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Abstract-This paper proposes a segmentation algorithm 
by means of an evidential reasoning to segment moving 
vehicles in front of the moving our car in a road traffic 
scene. Generally, an evidential reasoning finds the 
perceptually known evidences of a target and updates a 
probabilistic expectation for the target to be in an image. 
Since a noise image produces unreliable features and 
degrades the detection and localization, selecting image 
primitives which are less sensitive to noise and well 
represent the evidences is important. We carry out this task 
by the probabilistic integration of image features based on 
rnaxirnuni a posteriori(MAP) probability that combines the 
prior and likelihood probabilities using Bayes’ rule. 

1: Introduction 
In this paper, we are interested in monocular gray- 

level visual sensing for segmenting moving vehicles in 
front of the moving our car in a road traffic scene. The 
segmentation is carried out by evidential reasoning based 
on the probabilistic integration of low-level image features. 
Recently, many researchers have been working on the 
analysis of the road traffic scene since the late 1980’s in 
accordance with the increasing interest about road traffic 
safety and intelligent vehicle development [ 1,2,4]. 
However, most previous researches have shown their 
feasibility in very limited environments and provided poor 
estimates due to noisy sources resulting from variable 
illumination, dynamic state, the diversity and complexity of 
scenes [ l ,  2,  3 ,  41. What is worse, since the viewer moves 
in a dynamic road scene, it is difficult to extract only the 
regions corresponding to moving vehicles using familiar 
methods of motion segmentation[2]. These problems have 
made the visual perception of outdoor road environment 
difficult and challenging topic of computer vision. 

Evidential reasoning is a method for combining 

information from different sources of evidence to update 
probabilistic expectations. Combining of evidences thus 
can be quantitatively described by combining of 
probabilistic expectations of many sources of information, 
including a color, a texture, a shape and a prior knowledge 
in a flexible way to achieve recognition. Xie et al. [4] have 
applied a perceptual organization to extract road vehicles 
in a dynamic traffic environment. They considered the 
evidence for a road vehicle as a cluster of nearly vertical 
and nearly horizontal line segments, which make neighbors 
each other. This evidence, however, is not well consistent 
with various kinds of roads. Furthermore, the vertical line 
segments are rarely extracted on a vehicle. It means that 
the selection of evidences of a target is more important 
than the application of evidential reasoning. Using some 
appearance properties of the object of interest in an image, 
we determine evidences and search for features which 
satisfy the evidences. While this method provides good 
results in noisy environments, it is domain specific. 

We determine the evidences for a leading vehicle 
within a driver’s view such as: first, there is a sharp 
intensity change at the boundary of a vehicle; second, a 
vehicle has symmetric property. For the segmentation, we 
take into account the following reasonable assumptions: I) 
A vehicle lies on a traffic road. 11) Optical axis of a CCD 
camera is parallel to the ground plane of a road. 111) The 
intensity distribution with respect to road and sky is 
sufficiently homogeneous between two successive images. 
IV) The intensity distribution between a road and a vehicle 
is not similar. We also limit the problem by considering the 
following two practical constraints: I) The entire shape of 
the leading vehicle in front of a viewer is contained in an 
image. 11) The road should be seen in an image. 
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2: Moving Vehicle Segmentation 
Segmentation is carried out by following steps. First, 

we perform an image subtraction-based exclusive-or(X0R) 
operation to distinguish between road surface and vehicles 
and determine the validation region considered to 
minimum variation of intensity distribution of the vehicle 
of interest using the result. Second, we search for the 
symmetry axes based on the fact that the rear viewed 
imagery of most vehicles on a normal road possesses a 
symmetric property. We use the approach proposed by 
Zielke et al. [5]  to find a potential symmetry axis. However, 
the usage of the mean intensity profile of a validation 
region and finding local maxima, which take advantage of 
MAP(maximLim a posteriori)-based probabilistic inference 
to choose relevant axes, are different points from their 
method. Third, the outmost lines of a vehicle are extracted 
using the integration of visual information such as the 
detected symmetric axis and the three kinds of local 
maxima which are composed of the gradient of cumulative 
XOR signal, the cumulative vertical edge component and 
the gradient of mean intensity profile in a validation region. 

2.1 Extracting Baseline 
We carry out an XOR operation for two images 

Z,(x,y) and Z,(x,y) to isolate an image into three 
regions which are a region R, dominated by road, a 
region R, dominated by sky and the remainder RY . The 

XOR operation, introducing a threshold 't for equality, 
against all pairs of pixels at same position between 
Z ,  (x, y) and Z, (x, y) is expressed as 

1, ifIZ,(i, j ) - Z 2 ( i ,  j ) l S r  

0, otherwise (1) O(i, j )  = 

where (i, j )  is a column and a row position on an image. 

We obtain the sum of XOR signal for each row as 
Si = c O ( i ,  j )  and define a parameter a as 

i 

a = pcL, +A,oe where 

c ~ ~ = ~ ( S , - y ) ~ / ( N - l ) ,  in which N is the number 

of column pixels, and A, is the Gaussian coefficient 

defined in Gaussian distribution table. The cx divides the 
sum of XOR signal into sparse part and dense part. There 

i 

are two baselines: One of them is H ,  which splits R, 
and R,, . The other is H ,  which partitions R, and R, . 
Fig. 1 shows an example of XOR operation. 

(c) j )  (d) Baselines 

Fig. 1: XOR operation on two successive images 

2.2 Validation Region 
We define a validation region as the region with 

relatively uniform intensity distribution. We provide a 
constraint for the construction of a validation region R not 
to contain the rear windscreen which has very strong 
specula property. It does not show a homogeneous 
property with respect to intensity distribution. Constructing 
a validation region R satisfying the constraint is difficult. 
Therefore, we set a constant 6 experimentally and 
determine the validation region as H,-6 5 R < H ,  . Fig. 2 

shows the experimental basis for constructing an R. While 
the intensity profiles of rows 207, 223 and 237 shown in 
Fig. 2 do not show a similar part, the intensity profiles of 
rows 272, 284 and 300 shown in Fig. 2 present a uniform 
intensity distribution on the part corresponding to the 
vehicle of interest. Accordingly, a validation region R is 
constructed on this area. 
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Fig. 2: An image and its intensity distribution along a horizontal direction 

2.3 Extraction of Features for Evidential Reasoning 
2.3.1 Local Symmetry of an Intensity Profile 

Let be the average intensity distribution in the 
horizontal direction of a validation region R as: 

f ( i ) =  X Z 2 ( i , j )  4 ,  O S i < d  (2) I 
We take into account the column width of an image as an 
evaluation interval d . Using the substitution x = i - x,  

we can shift the origin of f ( x )  to any position x, in the 

validation region along the horizontal direction. A 
parameter w will be used for varying the size of interval 
being evaluated and the parameter x, may be thought of 

as denoting the location of a potential symmetry axis with 
w being the width of the symmetric interval. We define the 
even signal and odd signal of f ( x ,  +x) for a given 
interval of width w about x, such that 

The symmetry measure S(x ,  , w) representing the degree 

of symmetry for any potential symmetry axis X, with 

respect to an evaluating interval of width w is defined as: 

( 3 )  

rf;(x, + x > 2 d x - J f , ( x ,  +x I2dx  

j f; ( x ,  + x)'dx+ I f ,  (s, + x)2dx ' 
S ( x , ,  w) = - 

- 1 5 S( X, W )  1 
1 b/2 

where f ? " ( x ,  + x ) =  f , ( x ,  + ~ ) - - J ~ , , , ~ f ~ ( x ,  + s ) d x .  

As a confidence measure to fathom the significance of x, 

in an interval of width w , we use S L ( x , ,  w,wmr ) 

defined by Zielk et al. [5] as follows: 

).V 

0 s, (x, > w , wmax ) 5 1 
where w,, is the maximal size of the symmetric interval. 

Finding the local maxima from a symmetry measure 
as the hypotheses for symmetry axes of vehicles is carried 
out. First, we establish a set rl with points that intersect 
S(x , ,w)=O at the range of [O,- - - ,d ]  as 

r, ={x , /S (xL ,w)=O} ,  k=1,2,...,n . Second, we 

compute the length of I ,  = x2, - x,, j = l;..,n / 2 , where 

x2, E r, and x ,  E r, . Finally, we construct the set of local 

maximum points with maximum values of S(x, , w) 
within the range of respective 1, as follows: 

r2 = x p  S(i,, w) 2 S(x, w), ip E I, and x E I, I -  I 
p =  j= l , - . . , n /2  

2.3.2 Gradient of Cumulative XOR Signal 
We take a summation of the XOR signal of Eq. (1) for 

a validation region along the horizontal direction as 
U: = O(i,  j )  , To extract the gradient of U, , we define 

an one dimensional gradient filter T as shown in Fig. 3 
and carry out the convolution of the filter T and U ,  as: 
H ,  = T Q u  

1'0 

- _  - u , - ~  - 2 q 3  - 3u,+ - u , -~  + ~ i , , ~  + 3 ~ , + ~  + 2 ~ , + ~  + ul+4 
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Fig. 3: An one-dimensional gradient filter 

According to the fact that the strong discontinuities of 
the cumulative XOR signal in a validation region along the 
horizontal direction may usually correspond to a vehicle 
boundary, we find the local maxima of the profile of 

gradient magnitude I H ,  1 using the local maxima finding 

algorithm shown in Fig. 4. We utilize the algorithm with 
the mean and variance of lHsl and let the set 912 
obtained from Eq. (6) as 32,. 
Input : gradient magnitude Vh, , mean p and variance C T ~  

of the subject of consideration 
Compute a reference line j? = ,U +A. CT in which A 

is Gaussian constant satisfying the predetermined 
confidence level. 

Construct a set 31, = {i!nrg(Ahj = p))  and if first 

element Vh, is greater than j? discard the first 
element of 31,. 
Let ri = IIc)i,ll. If I I  < 2 then adjust h and goto 1). 

Make 32, to ascending order and obtain the length 
I, = iZk - i ,  , k = 1,-..,nJ2. Then, construct a set 
5R2 as: 

= {i;IAh,; > Ah,, , i; E 1, and i E I ,  ,k = 1,2;.-,n/2 

(6) 
Output : Set 5R2 of locations of local maxima 

Fig. 4: Local maxima finding algorithm 

2.3.3 Gradient of Intensity Distribution 
We take the convolution of the filter T defined in 

Fig. 3 to the mean intensity distribution f, of Eq. (2) 

along the horizontal direction as follows: 
H c  = T O  f 

= - fl-4 - 2j,-3 -3f,-2 - fI-, + f,+, +3f,+2 + 2fr+3 + fr+4 

and find the local maxima of mean intensity profile IH[) I 
using the algorithm defined in Fig. 4 and let the set 9l2 
obtained from Eq. (6) as 31, . 

2.3.4 Cumulative Vertical Edge 
We obtain the sum of vertical edge component for 

each column position in a validation region along the 
horizontal direction as follows: 

G(i ,  j )  = (Z(i + 1, j -  1) + 2Z(i + 1, j )  + Z( i  +1, j +1)) - 
(Z(i  -1, j -1) +2Z(i  -I, j )  +Z( i  - 1, j + 1)) 

’ 

Since the strong discontinuities on the profile of H E ,  may 

correspond to the outmost lines of a vehicie, we also find 
the local maxima of cumulative edge profile HE,  using 

the algorithm in Fig. 4 and let the set 5R2 obtained from 
Eq. (6) as 

We illustrate the local maxima finding results for the 
gradient of cumulative XOR signal (in Fig.5(a)), the 
gradient of mean intensity profile(in Fig.S(b)) and the 

I I 

(e) 
Fig. 5: Illustration of iocal maxima 
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2.4 Evidential Reasoning by MAP Probability 
Basically, the criteria underlying the evidential 

reasoning for a vehicle in an image are classified into 1) a 
true symmetric axis is insensitive to a little shifting a 
validation region along vertical direction, 2) a true 
symmetric axis has the strong vertical edge components on 
both sides of itself, 3) a true symmetric axis has the strong 
discontinuities in intensity distribution on both sides of 
itself, 4) a true symmetric axis lies on the area where strong 
horizontal edge components exist a lot. We describe the 
evidential reasoning for a vehicle in an image by MAP 
probability evaluating the closeness of the position of an 
extracted potential symmetric axis to it’s true position. 
2.4.1 Prior Probability 

Since the prior probability p ( 8 )  means that a 

symmetric axis is likely to be present in an image Z, we 
consider p ( 8 )  as the confidence measure of a symmetric 
axis ,C- in r, of Eq. (5 ) ,  that is, 

p w  = sc (2, +v, w,, . (7) 

2.4.2 Likelihood Probability 
The likelihood probability p(zl8) represents the 

probability of image feature z, given a parameter 6. We 
design the likelihood probability to have maximum value 
when the four criteria exactly match. 
(1) Insensitivity from shifting a validation region 

First, we shift a validation region i2 to Q’ as much 
as A along vertical direction and obtain the set r3 of 

new hypotheses of extracted symmetric axes using the 
proposed algorithm in section 2.3.1. Second, we compute 
the distance for a symmetric axis i in I?, of Eq. ( 5 )  

against all symmetric axes in r, as f i j  = li-iil, 

2; E r3, j = l;.-,q . Third, we define a characteristic 

function g, as g, = min(6,), j = 1 , 2 , - . . , q .  

(2) Symmetric degree of local maxima of the gradient of 
intensity distribution 

First, we divide the set 5JZf obtained in section 2.3.3 

into two sets for a symmetric axis i in r, as 

%:L’ ={ill i, < 2, i, E sf, k =1;-. ,p} and 

%?’ = ( j , ]  j ,  > i, j ,  E s,, I = ~ , - - . , q } .  

Second, we compute the absolute distances for each 
element in 9332iL’ and 31y’ against i as 

6, = li, -il, i,  E %:” and 6, = li, -21, i, E %y’ . Third, 

we define a characteristic function g, as g, = min(6,, ), 

where 6, =)6, -6,l, k =I;.., p ,  I =1, - . . ,q  . If 

%?’ = {q} or %:’?’ = {@} , we consider g, = w . 

(3) Symmetric degree of local maxima of cumulative 
vertical edge 

obtained in section 2.3.4 
into two sets for a symmetric axis i in r2 as: 

First, we divide the set 

~ : L ’ = { i , / i l < i , i , E % E , k = l  ; . . ,p)and 

% F ’ = { j , I j ,  > i , j , d I i E ,  l=l;-,q} . 

Second, we compute the absolute distances for each 
element in %z(EL’ and %(ER) against 2 as 

6, = li, - il, i,  E 3:’ and 6, = li, - 21, i, E %F’. Third, 

we define a characteristic function g, as g, = min(6,, ), 

, p ,  E = I , - - .  , q .  If where 6,, =16, -6,l, I k = l , . . .  

3:) = {$} or %I(ER) = {q} , we consider g, = W .  

(4) Horizontal edge component 
First, we obtain the sum of horizontal edge 

component for each column position in a validation region 
S2 along the horizontal direction as follows: 

G(i,  j )  = (Z(i - 1, j +1) + 2Z(i, j +1) +Z(i +1, j+1)) - 
(Z(i  - 1, j - 1) +2Z(i, j -1) +Z(i + 1, j -1)) . 

Then, we define the characteristic function g, for a 
symmetric axis i in r, as 

if VEi 2 p 
g4 = p -VEf , otherwise ‘“ 

where p = EVE,  

(5) Likelihood probability 

defined as the energy minimization problem modeled by: 

N , N is number of column pixels. 
I I 

Consequently, the likelihood probability p(zl8) is 

P(zl6)=exP{--(~,  1 +g, + g ,  +g4)}  (8) 
K 

where K is a normalization coefficient and 
g, , g, , g, and g, are characteristic functions. 

2.4.3 Posterior Probability 

probability p (  81 z) as 
Using Bayes rule, we can write the posterior 

(9) 

Since p(z)  does not depend on 8, the MAP estimator 
maximizes p ( z I @ p ( e ) .  In the long run, p(zlO)p(8) 
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evaluates whether a symmetric axis 2 in r2 is close to a 

true axis of a vehicle or not. We construct a set r a s  
follows: 

(10) r = { .+ (~ i i i~ ( ,q  > q, :E r,} 
where p(z l .? )p( i )  is the MAP estimator of p(,?lz) and (p 

is a threshold. 

2.5 Extraction of Vehicle Width 
The basic idea underlying the extraction of a vehicle 

width is that the local maxima of cumulative vertical edge 
may be coincided with the local maxima of the gradient of 
mean intensive profile at the vicinity of vehicle boundary. 
The Extraction of a vehicle width is carried out by finding 
the coinciding positions of the both local maxima 
satisfying symmetric degree for a symmetric axis ,? in r 
of Eq. (10). Since the local maxima of the gradient of 
cumulative XOR signal normally corresponds to the 
motion boundary of a rigid body, we use them as the 
supplementary measures in extracting a vehicle width. We 
illustrate an example of the extraction of a vehicle width in 
Fig. 6 in which 2 represents a symmetric axis in r of Eq. 
(lo), I ,  and i: represent the left and right outmost lines 
of a vehicle, f, represents a mean intensity profile, and 
H E , ,  H,, and H ,  represent the local maxima of 

cumulative vertical edge and the gradients of mean 
intensity profile and cumulative XOR signal, respectively. 

.* 

(a) Single vehicle 

(b Multiple vehicles 
Fig. 6: Finding the left and right outmost lines of vehicles 

3: Conclusion 
We newly proposed an evidential reasoning-based 

object segmentation method capable of extracting vehicles 
in an outdoor natural scene. This method overcomes the 
limitations from several previous methods such as the 
model-based method and motion-based method. Proposed 
MAP-based probabilistic approach was insensitive to noise 
sources from a dynamic and complex scene and gave rise 
to precise categorical extraction of vehicles. 
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