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Abstract 
Robust and effective real-time visual tracking 

is realized by combining the first order 
differential invariants with the stochastic 
filtering. The Kaltnan filler as an optimal 
stochastic filter is used to estimate the motion 
parameters, narnely the plant state vector of the 
moving object with the unknown dynamics in 
successive image frames. Using the fact that the 
relative motion between the moving object and 
the moving observer causes the image 
deformation, we compute the first order 
differential invariants of the image velocity field. 
The surface orientation and the depth estimate 
between the observer and the object are 
computed based on these first order dfferential 
invariants. 

We demonstrate the robustness and feasibility 
of the proposed tracking algorithm through real 
experiments in which an X-Y Cartesian robot 
tracks a t0.y vehicle nioving along 3 0  rails. 

1. Introduction 
Processing of a stream of many image frames 

is indispensable for many computer vision 
algorithms to accomplish given tasks in dynamic 
environments. Image sequence analysis provides 
intermediate results for a conceptual description 
of events in a scene. We introduce a novel 
algorithm for tracking a rigid object moving 
under three dimensional motion with unknown 
dynamics using only monocular image. 
Specifically, the first order differential invariants 
of the image velocity field combined with the 
stochastic filtering is used to estimate the surface 
normal and the depth from the viewer to the 
object moving in 3D. Visual tracking has two 
inherent problems[3]: 1)the system or plant has 
the unknown exogenous disturbances, 2)the 
sensor for observing the system state has also 

noises. These are two main reasons why the 
Kalman filtering is introduced to track the object 
moving in 3D. In addition, our algorithm utilizes 
the property of image deformation occurred due 
to the relative motion between the observer and 
the object[2]. This deformation can be described 
by the first order differential invariants of the 
image velocity field - curl, divergence and pure 
shear components. The surface orientation and 
the depth estimate between the observer and the 
object are computed based on these first order 
differential invariants. In the original work of 
Cipolla[2] deliberate motion is endowed to the 
observer under the static scene and observed the 
image deformation. However, we don't know the 
motion information in advance. Because the 
target moves with unknown dynamics and 
observer also moves to track this target passively. 
Even though the relative motion is existed it's not 
easy to extract the first order differential 
invariants due to concurrent motion of observer 
and target. Kalman filtering plays the important 
role of solving these problems. 

In this article we take advantages of the 
geometric properties of a triangle instead of 
direct usage of the detected image feature points. 
First, we construct a network of triangles using 
detected feature points of an image frame. 
Second, we compute the center of gravity and the 
higher order shape moments of a moving object. 
The shape moments are then used in calculating 
the first order differential invariants and the 
principal axis. The center of gravity, the first 
order differential invariants and the principal 
axis play an important role for estimating the 
system state vector of the Kalman filtering. 

2. Models for the motion and measure- 
ment of an object moving in 3D 
2.1. Motion model 
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Let's assume that a target and a tracker moves 
concurrently. Therefore, the depth from the 
viewer to the target and the viewed surface 
orientation varies as the target moves. 
Furthermore the velocity of the target changes 
linearly and rotationally and is not constant in 
practice. However, we assume the target moves 
smoothly. ~ ( t )  = ( ~ ( t ) ,  ~ ( t ) .  ~ ( t ) ) ~  represents 
the target position with respect to camera 
coordinate system with its origin Oc, and&t) is 
the orientation angle between the x-axis of the 
camera coordinate system and the principal axis 
of the target in Fig. 1. We define the linear 
velocity of the target, v = (i,?;,i)T along the 
each axis of camera coordinate system, the 
rotational velocity of the target w = (CO1, w 2 ,  w3 lT  
about the each axis of camera coordinate system, 
surface normal vector of the target, 
n = (nl ,n2 ,n,), slant rs which is an angle 
between surface normal and visual direction, and 
tilt z of the surface tangent plane. 

Yc 

4 
Fig. 1.  Motion model 

The system state vector x,at timet, is given as : 

(1) 

and the system model which describes the state 
transition from t, to tk+l  as : 
1. Position vector 

2. Linear velocity 
P( k + 1) = Rot (z, @Rot (y  ,4)Rot (x ,  p)P( k )  

xk = ( x , , y , , z , , x , , Y k . i k , W l l i , ~ 2 k , C 0 2 k ,  
T nl, j n 2 k  , I g 3 ,  3 0 ,  > r,) 

P( k + 1) = P( k) + P( k) At 

c&+ ~ i % @ p - ~ & p  
s&$ s&&D+c&~Y, 

-4 C d . P  

(2) 

=I 0 0 0 

where c stands for cos and s sin. 
3. Rotational velocity 

CO( k + 1) = W( k) (4) 
4. Surface normal vector 

1 0  0 0 

- -  5 .  Surface slant and tilt 

where 8 =  w,(k)At,  $=  w,(k)At, and p= w,(k)At, 

By denoting the state transition function by 
f( . )  and adding the system random noise 
wk -N(o,Q,),  we can express the system 

Because this model is non-linear, the first order 
Taylor series expansion is necessary to obtain a 
state transition matrix, @,-, at x = i;-l [3]. Then 
the predicted state estimate, 2; and the error 
covariance, P; are obtained as follows : 

(8) 

At = tk+l tk. 

modelas: xk = f ( x k - l ) + W k - l .  (7) 

A -  

xk = f(ii-1 ) 
pi = @k-lpl-l @:-I Qk-1 (9) 
where, 

2.2. Measurement model 
Since we use CCD camera as a sensor for 

observing the system state, the designing of a 
measurement model is the same as the modeling 
of this camera. The ideal pin-hole camera model 
is considered as the measurement model and a 
target is projected on the image plane by 
perspective transformation. Computer image 
coordinate X and Yf are defined as follows: 

where, (Sl,, sY ) are camera parameters, and 

(cx.q,,) is the center of computer frame 
memory. And we also measure the first order 
differential invariants, divergence(an isotropic 
expansion) specifying the change in scale or size, 
diw, and a pure shear describing the distortion of 
the image shape, de&, and the orientation of the 
axis of expansion p. From these first order 
differential invariants we can obtain the time to 
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contact tc and the surface normal vector n as 
follows[2]: 

(12) t, = 

where L A  represents the direction of observer 
translation. 

(13) n = (sin m o s  z, sin crsin z, cos U) 
where and z represent the surface slant and tilt 
respectively. 
According to Eqs.( 11)-( 13) we can construct the 
measurement function h(xk ) as follows: 

o3 is measured from central moments of target. 
Finally, the measurement model of Kalman filter 
is obtained by adding the measurement random 
noise v k  -N(o ,R, )  to h ( ~ , )  as: 
zk = h( xk ) + vk. (15) 
Because this model is also non-linear, the first 
order Taylor series expansion is necessary to 
obtain a measurement matrix, H, at x = iii [3]. 
Then the filtered state estimate. i; and error 
covariance, pk+ are obtained as follows : 

2 
d i w  -defv cos(2p - 2LA) 

T 

h(Xk) = ( - Y f , l j , Z , w , , n , , r ? , , n , ) '  (I4) 

i: =ii +Kk[zk -h ( i , ) ]  (16) 
Pk+ = [I-KkHk]P, (17) 
K, =PiHz[H,P,Hz +Rk]--' (18) 

where H, =El 
a x  x=i ,  

_- - 
Poo7 0 0 Po0 0 0 Po0 

PI0 Po0 0 2/40 Po1 0 PI0 vo 

dt , L [ ~ ~  WO 0 3 ~ 2 ~  % I  0 PZO *Y 

d POI - 0 Po0 POI 0 PIO 2Poi - - 

po2 0 2pol pO2 0 2 ~ 1 1  W O 2  i7x 

- ~ 3 1 -  - 3 ~ 2 ,  P30 4 ~ 3 1  3 ~ 2 2  p40 2 ~ 3 1 ~ - v ~ -  

3. Surface orientation and velocity with 
respect to optical-axis 
3.1. Computing shape moments 

In this section a new method of computing 
shape moments based on a triangle is introduced. 
First. triangular grid is made by using estracted 
feature points through the triangulation 
algorithm. Then the general two-dimensional 
(p+q) th order moments of a continuous density 
function f ( x , y )  = 1 are defined as 

mpq = JJxPyq.f(x,y)dxclY p , q  = 0,1,2;*.. (19) 
R 

We use Eq.( 19) to represent the (p+q) th order 
moments of a triangle. The subdivision of a 
triangle into RI andR2 is required as shown in 
Fig. 2. Then the (p+q)'horder moments of a 
triangle are defined by 

(26) 

RI  R2 
For R, and R,, Eq.(20) is described as 

where J(x),  f , ( ~ ) ,  and f 3 ( x )  are the 
equations of each side of a triangle. 

Y 

m 

I 3 - x  

Fig. 2. Subdivision of a triangle 

we calculate the shape moments of each triangle 
which is included in triangular grid of a target 
and then for all triangles we sum corresponding 
moments as follows : 

n 

1=1 

where n is the number of triangles of a target. 
Let the center of the gravity of a target as (x,Y) 

curl, pure shear magnitude, and the direction of 
maximum expansion can be determined. 

3.3. Recovery of the viewed surface normal 
vector 
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For any successive two image frames, we 
extract the center of gravity and the first order 
spatial derivatives of image velocity field and 
compute 1 he first order differential invariants. 
And then we compute the surface normal vector 
as follows : 
1)Let observer translation vector A = (A,  , A 2 )  
2)Let the center of gravity of the first and second 
frame in consecutive images (I),? (I)), 

(Ff (2) , s i  ( 2 ) )  respectively, then 

3)Let uo,v0 of pure translation at the center of 

4) Then we obtain 

4)The slant and tilt are given by 
defv tano=-, r= 2p-LA. 
14 

Therefore the unit surface normal vector n is 
calculated using Eq.( 14). 

3.4. Recovery of the translational and 
rotational velocity with respect to optical 
axis 

In the camera coordinate system, z-axis is 
aligned with the optical axis. Therefore, the 
translational velocity of the target along the z- 
axis is 

(3 1) 
. d i w  --defvcos(2~-2LA) 

The predicted estimate ik of z is used in Eq.(3 I), .  
Ultimately, i of Eq.(3 1) becomes measurement 
value in Kalman filtering. And the rotational 
velocity about the optical axis is computed with 
principal axis which is defined by 

(32) 

For any successive two image frames, let exof the 
first and second frame be 0, (1) and (2) .  Then 
the rotational velocity about the optical axis is 

(33) 

In the long run, c,+ also becomes measurement 
value in Kalman filtering. 

z =  z 
2 

0, = - t a d  1 2Pu, 1 

2 P20 -Po2 

* 4, 
~j =-, A8,=0,(2)-19,(1). 

At 

4 Experiments 
4.1. System configuration 

In this study, the system is composed of the 
Cartesian robot as a tracker, CCD camera 
attached to the robot arm to observe a target 
motion, two photo-electric switches which 
perceive a target and signal to the robot to start 
and finish the tracking, a toy vehicle which 
moves along the three dimensionally shaped rail, 
and a standard IBM PC-486 DX-33 with an 
image digitizer. Fig. 3 shows this configuration. 
The system starts as the robot goes to home- 
position and the tracking is beginning as soon as 
arriving the signal from the photo-electric 
switch- 1. The robot continues to track according 
to the position vector estimated from the 
prediction phase of Kalman filtering as shown in 
Fig. 4. The tracking is continued until the other 
photo sensor-2 signals the target departs from the 

(a) Real system configuration 

Position Control 
Board 

cc 

(b) Schematic diagram 
Fig. 3. Conceptual system configuration 

Fig. 4. Block diagram of Kalman filter to robot 

4.2.Synthetic experiments 
In this section, we demonstrate the robustness 

and feasibility of the proposed tracking algorithm 
through the experiments using the target as shown 
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in Fig.S(c). We assume the lens parameter f is 
given by the calibration[5]. The deviation between 
the hypothesized ideal motion and real motion is 
captured by process noise covariance. Error 
covariance of initial state vector of Kalman filter 
are given by relatively large value. Covariance 
matrix of Gaussian random noise of the 
measurement model is specified through the 
experiment. We have repeated the image 
capturing and extracted the center of 
gravity(iU, , y f  of a target at static environment 
and computed the variance of ( Tf ,F ) using J 
distribution with n-1 degrees of freedom. Finally 
the initial state vector was determined by 
assigning a suitable value. These values are quite 
different from true ones. We have carried out the 
experiment in which the robot is presumed to 
track the toy vehicle moving with both linear and 
rotational motion. The initial state vector io= 

was given. Especially z and Z of io are quite 
different from real situation. In Fig. S we showed 
the tracking results for full tracking range. Fig. 
S(a) shows the estimated depth and Fig. 5 @ )  
indicates the resulting manipulator's tracking 
positions. 

( -1 5,-50,1022,0, 106,-10,0,0,0,0.0087,0.996,5°,900) 

# o f  h.' 
17 I6 I S  14 11 11 I I  IO 9 8 7 6 I 4 3 1 1 -4: ___------ -_ ----- 

\-. IWO 

dg+h(mm) ' O m  

(a) Depth estimate 
(A) 

3 W C  / 
I T  

0 IW .600 .,bo do0 3W -2W -1W 

on 

(c) Synthesized target feature 
Fig. 5 .  Tacking results for full trackir ig range 

Even though the target changes the motion 
from linear to circular and vice versa the tracker 
adaptively tracks the target using previous 
motion parameters because of Kalman filter's 
predictive ability based on past data. In Fig. 5(b), 
the marked area (A) is a good example of this 
problem. The shape of rail of this area is 
originally close to straight line. But the tracking 
result is not so close to straight line. To overcome 
this problem, we need a faster sampling rate. 
Specially, in Fig. 6 we depicted the depth 
estimate using linear regression model on the 
linear tracking zone. 

Fig.6.Depth estimation under linear and rotational motion 

The viewed surface normal vector was 
estimated using the proposed scheme in section 
3.3. Fig. 7a). shows the recovered z-coordinate 
based on the third component cos0 of the 
estimated normal vector using Eq. (14). And Fig. 
7@) shows the trend of slant angle. 

I 

(b) The slant angle 
Fig. 7. Estimated surface normal vector 

4.3. Real experiments 
We illustrate the experimental results with real 

target under the same experimental setup as 
shown in Fig.3. The correspondence problem is 
solved using Mahalanobis distance and Kalman 
filter's prediction ability. The image processing 
results are presented in Fig. 8. In Fig.8 model 
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segments are obtained from prediction step of 
Kalman filtering and updated at filtering step, 
data segments are extracted line segments, 
matching candidate set(mcs) includes the all data 
segments with Mahalanohis distance less than 
threshold corresponding to each model segment, 
best fitted data segments are selected from mcs 
satisfLing the adjacency condition of each model 
segment. and then triangulation is carried out 

using intersection points of best fitted lines. The 
principal axis, center of gravity, and higher order 
shape moments are produced according to 
Eqs.(20)-(25) and (32). Fig. 9 shows target 
tracking process through the extracted line 
segment matching. I n  this tracking the 
divergence change is well suited to real situation. 
Specially, in sixth frame the divergence change is 
bigger due to the correspondence problem. 

Fig. 8. Image processing for target tracking with # 2 frame 

Initial frame #4 frame #6 frame Change of divergence 
Fig. 9. Target tracking by extracted line correspondence 

5. Conclusion 
We developed a new tracking algorithm to 

track a target moving in 3D estimating a 
position, a linear and angular velocity, and an 
orientation of viewed surface in real-time with 
monocular visual sensory feedback. By using 
Kalman filter the tracking result was quite stable 
even in the presence of system and sensor noise. 

In the extraction of the center of gravity, the 
principal axis, and the first order differential 
invariants of a target we used the triangulation of 
detected feature points of an image. 
Triangulation was very efficient method to 
reduce the processing time. To obtain the surface 
orientation and the depth in dynamic 
environment we took advantages of the image 
divergence and deformation principle. 

We demonstrated that the first order 
differential invariants play the key role of 
estimating the depth from a viewer to a target 
and the surface normal vector of a target from 
monocular image under the situation in which 
target and viewer moves at the same time. The 
experiments showed that the proposed algorithm 

can be applicable satisfactorily to motion tracking 
in 3D on a 486-DX-33 PC. We expect this work 
will contribute in many areas of computer vision 
such as motion analysis, scene analysis, stereo 
vision and so on. 
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