcome this limitation. Second, the current 
sample size should have been larger for more valid results. 
Third, although we recorded the psychiatric history of the par-
ticipants and psychiatrists administered the HAM-D and HAM-
A, standardized psychiatric interviews were not performed to 

assess the occurrence of psychiatric disorders. Finally, although 
all participants responded to the technologist at the begin-
ning and end of the MRI scan and although none of them in-
dicated that they slept during the scan, attentional measure-
ments during the scan were not performed.

In conclusion, we found that low-empathy individuals ex-
hibit diminished functional connectivity of the mPFC/ACC 
within the DMN, which may reflect decreased self-referential 
mental simulation as an underlying cause of empathic deficits. 
Accordingly, the functional connectivity of the mPFC/ACC with-
in the DMN may be a major factor underlying trait empathy.
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