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We describe the CMU Sidewalk Navigation System, which can 
drive a vehicle in the outdoor environment of the CMU campus. 
The system includes all modules necessary for outdoor navigation 
.. modules for route planning, local path planning, vehicle driving, 
perception, and map data. The perception module uses sensor 
fusion with color and rage data to analyze complex outdoor 
scenes accurately and efficiently. 

2. System Architecture for the Outdoor 
Navigati0.n System 

2.1. Hardware Configuration 
The hardware for the CMU sidewalk navigation system consists 

of three SUN-3 workstations, the vehicle, the color TV camera, and 
the laser range sensor. The workstations are linked together with 
Ethernet, and the workstations and the vehicle are linked with 
radio communication. Figure 1 shows the vehicle called 
Terregator. 

1. Int reduction 
The goal of the CMU SCVision group is to create an autonomous 

mobile robot system capable of operating in outdoor 
environments.’ The complexity of the environment requires the 
system to have a powerful perception ability, capable of analyzing 
natural objects, and a planning ability which can work in non- 
uniform conditions. Because this navigation system will be very 
large. we need mechanisms to combine programs into whole 
systems and mechanisms for parallelism in computation. 

We already have several systems towards the goal: a road 
following system with color classification [5], road network 
navigation with a simple map [l], scene analysis with a laser range 
sensor [2], and the blackboard [4]. 

The CMU Sidewalk Navigation System is a milestone system 
!ownrd our goal. In this system, we,focuc on two points. The first 
is to build a whole system based on a good system architecture so 
that the system is both complete (containing every necessary 
module) and efficient. We achieve that goal by adopting a 
blackboard-based architecture. The second point is to create 
perception modules with sensor fusion that work well in our 
outdoor environment. 

The test site for the CMU Sidewalk Navigation System is the 
CMU campus, containing a network of sidewalks and 
intersections, along with grass, slopes, and stairs. The system can 
drive the vehicle through these objects to get to its destination. 

‘This research was sponsored by the Defense Advanced Research Projects 
Agency, DOD, through ARPA Order No. 5351, and monitored by the U. S. Army 
Engineer Topographic Laboratories under contract DACA 76.85.C-OOD3. The 
views and conclusions contained in this document are those of the authors and 
should not be interpreted as representing the olficial policies, either expressed or 
implied, of the Defense Advanced Research Projects Agency or of the U.S. 
Government 

Figure 1: Terregator 
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2.2. System Architecture 

2.2.1. Stages of Navigation 
In order to create a reasonable system architecture, we have to 

start by analyzing outdoor navigation. 

If the navigation system uses only one uniform navigation mode, 
the system architecture issue is not essential. But, in general, 
outdoor navigation includes several navigation modes. The 
example shown in Figure 2 illustrates this situation. The vehicle 
running from the starting point to the destination has to follow the 
road, turn at the intersection, climbing the slope and cross the 
terrain. Turning at the intersection needs a more complex method 
to drive the vehicle than. following the road. Perception for 
crossing the terrain is different from perception for turning af the 
intersection. In following the road we can use assumption that the 
ground is flat, which makes perception, easier. But climbing the 
slope does not satisfy this assumption. This is one reason why the 
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Figure 2: Outdoor Navigation 

outdoor navigation system needs good system architecture. 

We decompose navigation into two processing stages. The first 
stage is the route planning stage, and the second stage is local 
navigation. In the route planning stage the system selects the best 
navigation route, from several possible routes to get to the 
destination from the starting point. The system divides the whole 
route into a secluence of route segments. In each route segment, 
objects on whic:h the vehicle can run are constant. The navigation 
system can drive the vehicle using a single uniform driving mode, 
for example, following the road or turning at the intersection, and 
a single perception mode. In this stage, using the map data is 
essential. 

Local navigation is navigation within one route segment. In the 
local navigation stage, the navigation mode is constant and the 
main task is to drive the vehicle along the route segment. Locat 
navigation uses perception to find a safe passage for the vehicle, 
and to determine the actual vehicle driving path. 

In contrast, our earlier and simpler navigation system did not 
have the route planning capability and has only one navigation 
mode for local navigation. 

The system architecture of the CMU sidewalk navigation system 
is indicated in Figure 3. We decomposed the whole system into 
several modules. The modules indicated with blocks are separa!e 
processes, running independently, and communicating with each 
other through the BLACKBOARD. in selecting this decomposition 
of the whole system into these modules, we followed the principle 
of information hiding. The CAPTAIN module and the MAP 
NAVIGATOR module are responsible for the route planning, and 
they do not know the result of perception or how to drive the 
physical vehicle. The PILOT module, the PERCEPTION module 
and the HELM module are responsible for the local navigation, 
and they do not know the destination, the whole route, or the 
sequence of route segments. Whai they know is limited to only 
one route segment at one time. We will explain the system 
architecture in detail in the following sections. 

2.2.2. The Blackboard-Based Architecture 
Our BLACKBOARD provides modules with communication and 

synchronization facilities 141. Using a blackboard-based 
architecture brings two main advantages to building our 
navigation system. 

CAPTAIN PILOT 

, 

N%ATOL BLACKBOARD -PERCEPTION 

Figure 3: System Architecture 

The first advantage is parallelism in execution. We decompose 
the whole system into several parallel modules. Because the most 
time consuming operation is perception, it is an independent 
process, the PERCEPTION module, running on its own machine, 
and not disturbing other modules. Because the HELM module 
which drives the physical vehicle needs real-time response, it is 
another separate process. Communication and svnchronization 

of ail modules are handled by mechanisms of the BLACKBOARD. 

The second advantage is that using a blackboard makes it easier 
to combine several programs into a whole system. Our. 
BLACKBOARD provides a good mechanism to connect modules, 
and limits the interactions among modules. For instance, each 
module can work in its most natural and convenient coordinate 
frame, with the BiACKBOARD converting among reference 
frames. We use the principle of information hiding so that the 
interfaces between modules are small. This keeps communication 
costs low and allows good modularity. The details of the 
BLACKBOARD are explained in following sections. 

2.3. Module Structure 
In this subsection we explain each module. 

2.3.1. The CAPTAlN Module and the Mission 
At the upper level of the system is the CAFTAN module that 

receives instructions from the controlling person and oversees the 
mission. The mission consists of a number of steps, and the 
CAPTAIN sequences through the steps. For each step, there is a 
destination that tells where to go and one or more constraints that 
tell how to go. For example, “go to intersection D” gives a 
destination and “keep right” gives a constraint. Each mission 
step also has a trigger condition and an action which will be 
executed if the trigger condition is satisfied. Triggers can be used 
to move on to the next mission step when one step is completed. 

The CAPTAIN sends the destination and the constraints of each 
mission step to the MAP NAVIGATOR one step at a time, and gets 
the result of mission step, success or fail, from the MAP 
NAVIGATOR. 
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2.3.2. The MAP NAVIGATOR and Route Planning 
The MAP NAVIGATOR does the route planning based on a 

destination and a constraint sent from the CAPTAIN, gives the 
PILOT directions for driving along the route, and reports the result 
of the mission to the CAPTAIN. 

The MAP NAVIGATOR contains two main parts, the ROUTE 
SELECTOR, and the ROUTE SEGMENT DESCRIBER (see Figure 
4). The ROUTE SELECTOR creates the route plan, and 
decomposes it to a sequence of the route segments so that each 
route segment has only one navigation mode. The current system 
has several navigation modes: follow-road, turn-at-intersection, 
go-through-intersection, and go-through-slope. Our future system 
will have another navigation mode, cross-country, in order to 
navigate on open terrain. 

The ROUTE SEGMENT DESCRIBER generates the description 
of the route segment. The purpose of route segment description 
is to provide the PILOT with the information necessary for 
navigation within the route segment. It includes path objects (e.g., 
pieces of road, intersections), navigation modes, the conditions to 
exit from the route segment, the constraints to drive the vehicle, 
and object descriptions. Path objects are the objects on which the 
vehicle should run. Object descriptions describe the location and 
the shape of the obiects (such as landmarks) which the 
PERCEPTION module can see while running on the route 
segment. This description is created by copying a part of the Map 
data, and is used as a prediction for the PERCEPTION module. 
One important point is that only the MAP NAVIGATOR maintains 
the Map data. 

The route segment description is sent to the BLACKBOARD and 
forwarded to the PILOT. When the PILOT finishes the route 

segment, it reports the result. If the result is success, the ROUTE 
SEGMENT DESCRIBER sends next route segment description. 

ti 

PILOT 

Figure 4: The MAP NAVIGATOR Module 

2.3.3. The PILOT and Local Path Planning 
The PILOT, the PERCEPTION and the HELM work together for 

local navigation. The PILOT operates continuously to conduct the 
navigatiori within the route segment. The PILOT contains several 
sub-modules that form .a sequence as shown in Figure 5, to 
process each area to be traversed. 
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I 
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DRIVING 
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POSITION 
ESTIMATOR 

I 
DRIVING UNIiC 
NAVIGATOR 

I 
LOCAL PATH 
PLANNER 

Figure 5: The PILOT module 

The DRIVING MONITOR, the top level of the PILOT, receives 
route segment descriptions whenever a newly ‘created route 
segment appears in the BLACKBOARD. The DRIVING MONITOR 
breaks the route segment into pieces called driving units, so that 
the PERCEPTION can detect one driving unit separately (see 
Figure 6). The’ DRIVING MONITOR builds a driving unit 
description for each driving unit, describing the location of the 
driving unit and the objects which PERCEPTION should see. 
Following the principle of information hiding, the driving unit 
description tells where and what objects the PERCEPTION should 
see, but it does not tell how to detect them. 

The DRIVING UNIT FINDER works as an interface to the 
PERCEPTION, getting the newly created driving unit description 
from the DRIVING MONITOR and sending it to the PERCEPTION 
through the BLACKBOARD. If the result of perception is written in 
the driving unit description in the BLACKBOARD, the DRIVING 
UNIT FINDER retrieves it into the PILOT. 

The POSITION ESTIMATOR determines the vehicle position 
using position estimations generated both by perception and by 
dead reckoning. When PERCEPTION sees objects which can be 
landmarks, PERCEPTION can estimate the vehicle position using 
predicted object locations and shapes. For example, stairs and 
intersections are good landmarks. Sidewalks are not sufficient as 
a landmark, because PERCEPTION looking at only a sidewalk 
cannot tell the location along a sidewalk. It can tell only the 
distance from the edge of a sidewalk. Therefore, the position 
estimation by the PERCEPTION is sometimes complete and 
sometimes is not complete. The position estimation by dead 
reckoning is given by the HELM. The POSITION ESTIMATOR 
combines both of them and determines the vehicle position. 
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The BLACKBOARD stores two kinds of vehicle positions. One is 
perceived vehicle position, and the other one is moving vehicle 
position. Because the perceived vehicle position is estimated by 
only the POSITION ESTIMATOR once per driving unit, it is 
discrete. On the other hand, the moving vehicle position is 
estimated by not only the POSITION ESTIMATOR but also the 
HELM using dead reckoning. Because the HELM updates the 
moving vehicle position frequently, it tells the vehicle current 
position. Because both positions are stored in the BLACKBOARD, 
all modules can use them. Currently they are used by the 
PERCEPTION and the LOCAL PATH PLANNER. 

The DRIVING UNIT NAVIGATOR plots local path constraints in 
the driving unit using the result of perception and the driving 
constraints given by the MAP NAVIGATOR. 

The LOCAL PATH PLANNER gets the local path constraints and 
creates the local path plan from the vehicle’s current position, 
through all intervening driving units, reaching to the far edge of 
the newly scanned driving unit. Because the vehicle is not in the 
newly scanned driving unit, the LOCAL PATH PLANNER keeps the 
old local path constraints to calculate local path plan, and 
discards them if they are not necessary. The algorithm for local 
path planning is based on Lozano-Perez’s method [3]. This 
method generates a sequence of line segments, which the LOCAL 
PATH PLANNER converts to a smooth path. Therefore, the 
vehicle turns along a curved line. The generated local path plan is 
passed to the HELM through the BLACKBOARD. 

(a) time = t, 

* 2 

(c)time = ts 

Figure 6 illustrates the process sequence in the PILOT. The 
black painted box is the vehicle. The bold line indicates the driving 
unit detected by the PERCEPTION already. The dotted line shows 
the driving unit newly created by the DRIVING MONITOR. At time 
t, the DRIVING MONITOR creates new driving unit description and 
sends it to the DRIVING UNIT FINDER. The DRIVING UNIT 
FINDER sends it to the PERCEPTION. When the vehicle reachs 
the best place to detect the required driving unit, the 
PERCEPTION inputs image data with the sensors ( time t2 ). The 
thin line shows the sensor view frame. At time t 

5 
the 

PERCEPTION finishes processing and reports the object s apes 
and the vehicle position. The DRIVING MONITOR starts creating 
next driving unit description. And at time t, the LOCAL PATH 
PLANNER generates new local path plan and passes to the HELM. 

2.3.4. The HELM and Driving the Vehicle 
Whenever a new local path plan appears in the BLACKBOARD, 

the HELM discards the old path plan and picks up new one. The 
HELM converts the local path plan, which tells only trajectory, into 
vehicle driving commands, and feeds them to the vehicle. In 
addition to driving the vehicle, the HELM is responsible for 
maintaining the vehicle moving position stored in the 
BLACKBOARD. Because the task of the HELM needs quick 
response to control the vehicle, it is implemented as an 
independent process. 

2.3.5. The PERCEPTION Module 
PERCEPTION picks up a driving unit description from the 

BLACKBOARD when a new one appears. PERCEPTION has two 
tasks: detecting navigable passages, and, if possible, estimating 
vehicle position. The details of PERCEPTION are explained in the 
next section. 

2.3.6. The BLACKBOARD 
The BLACKBOARD provides the modules with facitilies for 

communication and data management. Our BLACKBOARD looks 
like a traditional blackboard, with several additional properties that 
make it useful for navigation: 

1. parallel asynchronous execution of modules. 
This property makes it possible to execute ah modules 
in parallel. 

2. transparent networking between processors. 
This property makes it easier to build interfaces 
between modules. 

3. no pre-compilation of data retrieval 

specification. This property makes it easier to pick 
up desired data from the BLACKBOARD. 

4. geometric reasoning. Coordinate transformation 
and geometric calculations are done by the 
BLACKBOARD. Data retrieval from the 
BLACKBOARD with geometry is used in several 
places. 

(d) time = t, 

Figure 6: Process Sequence in the PILOT 
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2.3.7. The MAP 
The MAP is the main data base in our navigation system. It 

consists of two parts, GEOGRAPHICAL MAP and OBJECT DATA 
BASE. 

The GEOGRAPHICAL MAP is similar to usual maps which we 
use in daily life, and tells object locations with their outlines. The 
MAP NAVIGATOR uses the GEOGRAPHICAL MAP to pick up 
objects belonging to the route segment. Figure 7 shows current 
GEOGRAPHICAL MAP. 

The OBJECT DATA BASE stores the object descriptions. 

1. Perception Feature: Both of the objects three 
dimensional shape and its color are stored to produce 
object description for the PERCEPTION. Three 
dimensional shape is expressed with surfaces. 

2. Role in Navigation: Some objects can be landmarks, 
and other objects can be paths.. Therefore, the 
OBJECT DATA BASE indicates roles of objects: 
landmark, path, obstacle and no meaning. Afso, 
navigation costs on objects are stored. ‘These data 
are useful when the MAP NAVIGATOR performs route 
planning. 

The MAP is stored in the BLACKBOARD and accessed only by 
the MAP NAVIGATOR. Currently we assume that the MAP has all 
necessary information and it is correct and complete. 
future work will include “map revising”, starting 
incomplete map, and updating it during navigation. 

But our 
with an 

t (a) whole GEOGRAPHICAL MAP 

walk20 

(b) stairs and slope 

Figure 7: The GEOGRAPHICAL MAP 

2.3.8. The NAVIGATION MONITOR 
The NAVIGATION MONITOR is a graphics system which 

displays the current navigation situation. It displays the route 
segment, the driving unit, the sensor view frame, the vehicle 
position, and the local path plan. Because the NAVIGATION 
MONITOR is implemented as an independent process, it does not 
disturb other modules. Whenever the data to be displayed appear 
on the BLACKBOARD, the NAVIGATION MONITOR retrieves and 
displays them. 

3. Perception Using Colored-Range Image 

3.1. Requirements and Approach 
The basic problem for the perception is caused by the 

complexity of outdoor scenes. Some objects have very 
complicated shapes and colors from which it is difficult to extract 
surfaces or edges. This requires powerful sensors and algorithms 
for object detection. Also, the processing time of the perception is 
critical, because it eventually constrains vehicle speed. Even if we 
have a very powerful perception program which can detect 
complicated objects, it will be computationally expensive. 
Therefore, having a sing/e powerful object detection program is 
not an adequate solution. 

To overcome these difficulties, we take a- sensor fusion 
approach. There are several types of sensor fusion methods [4]. 
This PERCEPTION module uses two types of sensor fusion. 

The first type is low level sensor fusion, doing segmentation 
using color and range .data simultaneously. We call the image 
which has color information in addition to range values a 
colored-range image. Using this method, we can segment objects 
with uniform color but varying surface orientation, as well as 
objects with smooth surfaces and varying colors. This method iS 
used to analyze complicated scenes. 

The second type of fusion is a higher level sensor fusion or 
sensor selection. The PERCEPTION module has both a 
colored-range segmentation program, mentioned above, and a 
color segmentation program, and uses these programs selectively. 
The former program can extract segments in complicated scenes, 
while the later program is adequate for simple flat scenes and 
uses much less processing time. This type of sensor fusion 
achieves both powerful perceptual ability and fast processing. 

3.2. PERCEPTION Module Architecture for Sensor Fusion 
The PERCEPTION receives perceptual requests from the PILOT, 

and analyzes sensor data to compute its response. The main 
effort to design the PERCEPTION module is how to combine 
several types of sensors and sensor data processing modules into 
one system and make them work efficiently. We designed a 
hierarchical structure and a monitor module which manages all 
parts of the hierarchy. 

Figure 8 illustrates the structure of the PERCEPTION module. 
This is composed of the PATCH MAKER, the OBJECT FINDER, 
the POSITION CALIBRATOR, and the PERCEPTION MONITOR. 
Sensor data go through in the order of the PATCH MAKER, the 
OBJECT FINDER, and the POSITION CALIBRATOR. 



The data interface between each module is designed to be 
independent of the algorithms used by each module. This allows 
each layer in the hierarchy to have several modules based on 
different algorithms. In the current system, the PATCH MAKER 
includes two types of segmentation modules, and one object 
finding module can work on the results of both segmentation 
modules because of the common data interface. The 
PERCEPTION MONITOR is a key for this hierarchical processing. 
We describe it in detail in the next section. Other modules are 
explained in following paragraphs. 
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Figure 8: Structure of PERCEPTION Module 

3.2.1. The PATCH MAKER 
As a segmentation module (PATCH MAKER), this system has a 

color segmentation module, a range segmentation module, and a 
colored-range segmentation module. The color segmentation, the 
range image segmentation, and colored-range image 
segmentation are described in Section 3.4. 

The data structure which holds patch data is common to both 
segmentation modules. These data include co/or type, surface 
type and normal, polygons for boundary shape, and relation to 
neighbor segments. 

3.2.2. The OBJECT FINDER 
The OBJECT FINDER identifies each segment as a part of a 

predicted object. This algorithm is described in rule-base Style, 
with two kinds of rules. One kind identifies detected segments as 
parts of predicted objects, and the other type of rule finds the 
actual correspondence between perceived and predicted 
polygons. In other words, the first set of rules deals with symbolic 
matching, while the second knows about detailed geometry. 

The OBJECT FINDER uses a WORKING MEMORY. The PATCH 
MAKER assigns the Patch data into the WORKING MEMORY. 
Also, the PERCEPTION MONITOR assigns predicted object shape 
and feature data into the WORKING MEMORY. These data 
include color, surface type, and shape. The OBJECT FINDER 
uses WORKING MEMORY data to match predicted with detected 
data. 

3.2.3. The POSITION CALIBRATOR 
The predicted objects are described in the current coordinate 

system, but the vehicle coordinate system is used to describe the 
detected objects. The POSITION CALIBRATOR then computes 
the vehicle position in the current coordinate system, applying the 
transformation matrix between two coordinate systems. The 
problem for this computation is that the predicted object shape 
and the detected object shape are not same because of 
imperfections in the MAP and the perception. Therefore, the 
POSlTlON CALIBRATOR has to find the most appropriate 
matching for these two shapes. 

To get the best matching point, the POSITION CALIBRATOR 
calculates the distance between the predicted vertices and the 
detected vertices of object polygons, and finds the position which 
minimizes the distance. Sometimes, a scene is composed of only 
parallel lines (e.g., sidewalk) or a point (e.g., tree), which are 
insufficient to decide a matching point. In this case, the 
POSITION CALIBRATOR derives a line equation on which the 
vehicle is located instead of a point for vehicle position. 

3.3. The PERCEPTION MONITOR 
The PERCEPTION MONITOR has two major roles: 

communication with other modules (the PILOT) and control of 
internal submodules. As mentioned before, a design principle of 
this system is to provide a common structure for different sensors 
and atgorithms. This tends to make the module interface rather 
high level. For example, an image input position is usually decided 
by an external module using sensor parameters. However, ifthere 
are several types of sensors with different view angles, the 
common interface for those modules will be where the 
PERCEPTION should see instead of where the PERCEPTION 
should look from. This means the PERCEPTION module itself 
has ?o decide where the best position is from which to see the 
requested place. The communication with other modules means 
doing such kinds of interpretation between the high level module 
interface commands and actual commands to internal 
submodules. 

Control flow of the perception process is rather simpie. It 
progresses in order of segmentation, object finding, and position 
calibration. The PERCEPTION MONITOR activates the PATCH 
MAKER, the OBJECT FINDER, and the POSITION CALIBRATOR 
in this sequence. The functions for the interpretation of the high 
level commands from the other planning module (the PILOT) are 
described in following paragraphs. 

3.3.1. Selection of Sensor and Segmentation Modules 
The PILOT requests what objects to see, but does not say which 

sensor should be used. The PERCEPTION MONITOR decides 
which sensor and segmentation module is the best for the 
requested objects. The current system has two sensors and 
segmentation modules. If all requested objects are sidewalks or 
intersections on a flat plane, the PERCEPTION MONITOR selects 
the color segmentation module as a PATCH MAKER. If three- 
dimensional objects such as stairs, and slopes are included in the 
requested objects, the PERCEPTION MONITOR selects the 
colored-range segmentation modUlS. 
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3.3.2. Decision of View Frame and Resolution 
The PILOT requests to see objects as quickly as possible within 

a tolerable error allowance, but does not specify the resolution or 
view frame of PERCEPTION. The view frame of PERCEPTION 
depends on a tolerable error allowance for the PERCEPTION. If 
the error allowance is small, a meaningful view frame will be 
limited to near the vehicle, even if the view angle of the sensor 
covers a greater area. Also, the view frame is a function of 
PERCEPTION resolution. If the resolution is very fine, the view 
frame can be wider, keeping the same error allowance. 

An interesting point is that the processing time of the 
PERCEPTION is a function of the resolution. Therefore there are 
two typical strategies for equal error allowance. One is a seeing a 
closer area with rough resolution in a short time. The other is a 
seeing a farther area with fine resolution in a longer time. The 
PERCEPTION MONITOR decides the optimal view frame and the 
resolution which allows the vehicle to run at maximum speed. 

Figure 9 shows the relation between the velocity (V) and the 
distance the vehicle can run in one cycle (perception distance, D) 
for several error allowances. We got this result from two relations: 
the relation of resolution and the maximum perception distance 
for equal error allowance, and the relation of the resolution and 
the processing time (T). Velocity is defined as V= D/T. 

2.0 4.0 6.0 8 

*. 
* * Error: O.S[m] 

* . Error: 0.4[m] 

{.21rnj Error: 0.3[m] 

ifcma- 
Perception Distance [meter] 

Figure 9: Distance and Velocity by Error Allowance 

It is interesting to note that Figure 9 indicates that the maximum 
speed point of our system is at a rather short distance and low 
resolution. When the vehicle runs at a speed of V,, the best 

perception distance and resolution is ai D,. This is because the 
PERCEPTION can see the widest area at that point. This increases 
the chance of finding landmarks or obstacles. Then, if the vehicle 
trys to run faster (at speed of V ), the perception distance 
becomes shorter (Da). This shows &at as speed increases. the 
vehicle becomes short-sighted. 

The PERCEPTION MONITOR has a data table in which are 
stored the values of optimal resolution and perception distance for 
the error allowance. Using this table, the PERCEPTION MONITOR 
provides the optimal resolution and perception distance. 

3.3.3. Decision of Image Input Position 
The PILOT indicates which region the PERCEPTfON should see, 

but does not indicate when the PERCEPTION should see it. This is 
because the view frame of the PERCEPTION depends on the 
sensor used, and the PILOT does not know which sensor will be 
used. Furthermore, when the PERCEPTION uses a pan and tilt 
mechanism, only the PERCEPTION can decide image input timing 
and position. 

The position decision algorithm has two steps. First, this module 
simulates the view frame and the vehicle’s future path which is 
posted in the BLACKBOARD by the LOCAL PATH PLANNER. 
When the simulated view frame covers the region which the PlLOT 
has requested the PERCEPTION to see, this vehicle position is 
defined as the image input position. Second, this module 
monitors current vehicle position by watching the moving vehicle 
position on the BLACKBOARD. And, when the moving vehicle 
position reaches the image input position, this module controls 
sensors to take an image. 

3.3.4. Creation of Segmentation Parameters 
To have good segmentation results, we need not only 

appropriate segmentation parameters, but also good algorithms. It 
is very difficult to know appropriate parameters unless 
PERCEPTION has scene knowledge. In this system, the PILOT 
predicts objects for the PERCEPTION, but the description is 
general and does not indicate segmentation parameters for the 
objects. 

THE PERCEPTION MONITOR creates appropriate parameters, 
and the segmentation modules use them. Currently, the 
PERCEPTION MONITOR creates color type and minimum area of 
segments as segmentation parameters. For example, if the 
predicted objects are only a sidewalk and grass, the PERCEPTION 
MONITOR decides that types of color are GRAY and GREEN, and 
reports them to the segmentation module (the PATCH MAKER). 
Another example is the minimum area far segments. If there are 
no small predicted objects, the PERCEPTION MONITOR sets a 
rather large value for minimum segment area. This eliminates‘ the 
noisy segments, and makes a simple segment list which is easy to 
analyze in the later object finding phase. 

3.4. Colored-Range Image Analysis 
It is very difficult to recognize complex objects in outdoor scenes 

using only one kind of sensor, but several different sensors can 
provide a lot of clues about the environment. For example, use of 
both range data and color images provides a very powerful vision 
system for outdoor scene analysis, because range data provide 
information about the geometry of a scene, and color images 
provide an important physical property of objects. In order to use 
these different sensor data, we must integrate them using sensor 
fusion techniques. The registration between range data and color 
images can be a first step to sensor fusion. In the following 
sections, we describe the registration algorithm for color and 
range image, the segmentation procedure for range data, the 
color segmentation algorithm, and how to use a colored-range 
image to recognize stairs and slopes. 

3.4.1, Registration 
We must know the relative positions and orientations of the color 

camera with respect to the range scanner to register range data 
into camera-centered coordinates. These can be computed using 
a calibration procedure. The calibration step consists of initial 
value estimation and optinium value finding procedures. fn the 
initial value estimation step, the measured angles are used to 
simplify the problem, so the position of the camera relative to the 
range scanner and its focal tength are the only unknown 



parameters. The unknown parameters are computed by solving a 
least-squares criterion. Once the initial values of the camera 
parameters are computed, we can obtain more accurate 
parameters using a modified Newton-Gauss method. In the 
experiment, the wide-angle lens is used to capture color images, 
which prevents us from using a linear perspective transformation 
for projection. Use of a third-order polynomial for projection 
provides good registration. The projection model is developed 
through a conventional camera calibration procedure. Since the 
camera/scanner transformation and the perspective 
transformation are computed, the range data can be registered 
with the color image. This is done by applying the transformation 
to each point of the range image, so the corresponding pixel point 
in the color image can be computed. The color intensity for the 
computed pixels in color image then are assigned to the range 
image. The registration procedure is illustrated in Figure 10. 

(b) Original color image 

3.4.2. Range Image Segmentation 
The range segmentation module generates surface segments 

using three basic attributes at each pixel: jump edges, surface 
normal, and surface curvature. Each segmented region has a 
surface normal vector, a surface curvature, 3-D edges, and a label 
indicating smooth region or rough region. The detailed algorithm 
for range data analysis can be found in Hebert’s recent work [2]. 

3.4.3. Color Segmentation 
The color segmentation module uses Wallace’s color 

classification algorithm [5] which uses a standard quadratic 
discrimination function for multivariate normal distributions of 
mean vectors and covariance matrices for the Red, Green, and 
Blue components of an image. This module cannot detect 3-D 
position data for segments. However, when we assume all objects 
are on a flat ground plane, this module can calculate 3-D values 
for segments using the relation between the perspective image 
and the scene [l]. 

3.4.4. Overlap Segmentation 
The registration process creates an image in which each pixel 

has a color value and a range value. The segmentation for the 
colored-range image is done as illustrated in Figure 11. First, the 
color label and the surface label are obtained by color 
segmentation and surface segmentation. Then, the color-surface 
label for each pixel is obtained by an AND operation of the color 
label and the surface label. Overlap segmentation is done using 
this label value. 
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Figure 7 1: Overlap Segmentation by Color atid Range Data 

(c) Colored-range image 

Figure 10: Colored-range Image Registration 
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3.4.5. Result of a Real Scene Analysis 
One good example to show the effectiveness of the 

colored-range segmentation module is a slope and stairs scene of 
a campus sidewalk. The slope and the stairs are made of concrete 
and have the same gray color. The slope and road-side grass are 
on almost the same plane. Therefore, segmentation using only 
color can not separate the slope and the stairs, and segmentation 
using only range can not’separate the slope and the road-side 
grass. Overlap segmentation using colored-range image can 
extract the slope which is only navigable region in this scene. 
Figure 12 shows the results of color segmentation, range 

segmentation, and colored-range segmentation drawn with 
polygons. 

(b) Range segmentation 

(d) Colored-range segmentation projected on x-y plane 

Figure 12: Colored-Range Segmentation 

4. Conclusion 
We have developed the Sidewalk Navigation System which can 

drive the vehicle on the test site, the CMU campus. Because our 
test site involves sidewalks and intersections, slopes, stairs, and 
grass, the navigation system should have ability to select the best 
navigation mode depending on the situation. Our architecture 
works well in this environment, using both route planning and 
local path planning, selecting vehicle driving mode, and selecting 

sensors. The scene which includes the stairs, the slope, and the 
grass is hard to detect with only a TV camera or only a range 
sensor. But our perception module can analyze even this scene 
using sensor fusion with color and range data. And sensor 
selection dependent object prediction SaW!S Computation time. 
Our current system demonstrates the. framework of an outdoor 
robot navigation SYStem. 

Our future work will include pipeline processing in the PILOT 
modufe, expanding the PERCEPTfON module to detect other 
objects, and map revising. And we will add a capability for 
cross-country navigation. 
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