
CMU Sidewalk Navigation System:

A Blackboard-Based Outdoor Navigation System

Using Sensor Fusion with Colored-Range Images

Y. Goto, K. Matsuzaki

1. Kweon, T. Obatake

Robotics Institute, Carnegie-Mellon University

P&burg, PA. 15213

A bslract

We describe the CMU Sidewalk Navigation System, which can
drive a vehicle in the outdoor environment of the CMU campus.
The system includes all modules necessary for outdoor navigation
.. modules for route planning, local path planning, vehicle driving,
perception, and map data. The perception module uses sensor
fusion with color and rage data to analyze complex outdoor
scenes accurately and efficiently.

2. System Architecture for the Outdoor
Navigati0.n System

2.1. Hardware Configuration
The hardware for the CMU sidewalk navigation system consists

of three SUN-3 workstations, the vehicle, the color TV camera, and
the laser range sensor. The workstations are linked together with
Ethernet, and the workstations and the vehicle are linked with
radio communication. Figure 1 shows the vehicle called
Terregator.

1. Int reduction
The goal of the CMU SCVision group is to create an autonomous

mobile robot system capable of operating in outdoor
environments.’ The complexity of the environment requires the
system to have a powerful perception ability, capable of analyzing
natural objects, and a planning ability which can work in non-
uniform conditions. Because this navigation system will be very
large. we need mechanisms to combine programs into whole
systems and mechanisms for parallelism in computation.

We already have several systems towards the goal: a road
following system with color classification [5], road network
navigation with a simple map [l], scene analysis with a laser range
sensor [2], and the blackboard [4].

The CMU Sidewalk Navigation System is a milestone system
!ownrd our goal. In this system, we,focuc on two points. The first
is to build a whole system based on a good system architecture so
that the system is both complete (containing every necessary
module) and efficient. We achieve that goal by adopting a
blackboard-based architecture. The second point is to create
perception modules with sensor fusion that work well in our
outdoor environment.

The test site for the CMU Sidewalk Navigation System is the
CMU campus, containing a network of sidewalks and
intersections, along with grass, slopes, and stairs. The system can
drive the vehicle through these objects to get to its destination.

‘This research was sponsored by the Defense Advanced Research Projects
Agency, DOD, through ARPA Order No. 5351, and monitored by the U. S. Army
Engineer Topographic Laboratories under contract DACA 76.85.C-OOD3. The
views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the olficial policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or of the U.S.
Government

Figure 1: Terregator
-.. -- 7..- ..-I

2.2. System Architecture

2.2.1. Stages of Navigation
In order to create a reasonable system architecture, we have to

start by analyzing outdoor navigation.

If the navigation system uses only one uniform navigation mode,
the system architecture issue is not essential. But, in general,
outdoor navigation includes several navigation modes. The
example shown in Figure 2 illustrates this situation. The vehicle
running from the starting point to the destination has to follow the
road, turn at the intersection, climbing the slope and cross the
terrain. Turning at the intersection needs a more complex method
to drive the vehicle than. following the road. Perception for
crossing the terrain is different from perception for turning af the
intersection. In following the road we can use assumption that the
ground is flat, which makes perception, easier. But climbing the
slope does not satisfy this assumption. This is one reason why the

CH2345-7/86/0000/0105$01.00@1986 IEEE
105

Figure 2: Outdoor Navigation

outdoor navigation system needs good system architecture.

We decompose navigation into two processing stages. The first
stage is the route planning stage, and the second stage is local
navigation. In the route planning stage the system selects the best
navigation route, from several possible routes to get to the
destination from the starting point. The system divides the whole
route into a secluence of route segments. In each route segment,
objects on whic:h the vehicle can run are constant. The navigation
system can drive the vehicle using a single uniform driving mode,
for example, following the road or turning at the intersection, and
a single perception mode. In this stage, using the map data is
essential.

Local navigation is navigation within one route segment. In the
local navigation stage, the navigation mode is constant and the
main task is to drive the vehicle along the route segment. Locat
navigation uses perception to find a safe passage for the vehicle,
and to determine the actual vehicle driving path.

In contrast, our earlier and simpler navigation system did not
have the route planning capability and has only one navigation
mode for local navigation.

The system architecture of the CMU sidewalk navigation system
is indicated in Figure 3. We decomposed the whole system into
several modules. The modules indicated with blocks are separa!e
processes, running independently, and communicating with each
other through the BLACKBOARD. in selecting this decomposition
of the whole system into these modules, we followed the principle
of information hiding. The CAPTAIN module and the MAP
NAVIGATOR module are responsible for the route planning, and
they do not know the result of perception or how to drive the
physical vehicle. The PILOT module, the PERCEPTION module
and the HELM module are responsible for the local navigation,
and they do not know the destination, the whole route, or the
sequence of route segments. Whai they know is limited to only
one route segment at one time. We will explain the system
architecture in detail in the following sections.

2.2.2. The Blackboard-Based Architecture
Our BLACKBOARD provides modules with communication and

synchronization facilities 141. Using a blackboard-based
architecture brings two main advantages to building our
navigation system.

CAPTAIN PILOT

,

N%ATOL BLACKBOARD -PERCEPTION

Figure 3: System Architecture

The first advantage is parallelism in execution. We decompose
the whole system into several parallel modules. Because the most
time consuming operation is perception, it is an independent
process, the PERCEPTION module, running on its own machine,
and not disturbing other modules. Because the HELM module
which drives the physical vehicle needs real-time response, it is
another separate process. Communication and svnchronization

of ail modules are handled by mechanisms of the BLACKBOARD.

The second advantage is that using a blackboard makes it easier
to combine several programs into a whole system. Our.
BLACKBOARD provides a good mechanism to connect modules,
and limits the interactions among modules. For instance, each
module can work in its most natural and convenient coordinate
frame, with the BiACKBOARD converting among reference
frames. We use the principle of information hiding so that the
interfaces between modules are small. This keeps communication
costs low and allows good modularity. The details of the
BLACKBOARD are explained in following sections.

2.3. Module Structure
In this subsection we explain each module.

2.3.1. The CAPTAlN Module and the Mission
At the upper level of the system is the CAFTAN module that

receives instructions from the controlling person and oversees the
mission. The mission consists of a number of steps, and the
CAPTAIN sequences through the steps. For each step, there is a
destination that tells where to go and one or more constraints that
tell how to go. For example, “go to intersection D” gives a
destination and “keep right” gives a constraint. Each mission
step also has a trigger condition and an action which will be
executed if the trigger condition is satisfied. Triggers can be used
to move on to the next mission step when one step is completed.

The CAPTAIN sends the destination and the constraints of each
mission step to the MAP NAVIGATOR one step at a time, and gets
the result of mission step, success or fail, from the MAP
NAVIGATOR.

106

2.3.2. The MAP NAVIGATOR and Route Planning
The MAP NAVIGATOR does the route planning based on a

destination and a constraint sent from the CAPTAIN, gives the
PILOT directions for driving along the route, and reports the result
of the mission to the CAPTAIN.

The MAP NAVIGATOR contains two main parts, the ROUTE
SELECTOR, and the ROUTE SEGMENT DESCRIBER (see Figure
4). The ROUTE SELECTOR creates the route plan, and
decomposes it to a sequence of the route segments so that each
route segment has only one navigation mode. The current system
has several navigation modes: follow-road, turn-at-intersection,
go-through-intersection, and go-through-slope. Our future system
will have another navigation mode, cross-country, in order to
navigate on open terrain.

The ROUTE SEGMENT DESCRIBER generates the description
of the route segment. The purpose of route segment description
is to provide the PILOT with the information necessary for
navigation within the route segment. It includes path objects (e.g.,
pieces of road, intersections), navigation modes, the conditions to
exit from the route segment, the constraints to drive the vehicle,
and object descriptions. Path objects are the objects on which the
vehicle should run. Object descriptions describe the location and
the shape of the obiects (such as landmarks) which the
PERCEPTION module can see while running on the route
segment. This description is created by copying a part of the Map
data, and is used as a prediction for the PERCEPTION module.
One important point is that only the MAP NAVIGATOR maintains
the Map data.

The route segment description is sent to the BLACKBOARD and
forwarded to the PILOT. When the PILOT finishes the route

segment, it reports the result. If the result is success, the ROUTE
SEGMENT DESCRIBER sends next route segment description.

ti

PILOT

Figure 4: The MAP NAVIGATOR Module

2.3.3. The PILOT and Local Path Planning
The PILOT, the PERCEPTION and the HELM work together for

local navigation. The PILOT operates continuously to conduct the
navigatiori within the route segment. The PILOT contains several
sub-modules that form .a sequence as shown in Figure 5, to
process each area to be traversed.

I 1
I
I

DRIVING
MONITOR

I
POSITION
ESTIMATOR

I
DRIVING UNIiC
NAVIGATOR

I
LOCAL PATH
PLANNER

Figure 5: The PILOT module

The DRIVING MONITOR, the top level of the PILOT, receives
route segment descriptions whenever a newly ‘created route
segment appears in the BLACKBOARD. The DRIVING MONITOR
breaks the route segment into pieces called driving units, so that
the PERCEPTION can detect one driving unit separately (see
Figure 6). The’ DRIVING MONITOR builds a driving unit
description for each driving unit, describing the location of the
driving unit and the objects which PERCEPTION should see.
Following the principle of information hiding, the driving unit
description tells where and what objects the PERCEPTION should
see, but it does not tell how to detect them.

The DRIVING UNIT FINDER works as an interface to the
PERCEPTION, getting the newly created driving unit description
from the DRIVING MONITOR and sending it to the PERCEPTION
through the BLACKBOARD. If the result of perception is written in
the driving unit description in the BLACKBOARD, the DRIVING
UNIT FINDER retrieves it into the PILOT.

The POSITION ESTIMATOR determines the vehicle position
using position estimations generated both by perception and by
dead reckoning. When PERCEPTION sees objects which can be
landmarks, PERCEPTION can estimate the vehicle position using
predicted object locations and shapes. For example, stairs and
intersections are good landmarks. Sidewalks are not sufficient as
a landmark, because PERCEPTION looking at only a sidewalk
cannot tell the location along a sidewalk. It can tell only the
distance from the edge of a sidewalk. Therefore, the position
estimation by the PERCEPTION is sometimes complete and
sometimes is not complete. The position estimation by dead
reckoning is given by the HELM. The POSITION ESTIMATOR
combines both of them and determines the vehicle position.

107

The BLACKBOARD stores two kinds of vehicle positions. One is
perceived vehicle position, and the other one is moving vehicle
position. Because the perceived vehicle position is estimated by
only the POSITION ESTIMATOR once per driving unit, it is
discrete. On the other hand, the moving vehicle position is
estimated by not only the POSITION ESTIMATOR but also the
HELM using dead reckoning. Because the HELM updates the
moving vehicle position frequently, it tells the vehicle current
position. Because both positions are stored in the BLACKBOARD,
all modules can use them. Currently they are used by the
PERCEPTION and the LOCAL PATH PLANNER.

The DRIVING UNIT NAVIGATOR plots local path constraints in
the driving unit using the result of perception and the driving
constraints given by the MAP NAVIGATOR.

The LOCAL PATH PLANNER gets the local path constraints and
creates the local path plan from the vehicle’s current position,
through all intervening driving units, reaching to the far edge of
the newly scanned driving unit. Because the vehicle is not in the
newly scanned driving unit, the LOCAL PATH PLANNER keeps the
old local path constraints to calculate local path plan, and
discards them if they are not necessary. The algorithm for local
path planning is based on Lozano-Perez’s method [3]. This
method generates a sequence of line segments, which the LOCAL
PATH PLANNER converts to a smooth path. Therefore, the
vehicle turns along a curved line. The generated local path plan is
passed to the HELM through the BLACKBOARD.

(a) time = t,

* 2

(c)time = ts

Figure 6 illustrates the process sequence in the PILOT. The
black painted box is the vehicle. The bold line indicates the driving
unit detected by the PERCEPTION already. The dotted line shows
the driving unit newly created by the DRIVING MONITOR. At time
t, the DRIVING MONITOR creates new driving unit description and
sends it to the DRIVING UNIT FINDER. The DRIVING UNIT
FINDER sends it to the PERCEPTION. When the vehicle reachs
the best place to detect the required driving unit, the
PERCEPTION inputs image data with the sensors (time t2). The
thin line shows the sensor view frame. At time t

5
the

PERCEPTION finishes processing and reports the object s apes
and the vehicle position. The DRIVING MONITOR starts creating
next driving unit description. And at time t, the LOCAL PATH
PLANNER generates new local path plan and passes to the HELM.

2.3.4. The HELM and Driving the Vehicle
Whenever a new local path plan appears in the BLACKBOARD,

the HELM discards the old path plan and picks up new one. The
HELM converts the local path plan, which tells only trajectory, into
vehicle driving commands, and feeds them to the vehicle. In
addition to driving the vehicle, the HELM is responsible for
maintaining the vehicle moving position stored in the
BLACKBOARD. Because the task of the HELM needs quick
response to control the vehicle, it is implemented as an
independent process.

2.3.5. The PERCEPTION Module
PERCEPTION picks up a driving unit description from the

BLACKBOARD when a new one appears. PERCEPTION has two
tasks: detecting navigable passages, and, if possible, estimating
vehicle position. The details of PERCEPTION are explained in the
next section.

2.3.6. The BLACKBOARD
The BLACKBOARD provides the modules with facitilies for

communication and data management. Our BLACKBOARD looks
like a traditional blackboard, with several additional properties that
make it useful for navigation:

1. parallel asynchronous execution of modules.
This property makes it possible to execute ah modules
in parallel.

2. transparent networking between processors.
This property makes it easier to build interfaces
between modules.

3. no pre-compilation of data retrieval

specification. This property makes it easier to pick
up desired data from the BLACKBOARD.

4. geometric reasoning. Coordinate transformation
and geometric calculations are done by the
BLACKBOARD. Data retrieval from the
BLACKBOARD with geometry is used in several
places.

(d) time = t,

Figure 6: Process Sequence in the PILOT

108

2.3.7. The MAP
The MAP is the main data base in our navigation system. It

consists of two parts, GEOGRAPHICAL MAP and OBJECT DATA
BASE.

The GEOGRAPHICAL MAP is similar to usual maps which we
use in daily life, and tells object locations with their outlines. The
MAP NAVIGATOR uses the GEOGRAPHICAL MAP to pick up
objects belonging to the route segment. Figure 7 shows current
GEOGRAPHICAL MAP.

The OBJECT DATA BASE stores the object descriptions.

1. Perception Feature: Both of the objects three
dimensional shape and its color are stored to produce
object description for the PERCEPTION. Three
dimensional shape is expressed with surfaces.

2. Role in Navigation: Some objects can be landmarks,
and other objects can be paths.. Therefore, the
OBJECT DATA BASE indicates roles of objects:
landmark, path, obstacle and no meaning. Afso,
navigation costs on objects are stored. ‘These data
are useful when the MAP NAVIGATOR performs route
planning.

The MAP is stored in the BLACKBOARD and accessed only by
the MAP NAVIGATOR. Currently we assume that the MAP has all
necessary information and it is correct and complete.
future work will include “map revising”, starting
incomplete map, and updating it during navigation.

But our
with an

t (a) whole GEOGRAPHICAL MAP

walk20

(b) stairs and slope

Figure 7: The GEOGRAPHICAL MAP

2.3.8. The NAVIGATION MONITOR
The NAVIGATION MONITOR is a graphics system which

displays the current navigation situation. It displays the route
segment, the driving unit, the sensor view frame, the vehicle
position, and the local path plan. Because the NAVIGATION
MONITOR is implemented as an independent process, it does not
disturb other modules. Whenever the data to be displayed appear
on the BLACKBOARD, the NAVIGATION MONITOR retrieves and
displays them.

3. Perception Using Colored-Range Image

3.1. Requirements and Approach
The basic problem for the perception is caused by the

complexity of outdoor scenes. Some objects have very
complicated shapes and colors from which it is difficult to extract
surfaces or edges. This requires powerful sensors and algorithms
for object detection. Also, the processing time of the perception is
critical, because it eventually constrains vehicle speed. Even if we
have a very powerful perception program which can detect
complicated objects, it will be computationally expensive.
Therefore, having a sing/e powerful object detection program is
not an adequate solution.

To overcome these difficulties, we take a- sensor fusion
approach. There are several types of sensor fusion methods [4].
This PERCEPTION module uses two types of sensor fusion.

The first type is low level sensor fusion, doing segmentation
using color and range .data simultaneously. We call the image
which has color information in addition to range values a
colored-range image. Using this method, we can segment objects
with uniform color but varying surface orientation, as well as
objects with smooth surfaces and varying colors. This method iS
used to analyze complicated scenes.

The second type of fusion is a higher level sensor fusion or
sensor selection. The PERCEPTION module has both a
colored-range segmentation program, mentioned above, and a
color segmentation program, and uses these programs selectively.
The former program can extract segments in complicated scenes,
while the later program is adequate for simple flat scenes and
uses much less processing time. This type of sensor fusion
achieves both powerful perceptual ability and fast processing.

3.2. PERCEPTION Module Architecture for Sensor Fusion
The PERCEPTION receives perceptual requests from the PILOT,

and analyzes sensor data to compute its response. The main
effort to design the PERCEPTION module is how to combine
several types of sensors and sensor data processing modules into
one system and make them work efficiently. We designed a
hierarchical structure and a monitor module which manages all
parts of the hierarchy.

Figure 8 illustrates the structure of the PERCEPTION module.
This is composed of the PATCH MAKER, the OBJECT FINDER,
the POSITION CALIBRATOR, and the PERCEPTION MONITOR.
Sensor data go through in the order of the PATCH MAKER, the
OBJECT FINDER, and the POSITION CALIBRATOR.

The data interface between each module is designed to be
independent of the algorithms used by each module. This allows
each layer in the hierarchy to have several modules based on
different algorithms. In the current system, the PATCH MAKER
includes two types of segmentation modules, and one object
finding module can work on the results of both segmentation
modules because of the common data interface. The
PERCEPTION MONITOR is a key for this hierarchical processing.
We describe it in detail in the next section. Other modules are
explained in following paragraphs.

,“““-‘-“““““‘I

1 w ,o’r I
L ---- ----- -----I

pf

fiizimq

u II
I PERCBPI’lON MONITOR

Prcdictcd Object Position

POSITION CAI,IRRATOR

Figure 8: Structure of PERCEPTION Module

3.2.1. The PATCH MAKER
As a segmentation module (PATCH MAKER), this system has a

color segmentation module, a range segmentation module, and a
colored-range segmentation module. The color segmentation, the
range image segmentation, and colored-range image
segmentation are described in Section 3.4.

The data structure which holds patch data is common to both
segmentation modules. These data include co/or type, surface
type and normal, polygons for boundary shape, and relation to
neighbor segments.

3.2.2. The OBJECT FINDER
The OBJECT FINDER identifies each segment as a part of a

predicted object. This algorithm is described in rule-base Style,
with two kinds of rules. One kind identifies detected segments as
parts of predicted objects, and the other type of rule finds the
actual correspondence between perceived and predicted
polygons. In other words, the first set of rules deals with symbolic
matching, while the second knows about detailed geometry.

The OBJECT FINDER uses a WORKING MEMORY. The PATCH
MAKER assigns the Patch data into the WORKING MEMORY.
Also, the PERCEPTION MONITOR assigns predicted object shape
and feature data into the WORKING MEMORY. These data
include color, surface type, and shape. The OBJECT FINDER
uses WORKING MEMORY data to match predicted with detected
data.

3.2.3. The POSITION CALIBRATOR
The predicted objects are described in the current coordinate

system, but the vehicle coordinate system is used to describe the
detected objects. The POSITION CALIBRATOR then computes
the vehicle position in the current coordinate system, applying the
transformation matrix between two coordinate systems. The
problem for this computation is that the predicted object shape
and the detected object shape are not same because of
imperfections in the MAP and the perception. Therefore, the
POSlTlON CALIBRATOR has to find the most appropriate
matching for these two shapes.

To get the best matching point, the POSITION CALIBRATOR
calculates the distance between the predicted vertices and the
detected vertices of object polygons, and finds the position which
minimizes the distance. Sometimes, a scene is composed of only
parallel lines (e.g., sidewalk) or a point (e.g., tree), which are
insufficient to decide a matching point. In this case, the
POSITION CALIBRATOR derives a line equation on which the
vehicle is located instead of a point for vehicle position.

3.3. The PERCEPTION MONITOR
The PERCEPTION MONITOR has two major roles:

communication with other modules (the PILOT) and control of
internal submodules. As mentioned before, a design principle of
this system is to provide a common structure for different sensors
and atgorithms. This tends to make the module interface rather
high level. For example, an image input position is usually decided
by an external module using sensor parameters. However, ifthere
are several types of sensors with different view angles, the
common interface for those modules will be where the
PERCEPTION should see instead of where the PERCEPTION
should look from. This means the PERCEPTION module itself
has ?o decide where the best position is from which to see the
requested place. The communication with other modules means
doing such kinds of interpretation between the high level module
interface commands and actual commands to internal
submodules.

Control flow of the perception process is rather simpie. It
progresses in order of segmentation, object finding, and position
calibration. The PERCEPTION MONITOR activates the PATCH
MAKER, the OBJECT FINDER, and the POSITION CALIBRATOR
in this sequence. The functions for the interpretation of the high
level commands from the other planning module (the PILOT) are
described in following paragraphs.

3.3.1. Selection of Sensor and Segmentation Modules
The PILOT requests what objects to see, but does not say which

sensor should be used. The PERCEPTION MONITOR decides
which sensor and segmentation module is the best for the
requested objects. The current system has two sensors and
segmentation modules. If all requested objects are sidewalks or
intersections on a flat plane, the PERCEPTION MONITOR selects
the color segmentation module as a PATCH MAKER. If three-
dimensional objects such as stairs, and slopes are included in the
requested objects, the PERCEPTION MONITOR selects the
colored-range segmentation modUlS.

II0

3.3.2. Decision of View Frame and Resolution
The PILOT requests to see objects as quickly as possible within

a tolerable error allowance, but does not specify the resolution or
view frame of PERCEPTION. The view frame of PERCEPTION
depends on a tolerable error allowance for the PERCEPTION. If
the error allowance is small, a meaningful view frame will be
limited to near the vehicle, even if the view angle of the sensor
covers a greater area. Also, the view frame is a function of
PERCEPTION resolution. If the resolution is very fine, the view
frame can be wider, keeping the same error allowance.

An interesting point is that the processing time of the
PERCEPTION is a function of the resolution. Therefore there are
two typical strategies for equal error allowance. One is a seeing a
closer area with rough resolution in a short time. The other is a
seeing a farther area with fine resolution in a longer time. The
PERCEPTION MONITOR decides the optimal view frame and the
resolution which allows the vehicle to run at maximum speed.

Figure 9 shows the relation between the velocity (V) and the
distance the vehicle can run in one cycle (perception distance, D)
for several error allowances. We got this result from two relations:
the relation of resolution and the maximum perception distance
for equal error allowance, and the relation of the resolution and
the processing time (T). Velocity is defined as V= D/T.

2.0 4.0 6.0 8

*.
* * Error: O.S[m]

* . Error: 0.4[m]

{.21rnj Error: 0.3[m]

ifcma-
Perception Distance [meter]

Figure 9: Distance and Velocity by Error Allowance

It is interesting to note that Figure 9 indicates that the maximum
speed point of our system is at a rather short distance and low
resolution. When the vehicle runs at a speed of V,, the best

perception distance and resolution is ai D,. This is because the
PERCEPTION can see the widest area at that point. This increases
the chance of finding landmarks or obstacles. Then, if the vehicle
trys to run faster (at speed of V), the perception distance
becomes shorter (Da). This shows &at as speed increases. the
vehicle becomes short-sighted.

The PERCEPTION MONITOR has a data table in which are
stored the values of optimal resolution and perception distance for
the error allowance. Using this table, the PERCEPTION MONITOR
provides the optimal resolution and perception distance.

3.3.3. Decision of Image Input Position
The PILOT indicates which region the PERCEPTfON should see,

but does not indicate when the PERCEPTION should see it. This is
because the view frame of the PERCEPTION depends on the
sensor used, and the PILOT does not know which sensor will be
used. Furthermore, when the PERCEPTION uses a pan and tilt
mechanism, only the PERCEPTION can decide image input timing
and position.

The position decision algorithm has two steps. First, this module
simulates the view frame and the vehicle’s future path which is
posted in the BLACKBOARD by the LOCAL PATH PLANNER.
When the simulated view frame covers the region which the PlLOT
has requested the PERCEPTION to see, this vehicle position is
defined as the image input position. Second, this module
monitors current vehicle position by watching the moving vehicle
position on the BLACKBOARD. And, when the moving vehicle
position reaches the image input position, this module controls
sensors to take an image.

3.3.4. Creation of Segmentation Parameters
To have good segmentation results, we need not only

appropriate segmentation parameters, but also good algorithms. It
is very difficult to know appropriate parameters unless
PERCEPTION has scene knowledge. In this system, the PILOT
predicts objects for the PERCEPTION, but the description is
general and does not indicate segmentation parameters for the
objects.

THE PERCEPTION MONITOR creates appropriate parameters,
and the segmentation modules use them. Currently, the
PERCEPTION MONITOR creates color type and minimum area of
segments as segmentation parameters. For example, if the
predicted objects are only a sidewalk and grass, the PERCEPTION
MONITOR decides that types of color are GRAY and GREEN, and
reports them to the segmentation module (the PATCH MAKER).
Another example is the minimum area far segments. If there are
no small predicted objects, the PERCEPTION MONITOR sets a
rather large value for minimum segment area. This eliminates‘ the
noisy segments, and makes a simple segment list which is easy to
analyze in the later object finding phase.

3.4. Colored-Range Image Analysis
It is very difficult to recognize complex objects in outdoor scenes

using only one kind of sensor, but several different sensors can
provide a lot of clues about the environment. For example, use of
both range data and color images provides a very powerful vision
system for outdoor scene analysis, because range data provide
information about the geometry of a scene, and color images
provide an important physical property of objects. In order to use
these different sensor data, we must integrate them using sensor
fusion techniques. The registration between range data and color
images can be a first step to sensor fusion. In the following
sections, we describe the registration algorithm for color and
range image, the segmentation procedure for range data, the
color segmentation algorithm, and how to use a colored-range
image to recognize stairs and slopes.

3.4.1, Registration
We must know the relative positions and orientations of the color

camera with respect to the range scanner to register range data
into camera-centered coordinates. These can be computed using
a calibration procedure. The calibration step consists of initial
value estimation and optinium value finding procedures. fn the
initial value estimation step, the measured angles are used to
simplify the problem, so the position of the camera relative to the
range scanner and its focal tength are the only unknown

parameters. The unknown parameters are computed by solving a
least-squares criterion. Once the initial values of the camera
parameters are computed, we can obtain more accurate
parameters using a modified Newton-Gauss method. In the
experiment, the wide-angle lens is used to capture color images,
which prevents us from using a linear perspective transformation
for projection. Use of a third-order polynomial for projection
provides good registration. The projection model is developed
through a conventional camera calibration procedure. Since the
camera/scanner transformation and the perspective
transformation are computed, the range data can be registered
with the color image. This is done by applying the transformation
to each point of the range image, so the corresponding pixel point
in the color image can be computed. The color intensity for the
computed pixels in color image then are assigned to the range
image. The registration procedure is illustrated in Figure 10.

(b) Original color image

3.4.2. Range Image Segmentation
The range segmentation module generates surface segments

using three basic attributes at each pixel: jump edges, surface
normal, and surface curvature. Each segmented region has a
surface normal vector, a surface curvature, 3-D edges, and a label
indicating smooth region or rough region. The detailed algorithm
for range data analysis can be found in Hebert’s recent work [2].

3.4.3. Color Segmentation
The color segmentation module uses Wallace’s color

classification algorithm [5] which uses a standard quadratic
discrimination function for multivariate normal distributions of
mean vectors and covariance matrices for the Red, Green, and
Blue components of an image. This module cannot detect 3-D
position data for segments. However, when we assume all objects
are on a flat ground plane, this module can calculate 3-D values
for segments using the relation between the perspective image
and the scene [l].

3.4.4. Overlap Segmentation
The registration process creates an image in which each pixel

has a color value and a range value. The segmentation for the
colored-range image is done as illustrated in Figure 11. First, the
color label and the surface label are obtained by color
segmentation and surface segmentation. Then, the color-surface
label for each pixel is obtained by an AND operation of the color
label and the surface label. Overlap segmentation is done using
this label value.

- -

Color type Surface normal

Labcling by Surface

I I

Color & Surface Classification

r

I.

Figure 7 1: Overlap Segmentation by Color atid Range Data

(c) Colored-range image

Figure 10: Colored-range Image Registration

II2

3.4.5. Result of a Real Scene Analysis
One good example to show the effectiveness of the

colored-range segmentation module is a slope and stairs scene of
a campus sidewalk. The slope and the stairs are made of concrete
and have the same gray color. The slope and road-side grass are
on almost the same plane. Therefore, segmentation using only
color can not separate the slope and the stairs, and segmentation
using only range can not’separate the slope and the road-side
grass. Overlap segmentation using colored-range image can
extract the slope which is only navigable region in this scene.
Figure 12 shows the results of color segmentation, range

segmentation, and colored-range segmentation drawn with
polygons.

(b) Range segmentation

(d) Colored-range segmentation projected on x-y plane

Figure 12: Colored-Range Segmentation

4. Conclusion
We have developed the Sidewalk Navigation System which can

drive the vehicle on the test site, the CMU campus. Because our
test site involves sidewalks and intersections, slopes, stairs, and
grass, the navigation system should have ability to select the best
navigation mode depending on the situation. Our architecture
works well in this environment, using both route planning and
local path planning, selecting vehicle driving mode, and selecting

sensors. The scene which includes the stairs, the slope, and the
grass is hard to detect with only a TV camera or only a range
sensor. But our perception module can analyze even this scene
using sensor fusion with color and range data. And sensor
selection dependent object prediction SaW!S Computation time.
Our current system demonstrates the. framework of an outdoor
robot navigation SYStem.

Our future work will include pipeline processing in the PILOT
modufe, expanding the PERCEPTfON module to detect other
objects, and map revising. And we will add a capability for
cross-country navigation.

Acknowledgements

The CMU Sidewalk Navigation System is created as a part of the
Strategic Computer Vision Project at CMU. This system includes
several programs produced by project members. The
EUGKBOARD was produced by Steven Shafer, Anthony Stentz,
and Charles Thorpe 141. The color classification program was
based on the code made by Richard Wallace [5]. The range image
segmentation program was made by Martial Hebert [2]. The
system architecture design is based on the proposal by Steven
Shafer, Anthony Stentz and Charles Thorpe [4].

We would like to thank Regis Hoffman for creating the LOCAL
PATH PLANNER, Paul Allen for writing the NAVIGATION
MONITOR, and Ralph Hyre for useful blackboard facilities.
Thanks to Mike Blackwell, Kevin Dowling, and James Moody for
hardware, system interfack; and video support. The civil
engineers Red Whittaker, Chuck Whittaker, Francois Bitz, Steve
Berman, and Kai Lee developed and maintain the Terregator
vehicle.

[II

PI

131

141

I51

References

Wallace, R., Matsuzaki, K., Goto, Y., Crisman, J., Webb, J.,
Kanade, T.
Progress in Robot Road.Following.
In Proceedings 7986 IEEE International Conference on

Robofics and Automation, pages 1615-1621. April,
1986.

Hebert, M.
Outdoor Scene Analysis Using Range Data.
In Proceedings 1986 IEEE International Conference on

Robotics and Automation, pages 1426-1432. April,
1986.

Lozano-Perez.
An Algorith for Planning Collision Free Paths Among

Polyhedral Obstacles.
In Communications of the ACM. October, 1979.

Stentz, A., Shafer, S., Thorpe, C.
An Architecture for Sensor Fusion in an Autonomous Land

Vehicle.
In Proceedings 1986 IEEE International Conference on

Robotics and Automation, pages 2002-2011. April,
1986.

Wallace, R.
Robot Road Following by Adaptive Color Classification and

Shape Tracking.
In Forthcoming in Proceedings 1986 AAAI. 1986.

113

