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The information available to agents using decentralized task allocation algorithms plays an important role in how

assignments can be constructed. The requirement that information be globally consistent across all agents can be

leveraged to allow cooperation on coupled objectives. In environments where global information consistency

assumptions are difficult to enforce, the alternative is to rely only on a local best estimate of the global information

state, which is referred to here as local information consistency. Algorithms that assume only this local information

consistency will have reduced optimization capabilities compared to their global information assumption

counterparts. Specifically, if objective functions are non-submodular, local information algorithms may produce

arbitrarily bad allocations or, in the case of many algorithms, may not even converge. The key contribution of this

paper is an algorithm termed bid warped consensus-based bundle algorithm that converges for all deterministic

objective functions and has nontrivial performance guarantees for submodular and some non-submodular objective

functions. Included in this paper is an analytical analysis of both convergence and performance of the algorithm, as

well as a numerical comparison to several other competing local and global information approaches.

I. Introduction

T HE goal of standard multiagent task allocation algorithms [1–3] is to coordinate a team of cooperative agents in order to achieve an overall

mission objective. These mission objectives can often be broken up into tasks that require specific actions by capable agents, all while

satisfying constraints (e.g., fuel, power, vehicle capabilities, etc.). Centralized task allocation algorithms are typically preferred when an

application requires high degrees of collaboration.However, in contested environmentswhere communicationsmay be unavailable, unreliable, or

have high latency or high cost, relying on centralized solutions may be impractical. In these communication-limited environments, it is necessary

to consider distributed or decentralized algorithms [4]. Unfortunately, these architectures introduce additional complications, including

difficulties with establishing both algorithmic convergence and performance. The major reason for these complications is that, in decentralized

environments, agents may operate on only partial information; thus, independent agent optimizations may not align perfectly with each other.

Thus, advanced communication protocols are typically required for decentralized algorithms to optimize over desired objectives. These

communication protocols can be considered to use either of two main information assumptions: global information consistency and local

information consistency.
1)Global information consistency assumptions (GICAs) require that all agents agree upon certain relevant pieces of information during the task

allocation algorithm’s execution. This agreement forms a set of “correct” information that agents can independently recognize as teamwide truth.
Given that these global information consistency assumptions require a teamwide consistency of information, the communication process occurs
on a global timescale. Algorithms that use these assumptions can be found in [3,5–23].

2) Local information consistency assumptions (LICAs) do not require global consistency of any information. These algorithms can still use
global information but are characterized by only requiring local information consistency (i.e., they do not require any global mechanisms). This
approach can provide a much shorter timescale for using new information (as compared to requiring global information consistency) because
agents are not required to ensure that this information has propagated to the entire team before using it. The natural downside of this approach is
that agents cannot guarantee that any piece of information is globally consistent; thus, algorithms using only local assumptions must be robust to
planning with inconsistent information [24–28].

There are many factors that determine whether requiring global or only local information consistency will provide better algorithmic

performance for a particular mission. Themost important decisionvariables will be the communication environment, themission complexity, and

the time constraints for creating assignments. A trivial environment where global consistency assumptions would be preferable is an environment

where the agents are fully connectedwith no bandwidth constraints and nomission assignments are time critical. In this environment, therewould

be no need to introduce an algorithm that handles the added complexity of only relying on local information consistency assumptions. Conversely,

a trivial example in which local information consistency assumptions are necessary is when the network can become temporarily disconnected.
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Intermittent network disconnections during global information consistency algorithms will often break the assumptions tied to performance and
convergence. Possible repairs would include waiting until the network reconnects (which may never happen) or detecting the new network,
continuing on, and hoping that future network dynamicswill not break the resulting allocation (which is not a guarantee). Conversely, this domain
is handled naturally with local information consistency assumption algorithms.

In other domains where global consistency assumptions are reachable, local consistency algorithms can actually drastically reduce convergence
times. Figure 1 shows that the number of iterations to convergence of sequential auction algorithms (such as the one described in [22]) will require
roughly the number of tasks times the network diameter number of iterations. Even algorithms that globally consider sets of tasks simultaneously [e.g.,
a GICAversion of the consensus-based bundle algorithm (CBBA) [26] that rebroadcasts messages so that each agent has the entire team’s bundles
during the communication phase] can require significantlymore communication iterations than local information consistency assumption algorithms
(CBBA; [26]). This is because assignment conflicts are often between agents that are near each other in the communication network, and conflicts can
be managed faster using only local conflict-resolution protocols. The full details of this mission scenario, shown in Fig. 1, are provided in Sec. VI.B.

These insights imply that some environments arewell suited for algorithms that use only local information consistency assumptions. This paper
investigates the limitations that LICA algorithms impose on assignment convergence and performance. In general, issues arise because algorithms
that make decisions based only on LICAs cannot trust that their information is globally accurate. This means there is no mechanism to globally
enforce assignments, and any local assignment may eventually be replaced. This lack of assignment guarantee can lead to instability in the
convergence process. Specifically, if the agent objective functions do not obey a property called submodularity, algorithms that only require LICA
may not converge [24–27]. A formal definition for submodular objective functions will be presented in later in this section; but, informally, a
submodular objective function requires that the value of servicing a task does not increase due to the assignment of any other tasks. Unfortunately,
many objective functions of interest, including those that incorporate fuel penalties, information gathering metrics, cooperative tasking metrics,
and stochastic environments may take a non-submodular form.

A solution to this issue is constructed in this paper for some forms of non-submodular functions (see theAppendix for further details about these
functional forms). The algorithmic approach, termed bid warped CBBA (BW-CBBA), is to modify the information shared between agents so that
it looks as if each agent is using a submodular objective function, even though agent preferences will be determined using non-submodular
objectives. This approach provides convergence guarantees for all deterministic objective functions and quantifies when nontrivial performance
bounds exist. The main contributions of this paper are 1) presentation of a LICA algorithm that handles more general objectives than available in
the literature, and 2) identification of convergence and performance characteristics of this LICA algorithm. In the process, standardized
terminology and concepts are introduced for describing LICA algorithms and novel proof techniques are introduced. The preliminary idea for
BW-CBBAwas first presented in the authors’ earlier work [29], but this paper includes a deeper theoretical analysis of the method and a more
significant set of numerical comparisons with other approaches.

II. Problem Statement

This section presents the general problem statement and formalizes some of the language and variables used throughout this paper. Given a set of
Na agents andNt tasks, the goal of the task allocation algorithm is to find a conflict-free matching of tasks to agents that maximizes a global reward.
An assignment is said to be conflict free if each task is assigned to nomore than one agent. The global objective function for themission is given by a
sum over local objective functions for each agent, whereas each local reward is determined as a function of the tasks assigned to that agent and the
times atwhich those taskswill be serviced. This task assignment problemcanbewritten as the followingmixed-integer (possiblynonlinear) program:

max
x;τ

XNa

i�1

XNt

j�1

Fij�x; τ�xij (1)

subject to

G�x; τ� ≤ d

x ∈ f0; 1gNa×Nt ; τ ∈ fR�gNa×Nt

where x ∈ f0; 1gNa×Nt is a set of Na × Nt binary decision variables xij, which are used to indicate whether or not task j is assigned to agent i;
τ ∈ fR�gNa×Nt is the set of real-positive decision variables τij indicating when agent i will service its assigned task j (where the value of τij is

Fig. 1 Comparison of the number of iterations required for convergence in 500MonteCarlo trials of a 200-taskmissionwith a varying number of agents
(see Sec. VI.B for detailed scenarios).
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irrelevant if task j is not assigned to agent i);Fij is the score function for agent i servicing task j given the overall assignment; andG � g1; : : : ; g
T
Nc
,

with d � d1; : : : ; d
T
Nc
, defines a set of Nc possibly nonlinear constraints of the form gk�x; τ� ≤ dk that captures transition dynamics, resource

limitations, tasking assignment constraints, cooperative constraints, etc. This problem formulation can accommodate several different design
objectives and constraints commonly used in multiagent decision making problems (e.g., search and surveillance missions where Fij

represents the value of acquired information and the constraints gk capture fuel limitations and/or no-fly zones, or rescue operations whereFij

is time critical and favoring earlier τij execution times, etc.). An important observation is that, in Eq. (1), the scoring and constraint functions
explicitly depend on decision variables x and τ, which makes this programming problem very difficult to solve [nondeterministic polynomial-
time (NP) hard] [30].

The shape of the mission objective function is fundamentally related to the difficulty of creating good task assignments. Specifically, objective
functionsmust be submodular [31] for LICA algorithms to converge and have nontrivial performance bounds [24–27]. Define a set functionU�S�
to be the value of servicing a set of tasks S. Also, then define themarginal score functionU�SjA� to be the contribution of adding a set of tasks S to
an already existing task allocation A as U�SjA� � U�S ∪ A� −U�A�. From this, submodularity can be defined as follows:

U�SjA 0� ≥ U�SjA�
∀ A 0 subject to A 0 ⊂ A (2)

A task environmentA can be thought of as a globally consistent set of individual allocations s, where each element s ∈ S defines an assignment
of a single task to a single agent. Equation (2) requires that the value of a particular assignment S cannot increase because of the presence of other
assignments. Although many score functions typically used in task allocation satisfy this submodularity condition (for example, mutual
information with conditional independence assumptions [32]), many do not. Aswill be shown in the next section, submodular score functions are
essential for most LICA algorithms to guarantee convergence. Previous work identified modifications to the score functions that employed
heuristics to ensure that submodularitywas satisfied [26], but these heuristicsmay lead to poor performance and are not usually intuitive to design.
This paper presents an online process to modify a LICA algorithm called the consensus-based bundle algorithm that enables the use of non-
submodular score functions while still guaranteeing convergence. The principles of the approach are quite general and could be applied to many
LICA algorithms.

Recall that the problem statement defined as Eq. (1) uses a score function in addition to some constraints. There are two main ways that these
constraints can be encoded into the function analysis of algorithms presented in this paper. Either the constraints can enforce the domain over
which the function can be evaluated or infeasible assignments can be defined to have a value of −∞. The analysis of these algorithms is much
easier if we can model the objective functions to only be defined over a feasible domain. The approach taken in this paper is to prove that the
proposed algorithm will return a feasible solution; then, an analysis can be performed over the feasible domain of the set functions.

III. Non-Submodular Examples

It is simple to demonstrate that a LICA algorithmmay fail to convergewith a non-submodular score function, evenwith as few as two tasks and
two agents. Consider the following algorithm: each agent sequentially produces bids on a set of available tasks; then, it shares the bids that
maximize its local scorewith the other agents in the team. If an agent bids the highest value for a certain task, it “wins” that task at that round and is
allowed to keep it. This process repeats until no agent has incentive to deviate from their chosen allocation. In the following examples, the nominal
score achieved for servicing a taskwill be defined asT. The actual value achieved for servicing the taskmay be a function of other things the agent
has already committed to doing. An agent’s bid will be a pair, composed of a task identification (ID) and a task score. The bid represents the
information an agent plans to communicate with its neighbors. The notation for an agent’s bid in examples 1 and 2 (Figs. 2 and 3, respectively) is
(task ID, task score). For the purposes of this algorithm, a bundle is a sequential order of bids, where the later bids are dependent on all earlier bids
(in the notation, older bids are on the left).

A. Example 1: Baseline Submodular Score Function

This example (Fig. 2) provides a baseline algorithmic progression with a submodular score function to illustrate how convergence is achieved.
In this first example, deviation from a nominal value T will be represented as δ, and its value will be 0 < δ < T. In iteration 1, each agent
chooses between four feasible bundles. The greedy maximum bundle for each agent includes bids on both tasks 1 and 2, but the bid value for the
second task placed by both agents is 2δ less than the bid for the first task. The bid values in this example could have been produced by a submodular
score function because the score has not increased because of the assignment of the first task (in fact, it has decreased). Between iteration 1
anditeration2, both agents share their bidswith each other and a consistent assignment is reached initeration2 that actuallymaximizes
the global score. When this algorithm is run with submodular score functions, it will return identical allocations to a similar global information
consistency version of the algorithm where individual bids are sequentially locked in as a team.

B. Example 2: Non-Submodular Score Function

Example 2 (Fig. 3) highlights how convergence is lost when non-submodular score functions are introduced with the algorithm defined at the
beginning of Sec. III. In this example, δmay take any value: 0 < δ < ∞. Atiteration1, both agents choose between four feasible bundles, and
they choose the bundlewith the highest total score (agent 1 chooses its bundle 4 and agent 2 chooses its bundle 4). In this example, the maximum
value bundle for each agent has a second task that has increased its value because of the assignment of the first task. This explicitly violates the
submodularity condition in Eq. (2).

Between iteration 1 and iteration 2, the agents share their bids with each other. Agent 1 is outbid on task 1; thus, the bid on task 2 is
invalidated because it depends on task 1 being assigned. Similarly, agent 2 is also outbid on task 2; thus, its bid on task 1 is invalidated. As a result
of the conflicts in iteration 1, neither agent predicts that it can win either task at iteration 2. This includes the fact that neither agent can
place a single bid that would outbid their expectation of what the other agent can bid. Thus, for this iteration, neither agent places a bid. Between
iteration 2 and iteration 3, each agent will then share their empty bundles. This reverts back to the initial conditions of the algorithm,
iteration 3 repeats iteration 1, and the cycle will continue forever.

From example 2, it becomes clear that a LICA algorithm does not workwell with non-submodular score functions. It may seem easy as a global
observer to see that agent 1 choosing bundle 2 and agent 2 choosing bundle 3 would produce the global optimal objective. However, this requires
having the global information of every possible bundle for each agent.

A candidate LICA solution for fixing the convergence issues is to detect cycles of the type shown in example 2 locally, and then use this
knowledge to stop suggesting cycling plans. Unfortunately, in general, there is no fast way to detect if a team has entered into one of these cycles
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because they could, in general, include a combinatorial number of task assignments being traded between the agents during the consensus process.

Evenworse is the fact that breaking the algorithm out of one cycle does not guarantee that the agents will not enter another cycle at a later stage in

the convergence process.
In practice, many non-submodular score functions can lead to this cycling behavior, and the following example highlights that objective

functions that lead to these cycling conditions are not exotic and, in fact, occur for many desirable score functions.

C. Example 3: Waypoint Tasks

Consider the potential task scenario illustrated in Fig. 4 involving one agent (circle labeled a) and two tasks (circles labeled 1 and 2). For the
purpose of this example, assume that da2 > da1 ≫ d12, where the notation duv is the distance required to move from location u to location v. An
intuitive score function Fij�x; τ� for this environment is defined as follows:

Fij�x; τ� � R − fidx�j (3)

whereFij�x; τ� is the score for assigning task j to agent i given current assignment x and arrival timings τ,R is the reward obtained for servicing a

task, fi is the fuel penalty per unit distance for agent i, anddx�j is the increase in distance travelled by inserting task j into the current assignment x
(which by assumption cannot already include an assignment on task j by agent i). If the LICA algorithm introduced at the beginning of Sec. III

were run in this environment, it would first assign task 1 because R − fida1 > R − fida2. When the algorithm assigns task 2 using the score

function presented in Eq. (3), the score obtained is R − fid12. This results in the bid on the second task being greater than the first task

(R − fid12 > R − fida1), which is exactly the situation shown in example 2 for a non-submodular score function. Depending on bids made by

other agents in the fleet, a LICA algorithm may fail to converge with this simple geometry and score function.
One possible strategy to address this problem is to “submodularize” the score function using a heuristic [33]. For example, score function (3)

can be approximated as follows:

F 0
ij�x; τ� � R − fidaj (4)

where the only difference is that the distance metric is defined as the distance daj measured from the agent’s initial location to task j. This is
required to ensure that the incremental fuel penalty is never smaller thanwhen the agent has no previous unassigned tasks.With this score function,

the first bid will again be on task 1 becauseR − fida1 > R − fida2, and the second bid will be on task 2; but, this time, the bid will have the score

R − fida2. This objective function is now submodular because the score on task 2 does not increase as a result of the previous assignment of task 1.

Fig. 2 Example 1: allocations with a submodular score function.
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However, this score function cannot capture the fact that, because task 1 is being serviced, task 2 should seem much more favorable (as it would
have been much closer to the agent after servicing task 1). The purpose of the approach presented in this paper is to enable algorithms with only
local information guarantees to use score functions that capture these non-submodular effects without having to sacrifice convergence guarantees.
Example missions using both F and F 0 are explored numerically in Sec. VI, and these demonstrate the potential downside of using a priori
submodularized functions.

D. Example 4: Stochastic Tasks

Stochastic objective functions can be used in environments where some necessary planning parameters are not known or even knowable a
priori. Examples of these uncertain parameters includewind speed, tolerances on agent performance, duration of search tasks, or other difficult to
model a priori environmental effects. When planners use stochastic score functions, combining the score distributions of individual tasks over
multiple assignments in a sequence may not have a closed-form solution. In this case, sampling may be required to approximate these
distributions. Figure 5 illustrates an example where non-submodular effects can arise due to this necessary sampling. In the figure, the circle with
an a represents the agent, and the circles with 1 and 2 are task locations. The notation tuv is the travel timemeasured from location u to location v.

Fig. 3 Example 2: allocations with a non-submodular score function.

Fig. 4 A potential task environment described in example 3.
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Assume that the score function has the following simple form:

Fij�x; τ� � R − τij (5)

where τij represents the time at which the task is serviced, andR is some fixed reward. This score function then linearly decays with time. This is a

submodular score function if the traveling times obey the triangle inequality.
With appropriate distributions over the travel times, it is possible to see that, for a particular sample (Fig. 5), ta2 can be greater than the sumof ta1

and t12:

Prob�ta2 > ta1 � t12� > 0 (6)

Therefore, even though the expected mission scores are submodular,

E�R − ta2� ≥ E�R − �ta1 � t12�� (7)

the sample mean for any finite set of particles of size n sampled from the distributions of ta2; ta1, and t12 may not be submodular:

Prob

0
B@
P

n
m�1

�
R − t�m�

a2

�
n

<

P
n
m�1

�
R −

�
t�m�
a1 � t�m�

12

��
n

1
CA > 0 (8)

In this notation, t�m� is themth sample from the random variable t. Therefore, it is possible for the objective function sample mean for servicing

task 2 to be greater by first servicing task 1, which breaks submodularity. This illustrates another examplewhere non-submodularity can arise and

must be accounted for to use LICA algorithms in practice.

E. Convergence for Non-Submodular Score Functions

The convergence failures highlighted previously in example 2 are a direct result of multiple tasks being assigned with only local information

available about thewinners. It was postulated as lemma4 in [26] that a trick for augmenting the score function to satisfy submodularitywould be to

ensure that the bids were monotonic in subsequent iterations:

~cij�t� � minfcij; ~cij�t − 1�g (9)

where cij is the initial score at iteration t, and ~cij�t� is the augmented score at iteration t. Unfortunately, this approach tends to create a significant
performance degradation in some environments. If this approach is applied to the environment presented in example 2, after iteration 2, the
algorithm will not be able to bid above zero on either task 1 or 2; thus, no tasks will be assigned for a positive score. This is not a desired result;

the approach provided in this paper prevents algorithmic cycling by preemptively changing the bid values rather than relying on the performance-

degrading process of identifying cycles after they happen.

F. Using Local Information Consistency Assumption Algorithms

The content of this section outlined howusingLICA algorithms can lead to convergence and performance degradationwhen score functions are

non-submodular. Despite this, as was outlined in Sec. I, there exist environments that require or could use LICA task allocation algorithms to

improvemission performance. The rest of this paper defines and analyzes algorithmic extensions to an existing LICA algorithm (CBBA) that can

increase the class of score functions usable in practice. Thesemodifications allow for the use of LICA task allocation algorithms inmany desirable

mission domains where performance and convergence guarantees were previously unavailable.

IV. Solution Approach

This section focuses on a newdescription of the consensus-based bundle algorithm [26] aswell as algorithmicmodifications specifically related

to handling non-submodular score functions. The following description of the CBBA is a slight modification of the one that was originally

proposed in [26], introducing some new terms that will be used for proving relevant aspects of the new algorithm proposed in this paper.

Fig. 5 Potential task environment described in example 4.
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A. Baseline CBBA

The CBBA is a local information consistency assumption auction algorithm. The algorithmic structure of the CBBA is an iterative two-phase

algorithm. These two phases are a bundle building phasewhere each vehicle greedily generates an ordered list of assignments and a task consensus

phasewhere conflicting assignments are identified and resolved through local communication between neighboring agents. These two phases are

repeated until the algorithm has reached convergence. To further explain the relevant details of the algorithm, some notation will first be

formalized.
1) A bid is represented as a triple, sij � hi; j; ciji, where i represents the bidding agent’s index, j represents the task’s index, and cij represents

the value of assignment for this task agent pair.
2) A bundle is an ordered data structure internal to each agent i, bi � �sij1 ; : : : ; sijn�, that consists of a list of bids where sijk is the kth bid added

to the bundle. A bundle is said to have length n if there are n bids in the list. When new bids are added to the bundle, they are appended to the end;
thus, the order in the bundle reflects the relative age of each bid, and thus the dependency structure of the bids.

3) The bid space is an unordered set of bids, defined asA � fsi1j1 ; : : : ; siNjN g, whereN is defined to be the current size of the bid space. This bid
space contains a globally consistent set of the current winning bids in the team.

4)A local bid spaceAi is defined as a set that contains agent i’s current local understanding of the global bid space. In a fully connected network,
Ai � A after each task consensus phase (which also would correspond to having global information consistency assumptions over the task
space); but, in general, the geometry of agents in the network may lead to information propagation latencies, and thus nonidentical local bid
spaces. A consistent global bid space will be always be a subset of the local bid spaces A ⊆ Ai.

5) The network diameter D is defined as the number of communication hops between the furthest agent pair in the communication network.
More formally, define a number for each agent i consisting of the minimum communication distance to every other agent i 0. The maximum value
over all agents is defined as the network diameter.

The CBBA begins with each agent i being provided (or somehow discovering) a set of available tasks. In general, the set of available tasks does

not need to be identical for all agents. The two-phase algorithm then begins in the bundle building.

1. Bundle Building Phase

For each agent i, the bundle building phase is run independently.
1) All current tasks that agent i has won are removed from agent i’s bundle bi and local bid spaceAi (lines 3 and 5 of Algorithm 1). This step is

required for the performance guarantees of the algorithm¶ but, in most cases, the agent will re-add each of the tasks it has just dropped.
2) A local internal score function Fij�bi� is defined for each agent i and task j. It is a function of the agent’s current bundle bi and implicitly a

function of the assignment constraints G�x; τ� ≤ d posed in the problem formulation [Eq. (1)]. If a proposed assignment will not satisfy the
constraints required by Eq. (1),Fij�bi�will return a value of−∞. For complete notation consistency with Eq. (1) in Sec. II, assume that there is a
one-to-one mapping between �bi� and �x; τ�. The complexity of actually picking the execution times τij is not a focus of this paper, but other
solutions used for theCBBAcan be implemented [34]. For each task j available in the environment (line 7), each agent i uses its local internal score
function Fij�bi� to create a score cij (line 9).

3) These scores cij are compared with the winning bid information for the corresponding task j located in the agent’s local bid space Ai

(line 10). The largest score that would outbid the current winner in the local bid space is chosen as agent i’s next bid (line 12). A bid sij⋆ is created
(line 13) and, as long as the value of the bid is positive cij⋆ ⋅ hij⋆ > 0 (line 14), it is placed at the end of the bundle (line 15) and is added as the
winning bid on task j in the local bid space Ai (line 16).

4) Steps 2 and 3 (lines 7–16) are repeated until no tasks have a larger score than the corresponding bids already inAi or the maximum bundle
lengthLt (line 6) is reached: at which point, the bundle building phase terminates. In this formulation, the values cij that are used to rank the tasks
are the same as the values used to construct the bids sij. The algorithm constructed later in this paper separates these two values in order to provide
convergence for all objective functions as well as nontrivial performance guarantees for some classes of non-submodular objective functions.

Algorithm 1 CBBA: bundle building phase

(for agent i)
1: Procedure Build Bundle (Ai)
2: for all sij 0 s:t:∃j 0 where sij 0 ∈ Ai, do

3: Ai←Ai \ sij 0
4: end for
5: set bi←∅
6: while jbi < Ltj, do
7: J←fjjsij ∈= Aig
8: for all j ∈ J do
9: cij←Fij�bi�,
10: hij←

Q
si 0j∈Ai

I�cij > ci 0j�
11: end for

12: j⋆←argmax
j∈J

cij ⋅ hij

13: sij⋆←hi; j⋆; cij⋆ i
14: if cij⋆ ⋅ hij⋆ > 0, then

15: bi←bi � sij⋆

16: Ai←Ai � sij⋆

17: else
18: break
19: end if

20: end while
21: return �bi;Ai�
22: end procedure

¶Agent i may want to change its bids in light of new information obtained through communication instead of being “stuck” with the bids made in the previous
iteration.
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2. Task Consensus Phase

After the bundle building phase completes, each agent i synchronously shares its current local bid spaceAi with each of its adjacent neighbors.

This local bid space, in combinationwith timestamp information, is then passed through a decision table (see [26], table 1, for details) that provides

all of the conflict resolution logic to merge local bid spaces. In general, the consensus logic prefers larger and more recent bids. If the consensus

phase has occurred more than twice the network diameter times without any bids changing, the algorithm has converged and terminates; if not,

each agent reenters the bundle building phase and the algorithm continues.

3. Score Function

Fundamental to all of the convergence and performance guarantees for the CBBA is that it must use diminishing marginal gains (DMGs) to

satisfy the score function. The requirement of DMGs for the CBBA score function is a special case of requiring submodularity, as was introduced

in Sec. I, because it was defined for a specific marginal contribution to the existing bundle bi as opposed to for all sets as was defined in Eq. (2). It
was recognized in the seminal description of the CBBA [26] but is updated here with the notation of bids and bundles. The DMG is defined as

Fij�bi� ≥ Fij�bi �end sij 0 � ∀ j 0 ≠ j (10)

where bi �end sij 0 refers to adding a bid sij 0 on task j
0 to an already existing bundle bi. Roughly, this conditionmeans that no bids sij 0 can bemade

on any other task j 0 that would increase cij, which is agent i’s score for task j. When score functions Fij�bi� are defined as the marginal

contribution of adding a bid on task j to an existing bundle bi (which is what is done in this paper), the submodularity constraint can replace

requiring DMGs.

B. Bid Warping

The approach presented in this section changes two fundamental aspects of placing bids. First, the ranking of task scores is allowed to use an

objective function that does not satisfy submodularity and the external bid values (those shared with other agents) are not identical to the internal

scores used for deciding which are the highest-value tasks. To highlight the algorithmic changes, some additional notation is needed.
Bid warping uses the internal score cij and the current bundle bi to construct a warped score �cij:

�cij � min

�
cij; min

k∈f1; : : : ;jbijg
cijk

�
(11)

where cijk is the unwarped score of the kth element in the current bundle, and jbij is the length of the current bundle. Thewarped score can also be
recursively defined as the minimum of the unwarped score cij and the value of the most recently warped bid added to the bundle �cijjbi j

�cij � min
n
cij; �cijjbi j

o
(12)

Definition 1: Define a strict bid ordering. In this paper, the tie breaker will be defined to be the lowest agent ID. Therefore, for bids

sij � hi; j; ciji,

si1j1 ≻ si2j2 ⇒ ci1j1 > ci2j2 (13)

∨ ci1j1 � ci2j2 and i1 < i2 (14)

∨ ci1j1 � ci2j2 and i1 � i2 and si1j1 earlier in bundle than si2j2 (15)

These three conditions can completely define a strict ordering over bids. The first “or” clause [Eq. (13)] defines that, if the score ci1j1 of si1j1 is
larger than the score ci2j2 of si2j2 , then si1j1 ≻ si2j2 . The second or clause [Eq. (14)] defines that, if the scores are the same ci1j1 � ci2j2 , then the bid
with the lowest agent ID is larger. The third or clause [Eq. (15)] is reached when the scores are the same and the agent IDs are the same. This is the

case when the two bids are in a single agent’s bundle, so it is defined that the earliest element in the bundle is larger.

C. Bid Warped CBBA

This section presents the main algorithmic modifications required for the CBBA to use non-submodular score functions, the result of which is

called bid warped CBBA.

1. Bid Warped CBBA

This algorithm (Algorithm 2: BW-CBBA) is run independently on each agent i and is initialized each time the team decides to replan

(or construct an initial allocation).
1) A BW-CBBA assignment iteration is initialized with agent i’s old bundle boi and its local understanding of the global bid space Ai. To

initialize the algorithm, the convergence counter for agent i, denoted by ki, is set to zero (line 2 in Algorithm 2); its broadcast queueQi, which is a
list of pairs hs; ti consisting of a bid s and a timestamp t, is set to empty (line 3); and its local timestamp matrix Zi�i 0; j�, which records the
timestamp of the most recent information about a bid made on task j by agent i 0, is initialized to all zeros (line 4).

2) Although this algorithm has not converged (defined as when the size of the broadcast queue jQij � 0 for 2D iterations at line 5), the
algorithm iterates between running a bundle building phase (BW-BB at line 11) and a task consensus phase (BW-TC at line 12).
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2. Bid Warped Bundle Building

Again, for each agent i, the bundle building phase is run independently (Algorithm 3: BW-BB).
1) All current tasks in agent i’s bundle bi and tasks won by agent i in its local bid space Ai (lines 3 and 5 in Algorithm 3) are removed.
2) Define a set of available tasks J to be those that are not already in agent i’s local bid space Ai (line 7).
3) For each task j ∈ J , each agent i uses its local internal score function cij←Fij�bi�, which is a function of its current bundle, to create a score

cij (line 9). Again, Fij�bi� is implicitly a function of the assignment constraintsG�x; τ� ≤ d posed in the problem formulation [Eq. (1)] and, if a
proposed assignment will not satisfy the constraints required byEq. (1),Fij�bi�will return a value of−∞. The only other requirement on the score
function Fij in this formulation is that, for each agent i, the returned scores must be repeatable. In this context, being repeatable means that,
conditional on an identical bundle and set of constraints, the function returns an identical score.

4) The score values cij are then warped using Eq. (12) (line 10).
5) Each of the warped bid values �cij is compared with the winning bid values for the corresponding task j located in the local bid spaceAi to

create an indicator function defining if agent i can outbid the current winner of task j with its warped bid (line 11). The task j⋆ with the largest
original score cij, for which the warped bid �cij would outbid the current winner in the local bid space, is chosen as agent i’s next bid (line 13).
Awarped bid �sij⋆ is created (line 14) and, as long as the value of the warped bid is positive �cij⋆ ⋅ hij⋆ > 0 (line 15), it is placed at the end of the
bundle (line 16), and it replaces the current bid on task j in the local bid space Ai (line 17).

6) If no bids are able to be outbid inAi or the maximum bundle lengthLi is reached, the bundle building phase terminates; if not, steps 2–5 are
repeated. The key insight in this algorithm is that the value cij is used to rank the bids but thewarped bid �sij is what is actually sharedwith the other
agents and is what is used to determine if a bid is able to overbid what is already in the bid space Ai.

3. Bid Warped Task Consensus

The purpose of this function (Algorithm 4: BW-TC) is to allow agents to exchange task assignment information with neighboring agents.

The procedure is run independently for each agent, but neighboring agents synchronize their broadcast (line 3) and receive messages
(line 4) steps.

Algorithm 2 BW-CBBA: bid warped CBBA

1: procedure BW-CBBA (boi ;Ai)
2: ki←0
3: Qi←fg
4: Zi←zeros�Na;Nt�
5: while ki < 2 ⋅D, do
6: if jQij � 0, then
7: ki←ki � 1
8: else
9: ki←0
10: end if
11: bi;Ai← BW-BB �Ai�
12: Ai; Qi;Zi← BW-TC �boi ; bi;Ai; Qi;Zi�
13: boi ←bi
14: end while
15: return �Ai�
16: end procedure

Algorithm 3 BW-BB: bid warped
bundle building

1: procedure BW-BB (Ai)
2: for all �sij 0 s:t:∃j 0 where �sij 0 ∈ Ai, do

3: Ai←Ai \ �sij 0
4: end for
5: bi←∅
6: while jbij < Lt, do
7: J←fjj�sij ∈= Aig
8: for all j ∈ J , do
9: cij←Fij�bi�
10: �cij←minfcij; �cijjbi j g [Eq. (12)]
11: hij←

Q
�si 0 j∈Ai

I� �cij > �ci 0j�
12: end for

13: j⋆←argmax
j∈J

�cij ⋅ hij�
14: �sij⋆←hi; j⋆; �cij⋆ i
15: if �cij⋆ ⋅ hij⋆ > 0, then

16: bi←bi � �sij⋆

17: Ai←Ai � �sij⋆

18: else
19: break
20: end if
21: end while
22: return �bi;Ai�
23: end procedure
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1) This algorithm first updates the broadcast queueQi and the timestamp information for agent iZi�i; j� through the BW-TC-UQBC function
(line 2) by accounting for the changes between agent i’s old bundle boi and its new bundle bi. The details of this procedure are defined as in
Algorithm 5.

2) The newly updated queue Qi is then broadcast to agent i’s network neighbors (line 3) using function broadcast (Qi). Grouping sets of
messages together (as opposed to sending information out incrementally) is necessary becausemessage groupings define a consistent information
state from the sending agent (i.e., some bids only make sense with the existence of earlier drop bids, etc.).

3) The information received by each agent i, via the broadcasts from its neighbors, is collected as Mi (line 4) using the function Mi←

RecieveMessages(). It is worth noting that themessage set received by each agent may be different if the network is not strongly connected.
4) The function BW-TC-PRM (line 5) is then called with the purpose of updating local information (Ai; Qi;Zi) in response to the received

messages Mi. The details of this procedure are presented as in Algorithm 6.

4. Bid Warped Task Consensus Update Queue with Bundle Changes

The purpose of this function (Algorithm 5: BW-TC-UQBC) is to update the broadcast queueQi and local timestamp matrix Zi with the local
changes made to agent i’s bundle bi in the bundle building phase (Algorithm 3).

1) This algorithm first searches over all bids �soij that were in the old bundle b
o
i but not in the new bundle bi (line 2). A drop bid is then created for

all of these bids (Dropbid��soij�) and added to the broadcast queueQi (line 3). A drop bid is defined as a bid that signifies the removal of a previously
placed bid. The function Dropbid�s� returns a drop bid corresponding to bid s. Correspondingly, the timestamp element for this task is also
updated in Zi (line 4).

2) Similarly, the algorithm then searches over all new bids �sij that are in the newbundlebi but not in the old bundleb
o
i (line 6). Each of these new

bids �sij (with a timestamp) is added to the broadcast queueQi (line 7) and the local timestamp matrixZi (line 8) with the current time tnow, plus a
small extra value called δ. It is important that the timestamps introduced here are larger by this small margin δ to ensure that other agents can infer
that these new bids are later than potentially created dropped bids from earlier in the function at line 3.

5. Bid Warped Task Consensus Process Received Messages

The purpose of this algorithm (Algorithm 6: BW-TC-PRM) is to update the local planning knowledge of agent i in response to messages
received Mi. The local knowledge updated includes agent i’s local bid space Ai, its broadcast queue Qi, and its local timestamp matrix Zi.

1) This function first searches through each message h�simjm ; tmi in Mi to find those that are drop bids (lines 2–3). If the drop bid is new
Zi�im; jm� < tm (line 4), update the timestamp matrix (line 5), add the drop bid to the rebroadcast queue Qi (line 6), and if there is a bid �simjm in
agent i’s local bid space Ai (line 7) created by agent im on task jm, then remove it from the bid space Ai (line 8).

2) This function then iterates through each message h�simjm ; tmi inMi that is not a drop bid (lines 13 and 14). Again, if it is a new bid (line 15),
update the timestampmatrix for agent im and task jm. If there is not a bid in agent i’s local bid spaceAi on task jm, then add the bidmessage to the
bid space (line 18) and add the bid and its corresponding timestamp to the broadcast queueQi (line 19). Otherwise, there is a bid on task jm in the
local bid space, so assign the bid in the local bid space to the name �s 0i 0jm (line 21). If the bid message �simjm is greater than the bid that is currently in
the bid space �s 0i 0jm (line 22), then remove the old bid from the bid space (line 23), add the new bid message to the bid space (line 24), and add the
newbidmessage to the broadcast queue (line 25). If the bidmessage does not outbid the local bid, then add the local bid to the broadcast queuewith
its corresponding timestamp that is stored as Zi�i 0; jm� (line 27).

D. Comparison to CBBA Consensus Phase

The task consensus phase presented here is differs from the one that was presented in [26]. The previously published consensus phase requires a
rebroadcast of every task at every iteration. Therefore, as long as messages can be assumed to be delivered completely (and the network can be
assumed to remain connected), the approach presented in this paper will use less messaging overall. However, this approach is less robust to
droppedmessages or networks that change topology on the timescale of the plan convergence time. In these domains, some informationmay never
reach parts of the network. If themessaging channels are not reliable andmessages are not guaranteed to arrive, then the approach presented in [26]

Algorithm 4 BW-TC: bid warped task consensus

1: procedure BW-TC (boi ; bi;Ai; Qi;Zi)
2: Qi;Zi← BW-TC-UQBC �Qi;Zi; b

o
i ; bi�

3: Broadcast �Qi�
4: Mi← ReceiveMessages ()
5: Ai; Qi;Zi← BW-TC-PRM �Mi;Ai; Qi;Zi�
6: return �Ai; Qi;Zi�
7: end procedure

Algorithm 5 BW-TC-UQBC: bid warped task
consensus update queue with bundle changes

1: procedure BW-TC-UQBC (Qi, Zi, b
o
i , bi)

2: for all f�soijj�soij ∈ boi ; �s
o
ij ∈= big, do

3: Qi←Qi ∪ hDropbid� �soij�; tnowi
4: Zi�i; j�←tnow
5: end for
6: for all f�sijj�sij ∈ bi; �sij ∈= boi g, do
7: Qi←Qi ∪ h�sij; tnow � δi
8: Zi�i; j�←tnow � δ
9: end for
10: return �Qi;Zi�
11: end procedure
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should be used. The following performance and convergence guarantees assume the consensus protocol defined in this paper, but the same results

with different notation and approach could be obtained by using an alternative consensus protocol like the one defined in table 1 of [26].

V. Convergence and Performance Characteristics of BW-CBBA

This section proves the two main theoretical results of the paper:
1) BW-CBBA converges to a teamwide consistent solution in, at most, 2NtD iterations.
2) BW-CBBAachieves nontrivial performance bounds for some classes of objective functions. The only objective function assumption needed

for convergence of BW-CBBA is that, given identical initial conditions (local bid spaceAi and bundle bi), the subsequent bid values produced are
repeatable. Again, this condition allows for score functions that are stochastic, but evaluating relevant metrics that decide bid ordering over the
stochastic distributions must be repeatable.

The proofs presented in this section do not follow the styles presented in [26] for two main reasons:
1) BW-CBBA does not return the same solution as a centralized sequential greedy solver in all cases (as the CBBA proof had assumed).
2) Using a proof by construction approach for the convergence analysis provides insight into the algorithmic progression and is better suited as

an analytical tool when evaluating potential future modifications to BW-CBBA.
A last note about this section is that the performance proof returns the same bound as presented in [26] when the internal score function F is

submodular and monotonic.

A. Convergence Guarantee

Lemma 1: The values of the warped bids �sij (line 14 of Algorithm 3) added to bundles bi have a monotonically decreasing ordering:

�sijk ≻ �sijk�1
∀ k ∈ f1; : : : ; jbij − 1g

where �sijk is the kth bid added to agent i’s bundle.
Proof: According to the definition of the bid warping [Eq. (12)], the warped bid values are defined as

�cijk�1
� minfcijk�1

; �cijkg

forcing �cijk ≥ �cijk�1
. Two conditions can then arise: 1) �cijk > �cijk�1

, and therefore �sijk ≻ �sijk�1
from Eq. (13) of Definition 1; and 2) �cijk � �cijk�1

but, because (k < k� 1), �sijk is located earlier in the bundle than �sijk�1
. From Eq. (15) of Definition 1, �sijk ≻ �sijk�1

.

Note that, to reduce the notation clutter, all subsequent overbars will be removed, but all bids discussed in this Convergence Guarantee section

(Sec. V.A) will be considered to be warped bids.

Algorithm 6 BW-TC-PRM: bid warped task
consensus process received messages

1: procedure BW-TC-PRMMi;Ai, Zi, Qi

2: for all h �simjm ; tmi ∈ Mi, do

3: if �simjm is a drop bid, then
4: if Zi�im; jm� < tm, then
5: Zi�im; jm�←tm
6: Qi←Qi ∪ h �simjm ; tmi
7: if �simjm ∈ Ai, then

8: Ai←Ai \ �simjm
9: end if
10: end if
11: end if
12: end for
13: for all h�simjm ; tmi ∈ Mi, do

14: if �simjm is not a drop bid, then
15: if Zi�im; jm� < tm, then
16: Zi�im; jm�←tm
17: if ∀ i 0; �s 0i 0jm ∈= Ai, then

18: Ai←Ai ∪ �simjm
19: Qi←Qi ∪ h�simjm ; tmi
20: else
21: �s 0i 0jm←hi 0; jm; �c 0i ∈ Ai

22: if �simjm > �s 0i 0jm , then
23: Ai←Ai \ �s 0i 0jm
24: Ai←Ai ∪ �simjm
25: Qi←Qi ∪ h �simjm ; tmi
26: else
27: Qi←Qi ∪ h �s 0i 0jm ;Zi�i 0; jm�i
28: end if
29: end if
30: end if
31: end if
32: end for
33: return �Ai; Qi;Zi�
34: end procedure
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Definition 2: Define an overbid s 0i 0j 0 to be a bid that agent i receives via communication from other agents that change its local bid space Ai

(Algorithm 6). An overbid can also be a drop bid, which was previously defined as a bid message specifying the removal of a previous bid. Drop

bids are defined to have the same relative size of the bid they correspond to dropping (viaAlgorithm6, line 8),where the size of the bid is defined in

Definition 1.
Definition 3: Define σiσjσ �S 0� to be the largest bid in a set of overbids S 0 that is received by agent i:

σiσjσ �S 0� � max
s 0
i 0j 0∈S

0s
0
i 0j 0

Theorem 1:After an agent i receives a set of overbids S 0, all bids larger than the largest overbid σiσjσ �S 0� will remain unchanged, i.e., all bids

sij ∈ bi subject to

sij ≻ σiσjσ �S 0� (16)

will remain in agent i’s bundle bi at the next bundle building iteration.
Proof:The form of this proof will be to first show that bids smaller than σiσjσ �S 0� cannot affect the assignment of larger bids, and thus show that

bids larger than σiσjσ �S 0�will not be dropped. First assume that ∃s⊖
ij⊖

∈ bi subject to s
⊖

ij⊖
≺ σiσjσ �S 0� and ∃sij ∈ bi subject to sij ≻ σiσjσ �S 0�; then,

sij ≻ σiσjσ �S 0� ≻ s⊖
ij⊖

From bundle monotonicity (Lemma 1), the assignment of sij cannot depend on the assignment of s⊖
ij⊖

(because sij is larger, and thus earlier in
the bundle, preventing the value of sij, depending on the assignment of s⊖

ij⊖
); thus, without loss of generality, sij will not depend on any bids in its

own bundle bi smaller than σiσjσ �S 0�.
Thus, all that must be shown is that all bids sij ≻ σiσjσ �S 0�will not be affected by any of the bids in S 0. The bundle construction procedure uses

an indicator function

hij←
Y

si 0j∈Ai

I�cij > ci 0j�

(Algorithm 3, line 11). The elements of the indicator function can only be different on tasks j 0 for which s 0i 0j 0 ∈ S 0. Therefore, during bundle

building, the selection of the next-best bid s⋆
i⋆j⋆

(Algorithm 3, line 14) will return identical results for all bids s⋆
ij⋆

≻ σiσjσ �S 0�.
A note about Theorem 1 is that it depends on bid warping to ensure Lemma 1. If bundles are not monotonic, then ∃i; sij ∈ bi; s

⊖

ij⊖
∈ bi subject

to sij ≻ s⊖
ij⊖

where the assignment of sij depends on the previous assignment of s⊖
ij⊖

(i.e., the value of the bid on task j increases because of the

assignment of task j⊖). This is exactly the condition that can lead to algorithmic cycling, and it is what bid warping prevents.
Definition 4: Define a new bid to be a bid that was not included in the bundle of the previous bundle building iteration.
Theorem 2: The largest new bid s⋆

ij⋆
(Algorithm 3, line14) that can be added to agent i’s bundle bi after receiving a set of overbid messages S 0

will be smaller than the largest element of S 0, i.e.,

σiσjσ �S 0� ≻ s⋆
ij⋆

(17)

Proof:FromTheorem 1, all bids sij in agent i’s bundlebi, subject to sij ≻ σiσjσ �S 0�, will be preserved. For this proof, construct a new bundleb�i
starting with all old elements soij ∈ bi subject to s

o
ij ≻ σiσjσ �S 0�. The strategy for the rest of this proof will be to show that the next bid s⋆

ij⋆
added to

b�i is smaller than σiσjσ �S 0�. Lemma 1 then guarantees that all other newbids added during the rest of the bundle building operation be smaller than

s⋆
ij⋆
, and thus less than σiσjσ �S 0�.
Define s⊖

ij⊖
to be the largest bid in the old bundlebi that is less than σiσjσ �S 0�. If no bids inbi are smaller than σiσjσ �S 0�, treat s⊖

i⊖j⊖
as an empty bid

of score zero (all bids with positive scores are bigger than it). The rest of this proof will formalize how each overbid s 0i 0j 0 ∈ S 0 can affect the next
largest bid in b�i .

The only way that the next largest bid s⋆
ij⋆

can increase its value compared to its counterpart in the old bundle s⊖
ij⊖

(i.e., s⋆
ij⋆

≻ s⊖
ij⊖

) due to

receiving an overbid s 0i 0j 0 is if an element from the indicator hij (Algorithm 3 line 11) changes from a zero to a one. This can only occur if s 0i 0j 0 is
specifically a drop bid, and thus removes a bid on task j 0 in agent i‘s local bid spaceAi (Algorithm 6, line 8). This is because only a drop bid can

decrease the winning scores in Ai. All other overbids will only increase the winning score in the local bid space. If Algorithm 3, line 11, had

previously been returning zero (before the drop bid arrived), it meant that the previous winning value on task j 0 (before the drop bid) was

c 0
i 0j 0 > Fij 0 �b�i � (otherwise, hij 0 would have returned a one). Therefore, either s⊖

ij⊖
≻ s 0i 0j 0 and the next-best bid will remain unchanged

(s⋆
ij⋆

� s⊖
ij⊖

), and thus σiσjσ �S 0� ≻ s⊖
ij⊖

� s⋆
ij⋆
, or s 0i 0j 0 ≻ s⊖

ij⊖
and the next largest bid, will become

c⋆
ij⋆

� max
�
Fij 0 �b�i �; c⊖ij⊖

�

Therefore, from Definition 1, σiσjσ ⪰ s 0i 0j 0 ≻ s⋆
ij⋆
.

The result shows that no individual overbid s 0i 0j 0 can lead to the agent i increasing its next largest bid s
⋆
ij⋆

to be larger than σiσjσ �S 0�. Because s⋆
ij⋆

is simply the largest possible next-best bid, any collection of overbids S 0 will not allow s⋆
ij⋆

to be larger than σiσjσ �S 0� either.
Theorem 3: Every agent of the team using the BW-CBBA agrees on a globally consistent bid space A in, at most, two NtD algorithmic

iterations.
Proof: The form of this proof will be to use a virtual agent that can observe the algorithmic progression (without affecting the agents). This

observer is able to construct a globally consistent bid spaceA by listening to the communication between the agents. The existence ofA can be

used to guarantee algorithmic convergence. It will be shown that, once a bid is placed inA, it will never be dropped by the agent that placed the bid
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or outbid by another agent. Therefore, when all bids made by agents in the team are located inA, the algorithm has converged. The proof will use

induction to build up the global bid space A.
InitializeA � fg. The base case of the induction proof requires that the first bid added to theglobal bid space (jAj � 1)will never be dropped by

the bidding agent and will never be outbid by any other agent. This is shown by first considering that, for each full plan constructed by the BW-

CBBA, the algorithm startswith a bundle building phase (Algorithm2)where each agent i is initializedwith a possibly inconsistent local bid space
Ai. If this is the first plan for a newmission,Ai will be empty, but if this plan is amidmission replan,Ai will be the last known estimate of the team

assignment (whichmay be outdated). As defined inAlgorithm 3, each agent i removes its own bids from its own local bid spaceAi (lines 2–4) and

clears its own bundle bi � fg (line 5). After the first iteration of bundle building completes (Algorithm 2, line 11) for all agents i, there are two
outcomes relevant to algorithmic convergence:

1) There exists a bid s 0i 0j 0 in the local bid spaceAi of some agent i that is larger than all other bids in the network (including all bids in the actual
bundlebi 0 of agent i

0).More precisely,∃i; s 0i 0j 0 ∈ Ai subject to∀ i,∀ sij ∈ bi; s
0
i 0j 0 ≻ sij. This ariseswhen one agent is assuming the existence of a

large old bid that is no longer valid. When bid information is propagated in the algorithm’s consensus phase, agent i will receive a drop bid
removing the assignment of s 0i 0j 0 (constructed via Algorithm 5 by agent i 0) in no more than D algorithmic iterations.

2) After the large outdated bids are removed from bid spaces, there will exist an actual bid s 0i 0j 0 in the bundle bi 0 of some agent i 0 subject to ∀ i,
∀ sij ∈ bi; s:t:sij ≠ s 0i 0j 0 ; s

0
i 0j 0 ≻ sij. From Theorem 2, no other agents will be able to generate a larger bid s⋆

i⋆j⋆
≻ s 0i 0j 0 in the future because s

0
i 0j 0 is

the largest bid in the fleet, and thus is the largest bid that can be an element of an overbid set S 0. From Theorem 1, s 0i 0j 0 will remain in the bundle of

agent i 0 forever; because no other agent can outbid s 0i 0j 0 , it will never receive an overbid larger than s
0
i 0j 0 . AfterD consensus phases, all agents will

receive s 0i 0j 0 ; thus, overall, in, at most, 2D algorithmic iterations, s 0i 0j 0 can be added to A and jAj � 1.

At the end of this base case, assume that all outdated bids from a previous planning iteration are removed from the entire fleet, whichwould have

taken, at most, D iterations to remove.
Therefore, it must be shown that, if we assume a global bid spaceA of size jAj � n and that all bids currently inA will never be dropped or

outbid, then in, at most, 2D algorithmic iterations, there either exists another bid to add toA or the algorithm has converged.More formally, either

∀ i∄sij ∈ bi subject to sij ∈ A (the algorithm has converged) or ∃s 0i 0j 0 ∈ bi 0 ; s
0
i 0j 0 ∈= A subject to ∀ i, ∀ sij ∈ bi; sij ∈= A; s 0i 0j 0 ≠ sij; s

0
i 0j 0 ≻ sij.

In this step, the following three scenarios can arise:
1) There are no bids in the network that are not already inA or. more formally, ∀ i∄sij ∈ bi subject to sij ∈= A. In this case, the algorithm has

converged.
2) A bid sij has been created and has been inserted into the global bid spaceA but agent i 0 has yet to receive a message containing sij, and thus

has a bid on task j in its bundle bi 0 that is smaller than sij. More formally, the scenario arises if ∃sij ∈ A subject to ∃s 0i 0j ∈ bi 0 subject to i ≠ i 0. By
the inductive assumption, sij will never be outbid. Therefore, in (at most)D − 1 iterations, i 0 will receive a message about sij and drop its bid s

0
i 0j.

When s 0i 0j is dropped, agent i
0 may be forced to drop other tasks as well that were dependent on the assignment of s 0i 0j. Define the largest bid of

these additional dropped bids as s⊖
i 0j⊖ . If the drop bid s⊖

i 0j⊖ is larger than all other bids not yet in A (if ∀ i, ∀ sij ∈ bi; sij ∈= A; s⊖
i 0j⊖ ≠ sij,

s⊖
i 0j⊖ ≻ sij), then the algorithm requires an additionalD iterations to allow for this drop bid to propagate to all agents. This is required because s⊖

i 0j⊖

will be in the overbid set S 0 that is being communicated to all agents and, according to Theorem 2, bids can be added up to the size of s⊖
i 0j⊖ . Thus, a

new largest bid will be possible until all agents have received a drop bid message of s⊖
i 0j⊖ . This results in 2D − 1 algorithmic iterations and a

transition into the criteria for scenario 3 as follows.
3) There exists a bid s 0i 0j 0 in some agent i 0’s bundle bi 0 that is larger than all other bids sij in every other agent’s bid spaces that is not currently

located in A (∃s 0i 0j 0 ∈ bi 0 subject to s 0i 0j 0 ∈= A and ∀ i, ∀ sij ∈ Ai, ∀ sij ≠ s 0i 0j 0 ; sij ∈= A; s 0i 0j 0 ≻ sij). Because no tasks in A can be outbid
(inductive assumption) and no agents are currently outbid on tasks inA (which is handled by the aforementioned scenario 2), when the largest bid
in the team not yet inA (s 0i 0j 0 ) is shared, no other agents will be able to outbid it (due to Theorem 1). Additionally, because i 0 will never receive an
outbid message greater than s 0i 0j 0 (because no other agents can bid higher (Theorem 2), s 0i 0j 0 will stay in the bundle of agent i forever (Theorem 1).
Therefore, A←A ∪ s 0i 0j 0 jAj � n� 1 in one iteration.

Therefore, incrementingA can be achieved in, at most, 2D algorithmic iterations. This then proves that a globally consistent bid space can be

constructed during algorithmic execution in, at most, 2NtD algorithmic iterations (two D − 1 iterations from scenario 2 and one iteration from

scenario 3 for each task). This also means that every individual agent will agree on the full bid space in, at most, 2NtD; thus, BW-CBBA has

converged.

B. Performance Guarantee

This section will define when nontrivial performance guarantees for BW-CBBA are available and how close to optimal these guarantees are.

The form of the following performance analysis is inspired by theorem 11 in [35]. This section will use set function notation when referring to

objective functions. Therefore, the notationF�A�will specify the score functionF evaluated on the bid spaceA. Furthermore, define the notation

ABW
F to be the bid space returned using objective functionFwith the BW-CBBA. Similarly, defineA⋆

F to be the optimal bid spacewith respect to

objective function F. Additionally, defineAk to be a bid space constructed from the largest kwarped bids ofABW
F where sikjk is defined to be the

kth element added to ABW
F (which was constructed by agent ik on task jk) using the global bid space construction procedure from Theorem 3.

The form for the following proof will be to compare the optimal allocation A⋆
F evaluated on the desired non-submodular objective function

F�A⋆
F� to the optimal allocationA⋆

Fk
over a sequential set of modified objective functionsFk. Before describing the main result, a few definitions

and a lemma will be needed.
Definition 5: Define the sequence of score functions Fk over a subset J k of the full task set J where J k←J \

S
k
l�1 jk as

F0�A� � F�A�
Fk�A� � Fk−1�A ∪ sikjk � − Fk−1�sikjk �; ∀ k ∈ �jJ j�

where �jJ j� is defined as f1; : : : ; jJ jg. This can be equivalently defined using partial bid spaces and the original objective function F as

Fk�A� � F�A ∪ Ak� − F�Ak�; ∀ k ∈ �jJ j�

Both forms of Fk will be used for proving convergence guarantees.
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Definition 6: Define a submodular lower bound function H to the desired mission objective function F as

H�∅� � F�∅�
H�A ∪ s� −H�A� � min

A 0⊆A
�F�A 0 ∪ s� − F�A 0�� ∀ s;A

Definition 7: Define a parameter ϵ that defines a measure on the non-submodularity of the mission objective function F as

1� ϵ � max
s;A

F�A ∪ s� − F�A�
H�A ∪ s� −H�A�

Given that ratios are used in the definition of ϵ, it is important that F is monotonic. Other alternative measures of non-submodularity are

available and would be needed for nonmonotonic functions. If the desired mission objective function F is actually submodular, then ϵ � 0
and F � H.

Combining Definitions 7 and 6 provides a submodular upper and lower bound on F for all bid spaces A as

�1� ϵ�H�A� ≥ F�A� ≥ H�A�; ∀ A (18)

Definition 8: Define the minimum possible bid cmin
k on task jk as

cmin
k � min

A
F�A ∪ sk� − F�A�

where, for monotonic functions, cmin
k > 0.

Lemma 2: The scores �cikjk of warped bids �sikjk will be greater than or equal to the bid’s incremental value evaluated on objective functionH as

defined in Definition 6:

�cikjk ≥ H�Ak−1 ∪ sikjk� −H�Ak−1�

Proof: Two cases of either of the following cases are possible:
1) When warped, sikjk does not change its value; thus, its warped value is the incremental score with respect to objective function F

�cikjk � F�Ak−1 ∪ sikjk � − F�Ak−1� ≥
Def:6

H�Ak−1 ∪ sikjk � −H�Ak−1�

2) The value �cikjk of thewarped bid �sikjk has decreased due to bidwarping. This requires that at least one bid constructed by agent ik is already in
Ak−1. These bids already inAk−1 will be calledA⊖, whereA⊖ ⊆ Ak−1. Define bid �sikjk⊖ ∈ A⊖ to be thewinning bid at iteration k⊖. Thevalues of
the unwarped bids located in A⊖ were defined as

cikjk⊖ � F�Ak⊖−1 ∪ sikjk⊖ � − F�Ak⊖−1� (19)

At iteration k⊖, the bid on task jk⊖ by agent ik was the winning bid; therefore, at that time, it was greater than agent ik’s bid on task jk:

cikjk⊖ ≥ F�Ak⊖−1 ∪ sikjk� − F�Ak⊖−1�; ∀ k⊖ (20)

From the definition of bidwarping inEq. (11) and the assumption of this proof clause that thevalue of �sikjk has decreased due to bidwarping, the
warped bid on task jk is defined in terms of a minimum over all of the bids located in agent ik’s current bundle (which has the same elements

as A⊖):

�cikjk � min
sikjk⊖

∈A⊖

cikjk⊖ (21)

and therefore, from the definition of H (Definition 6), a minimum over a larger set will always be smaller; thus,

�cikjk ≥ H�Ak−1 ∪ sikjk� −H�Ak−1� (22)

Theorem 4: If there exists anH as defined in Definition 6 and ε as defined in Definition 7, and the mission objective function F is monotonic,

then a provable performance bound between the BW-CBBA allocation ABW
F and the optimal allocation A⋆

F exists as

F�A⋆
F� ≤ �2� ε�F�ABW

F � (23)

Proof: To simplify the notation of the following proof, a few notational substitutions will be made:
1) Note that s⋆k←sFk−1

i⋆
k
jk
, where sFk−1

i⋆
k
jk

is the bid made on task jk in the optimal assignment using objective function Fk−1
2) Note that sk←sikjk to represent the kth bid from the BW-CBBA bid space ABW

F .
3) A⋆

⊖←A⋆
Fk−1

\ s⋆k represents the optimal bid space with regard to Fk−1 without the bid s⋆k that was made on task jk.
Begin the proof by noting that the value of the optimal bid space constructed with regard to objective functionFk will always be greater than or

equal to the evaluation of any other bid space on this objective function Fk, so that

116 JOHNSON ETAL.

D
ow

nl
oa

de
d 

by
 K

O
R

E
A

 A
D

V
A

N
C

E
D

 I
N

ST
 O

F 
SC

IE
N

C
E

 o
n 

Se
pt

em
be

r 
10

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
04

61
 



Fk�A⋆
Fk
� ≥ Fk�A⋆

⊖� (24)

Then, using the definition of Fk from Definition 5, the right-hand side can be expanded as

Fk�A⋆
⊖� � Fk−1�A⋆

⊖ ∪ sk� − Fk−1�sk�

which can then be expanded as three terms:

Fk�A⋆
⊖� � Fk−1�A⋆

Fk−1
�− (25a)

�
Fk−1�A⋆

Fk−1
� − Fk−1�A⋆

⊖�
�
− (25b)

�
Fk−1�sk� −

�
Fk−1�A⋆

⊖ ∪ sk� − Fk−1�A⋆
⊖�

��
(25c)

The three terms correspond to thevalue of the optimal allocation overFk−1 [Eq. (25a)], the incremental value for the bid on task jk in the optimal

allocation using objective functionFk−1 [Eq. (25b)], and the change in the value of the bidmade in the bidwarped allocation sk due to the addition
of the optimal bid space with regard to Fk−1 without the optimal bid on task jk (which was previously defined as A⋆

⊖) [Eq. (25c)].
The next step is to further rewrite the term defined as Eq. (25b). First observe that �sikjk was the kth element added to the global bid space during

the BW-CBBA so, conditional on an already locked-in bundle of Ak−1,

�ci⋆
k
jk ≤ �cikjk ≤ ck (26)

where �ci⋆
k
jk is the warped value that agent i

⋆ (the optimal winner in allocationA⋆
Fk−1

) could have bid given a bid space ofAk−1, �cikjk is the actual
warped value bid in the BW-CBBA, and ck is the unwarped value of that bid. The relation �ci⋆

k
jk ≤ �cikjk holds because, if it did not, bid �si⋆

k
jk would

have been chosen instead as the kth element in the bidwarped allocation. Additionally, �cikjk ≤ ck because bidwarping can only decrease the value
of a bid. From Lemma 2,

�ci⋆
k
jk ≥ H�Ak−1 ∪ si⋆

k
jk � −H�Ak−1� (27)

the potential warped candidate bid �si⋆
k
jk created by agent i⋆k will be greater than its incremental contribution defined over H. Because H is

submodular, adding the rest of the optimal assignments fromA⋆
Fk−1

to the evaluation of the incremental value of si⋆
k
jk can only decrease its value:

�ci⋆
k
jk ≥ H�Ak−1 ∪ A⋆

Fk−1
� −H�Ak−1 ∪ A⋆

Fk−1
\ si⋆

k
jk� (28)

Incorporating this with the definitions ofH (Definition 6) and ϵ (Definition 7) from Eq. (18) and the equivalence of the two forms of Fk from

Definition 5 implies that

�1� ϵ� �ci⋆
k
jk ≥

�
Fk−1�A⋆

Fk−1
� − Fk−1�A⋆

⊖�
�

(29)

Finally, combining Eq. (29) with Eq. (26) provides a bound on the term defined as Eq. (25b):

�1� ϵ�ck ≥
�
Fk−1�A⋆

Fk−1
� − Fk−1�A⋆

⊖�
�

(30)

The next objective is to bound the term defined as Eq. (25c). From the definition provided as Definition 8, Eq. (25c) can be upper bounded as

ck − cmin
k . If this result and Eq. (30) are substituted into Eqs. (25b) and (25c) and sequentially iterated for all k using the relation in Eq. (24), an

optimal performance bound can be achieved as

F�A⋆
F� ≤

XjJ j

k�1

��2� ϵ�ck − cmin
k � (31)

If functions are only known to be at least monotonic (cmin
k � 0, ∀ k), this can be simplified to the desired result:

F�A⋆
F� ≤ �2� ϵ�F�ABW

F � (32)

C. Handling Nondeterministic Score Functions

As was mentioned previously in Sec. IV.C, it is necessary to have repeatable evaluations of score functions. This constraint allows the use of

stochastic score functions as long as the approximate evaluation of stochastic metrics is repeatable. For example, if the evaluation technique uses

the same set of particles for sampling the uncertainty, or the same algorithm seed at every evaluation of the score function, then the function will

return a repeatable value. Truly stochastic function evaluations (where their value is not repeatable), however, do not have absolute convergence

guarantees with this approach. Certain stochastic distributions may converge almost surely, but these special cases are not further explored in

this paper.
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VI. Results Using BW-CBBA

This section provides performance and convergence comparisons between several global information consistency assumption algorithms and

local information consistency assumption algorithms. The results will show that LICA algorithms can significantly reduce algorithmic

convergence time over competing GICA algorithms. Additionally, the bid warping approach described in Sec. IV.B can significantly improve the

performance of LICA algorithms. In fact, in all of the domains tested for this paper, the BW-CBBA actually returns the same allocation as

comparable GICA algorithms.

A. Non-Submodular Fuel Penalty: Two-Agent Case

The first example considers a simple mission where two agents achieve reward by visiting a set of locations in the environment. The score

function associated with this mission is defined as follows:

J �
XNa

i�1

�XNt

j�1

Rxij

�
− fidi�bi� (33)

where a reward ofR is obtained for each task visited, and cost is defined as the fuel cost fi multiplied by the distance travelled di�bi� by agent for its
assigned group of tasks bi. Figure 6 visually compares the planned paths for a two-agent 30-task mission using the original baseline CBBAwith a

submodular approximate score function (Fig. 6a) and the BW-CBBA augmented to use the true non-submodular score function (Fig. 6b). The

numerical values used for this experiment were a reward ofR � 100 and a fuel penalty of fi � 10. As was introduced in example 3 of Sec. III, one

heuristic approach to ensure submodularity within the original CBBA framework involves approximating the cost in Eq. (33) by a distancemeasure

based only on the initial agent position and the task locations.This heuristic score function cannot explicitly capture how taskdesirability can increase

due to the assignment of other tasks. This results in the algorithm’s selection criteria being driven by the tasks proximity to the agent’s initial position

instead of where it will fit into the agent’s current path (Fig. 6a). Conversely, Fig. 6b demonstrates how the BW-CBBA uses the non-submodular

objective function to create intuitively much better assignments by capturing the inherent non-submodularity in the desired objective function.

B. Non-Submodular Fuel Penalty: Monte Carlo Results

This experiment provides Monte Carlo results comparing the performance in various mission scenarios for five different algorithms.

The scenarios used in this section were designed to show two things:
1) Even in environments where reaching global consistency is possible, GICA algorithms can require many iterations to reach a convergent

solution.
2) By using the BW-CBBA, the score performance gap of using a LICA algorithm is negligible in practice.
The environment for these Monte Carlo tests places tasks and agents at random locations in a two-dimensional rectangle of dimensions of

roughly 34 by 12. (These numbers correspond to the shape of the laboratory physical flight volume.) The agents are modeled in a continuous

domainwhere the speed of the agents was fixed at amaximumof 0.6, the time agents were required to pause to “complete” the taskswas set to one

time unit, and all tasks expired after 100 time units. The objective function for the environment was identical to Eq. (33) with a reward ofR � 100
and a fuel penalty of fi � 10. The agents have identical fuel penalties and speeds, but this is not required by any algorithms used in this

Fig. 6 Comparison of planned paths for a two-agent 30-task mission: a) original CBBAwith a submodular heuristic score function, and b) BW-CBBA.
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experiment. The agents’ objective functions, however, are heterogeneous because they depend on both the agents’ starting locations and the full

bundles assigned to each agent. Every data point in Figs. 7 and 8 is an average over 500 Monte Carlo trials. The computational environment for

these experiments used a separate computer for each agent communicating over a virtual communication network, which was defined as a

minimum spanning tree over a distance metric corresponding to the agents’ randomized starting positions. This provided a level of realism to the

simulated performance of the algorithms because the only information shared between the agents was the actual task bids, and thus true

communication synchronization was required between the distributed agents. The five planners used in these tests were as follows:
1) The first planner is Sequential Auction, which is a GICA algorithm (as defined in [22]) that essentially involves the team incrementally

building up a global bid space one task at a time. This requires everymember of the team communicatingwith all other agents for every single task
assignment.

2) The second planner is Implicit Coordination. The implicit coordination implementation in this paper uses a poor information environment
because each agent independently optimizes its own objective function, ignoring the contributions of other agents. The result gives the teamwide
performance when no explicit cooperation is used.

3) The BW-CBBA (as defined in Sec. IV.B) is the LICA contribution of this paper.
4) CBBA unwarped refers to the baseline solution described in [26], which uses an a priori approximate submodular function.
5) The BW-CBBAwith GICA, which is a variant of the BW-CBBA implemented for this paper, ensures that every agent’s local bid space is

equivalent to the global bid space before every bundle building phase. This algorithm is essentially a bundle version of a sequential auction, and
thus approximates the fastest expected convergence time of a GICA auction algorithm.

Planners not run in this test include those that predict assignments for teammates and incorporate this information into their prospective

assignments. These algorithms require sharing a different domain of information (including information about other agents’ actual objective

functions) and are not considered in this paper. Traditionally, these approaches would be considered GICA algorithms because they require

information about the entire fleet to guarantee convergence [5,7,36], but recent work has looked at LICA algorithms that use information about

other agents’ score functions [37].

The experiments shown inFigs. 7a and7b are two-agentMonteCarlo runswith 500 trials averaged for each data pointwhilevarying the number of

tasks. Figure 7a shows that the BW-CBBA performs identically in score to both of the GICA algorithms. The implicit coordination technique

Fig. 7 Results for two-agent Monte Carlo run.

Fig. 8 Results for 200-task Monte Carlo run.
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performs reasonablywell because the tasks expired at 100 time units, whichmade it impossible for both agents to service all of the tasks. Thus, there
was relatively little overlap indesired assignments between the agents in this no-coordination planner. The unwarpedCBBAactually performedquite
poorly, especially for high numbers of tasks, because its objective function could not capture the supermodular coupling between servicing tasks that
were near each other. Figure 7b highlights the convergence times for eachof these algorithms. The first remarkable aspect about this figure is the large
number of iterations required for convergence using the sequential auction algorithm. Even though there are only two agents, and thus the network
diameter is one, it takes a full iteration for the assignment of every single task. The BW-CBBA and BW-CBBA GICA use significantly fewer
iterations for all sized task environments and actually require the same number of iterations to reach convergence. This is because the two-agent
network is fully connected so that the agents using the BW-CBBA can have consistent local bid spaces after every iteration. Thus, the algorithmic
execution of the BW-CBBA and BW-CBBAGICA is identical. These approaches take less than one more iteration on average than the unwarped
CBBA.The extra convergence time is due to a slightlymore complicated optimization between the two agents, which is taking into account the non-
submodular objective function. Because there is no explicit coordination with implicit coordination, it always “converges” in one iteration. The
takeaway fromFigs. 7a and 7b is that, evenwith two agents, the BW-CBBAoutperforms the unwarpedCBBA significantly in score performance for
a small penalty in an increased number of iterations for convergence. Additionally, its performance is identical to the tested GICA planners.

The experiments shown inFigs. 8a and 8b areMonteCarlo runswith 200 task environments and 500 trials averaged to create each data pointwhile
varying the number of agents. Figure 8a shows identical performance between the BW-CBBA and the GICA algorithms. Additionally, it shows a
significant performance gap between the unwarped CBBA and the implicit coordination approach, especially for smaller team sizes.When the team
size reaches eight agents and above, theBW-CBBAand theGICAalgorithmsare able to service all of the tasks efficiently under the 100 timeunit task
deadlines (the only improvement comes from agents potentially starting nearer to desired tasks). The original unwarpedCBBA, evenwith 20 agents,
still has a mission performance gap because the objective function is unable to capture the inherent coupling of travel distance in the objective
functions. Theoretically, this performance gap may exist until each agent is only servicing a single task, in which case the unwarped CBBA and
BW-CBBA will return the same allocation. The performance of implicit coordination actually degrades after 12 agents because the costs of
overlapping assignments start outweighing the benefits of having more agents to service difficult-to-reach tasks. Figure 8b highlights the number of
iterations each planner requires to reach convergence. Again, the sequential auction GICA algorithm takes significantly more iterations to converge
than any of the other planners. In fact, for themost difficult assignment problems of 20 agents and 200 tasks, this algorithmwas requiring nearly 2000
iterations on average. This is due to the fact that 200 tasks are assigned incrementally across an average network diameter of 10. The BW-CBBA
GICA performs significantly better than the sequential auction because the coupling in the problem allows agents to agree onmany task assignment
winners at the same time. Assigning multiple tasks simultaneously allows this auction to reduce the convergence time by more than an order of
magnitude.TheBW-CBBA,which is aLICAalgorithm, further reduces the numberof iterations toconvergence below theBW-CBBAGICA. In fact,
for the largest problem sizes shown, the BW-CBBA converges 50 iterations sooner. Intuitively, this is because agents will rarely have allocation
conflicts with teammates that are highly separated across the communication network. Therefore, conflict resolution is more efficiently conducted
using local communication. The CBBA unwarped converges marginally faster than even the BW-CBBA but, again, this is at the expense of
significant degradation in score performance. The takeaway from Figs. 7 and 8 is that the BW-CBBA significantly improves the performance of
traditional LICA algorithms (unwarped CBBA) while converging in significantly fewer iterations than GICA algorithms. There is a hidden
computation cost not shown in Figs. 7 and 8 that involves the onboard agent computation of the desired assignments. For some domains, this extra
computation may be quite relevant to the convergence times of the algorithms and is worth investigation, but this paper is focused on understanding
the information assumptions and communication costs. Despite this, for the tests shown in Figs. 7 and 8, agent computation times were negligible
compared to the required infrastructure to synchronize communication between the decentralized agents.

C. Remark

It should be noted that the approach in this paper has focused specifically on what are called task consensus algorithms that utilize consensus
protocols that share assignment information between agents. An introduction to how these algorithms compare to a algorithms that share state
information between themselves (called implicit coordination algorithms) is introduced in [38]. Specifically, task consensus algorithms are good
in loosely coupled domains and can have strong guarantees on performance and convergence. However, since they share assignments, they can
have long convergence times when tasks have highly-coupled assignment constraints between each other (the details of this are extensively
discussed in [38]). In these domains, implicit coordination algorithms can do a good job with these highly coupled assignments, but again at the
downside that they often are unable to make any guarantees on performance. Other work presented in chapters 4 and 5 of [39] leverages the
understanding of LICA algorithms introduced in this paper and implicit information about other agents to efficiently produce provably good
assignments in environments that require coupled assignments.

VII. Conclusions

Submodularity is a powerful property that can be exploited for provable performance and convergence guarantees in distributed task allocation
algorithms. However, somemission scenarios cannot easily be approximated as submodular a priori. This paper introduces an algorithmic extension
for LICA algorithms that enables them to converge using non-submodular score functions. These enhancements use non-submodular ranking of
tasks within each agent’s internal decision making while externally enforcing that shared bids appear as if they are created using submodular score
functions. Convergence and performance bounds are proven for this new algorithm called the BW-CBBA. The numerical results of this effort show
significant improvements over hand-tuned heuristic approaches that approximate the true non-submodular score functions.

Appendix: Analysis of Algorithmic Performance

Definitions 6 and 7 provide theoretical insight into the tightness of the performance bounds provided in Theorem 4. This Appendix provides
some practical insight into how the BW-CBBAworks in practice.

An optimal upper bound for the score function defined as Eq. (33) in Sec. VI can be defined as

XNt

j�1

max
�
max

i
�Rij − fidij�;max

i;j 0
�Rij − fidj 0j�; 0

�
(A1)

where dij is the distance from agent i to task j. This bound essentially finds the maximum possible reward achievable by each task, without the
constraints of connected trajectories by agents. This upper bound will almost always be loose, but nevertheless will give some insight into the
performance of the algorithms in Sec. VI.B.
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1) The first category is approximately submodular. With these objective functions, there will be very little difference between F and H;
therefore, there will be relatively consistent bounds with respect to optimal. Bid warping will have little effect on the final solution. The only
purpose it will serve is to slightly augment the scores when needed to guarantee convergence. An example of this type of score function is in
Eq. (33) when fi is small. In this case, the true objective function is very nearly modular and the final solution will be near optimal.

2) Non-submodular with good local optima is the category that the simulations in Sec. VI demonstrate. The objective function used is not close to
submodular because the fuel penalty can span a wide range of values from near zero (when an existing trajectory passes through a previously
unassigned task) tomultiple times thevalue of the task (for tasks far away from the iterative assignment’s current trajectory). Thismeans that itwill be
quite difficult to construct a good a priori submodular approximation. The results presented in Figs. 7 and 8 were specifically designed to highlight
how the BW-CBBA could perform well in substantially non-submodular environments; as a result, there does not exist a nontrivial ϵ andH for the
objective function defined as Eq. (33). Figure A1 presents a slight modification to the problem statement presented in Sec. VI.B. To create a
reasonable optimal upper bound, the problemwas simplified by removing the task timeout constraints. As can be seen from the optimal upper bound
in Fig. A1, all of the GICA approaches and the BW-CBBA perform well (as the uppermost line is an upper bound on optimal and not necessarily
tight). The BW-CBBA has good performance in environments where any centralized greedy algorithms can produce good solutions. These
environments occurwhen greedy allocations donot catastrophically degrade the teamwide performance. This occurs in domains like those presented
in Sec. VI.B,where tasks are placed randomly in a two-dimensional grid; therefore, it would be difficult to be in a situationwhere the agent geometry
prevents servicing large portions of the environment. It would take a very specific malicious environment for a greedy allocation to perform poorly.

3) The third category is non-submodularwith poor local optima. If there are tasks that can be greedily chosen by agents that prevent those agents
from servicing other requirements, then the BW-CBBAcan perform arbitrarily poorly. In these domains, there can be sufficient objective function
coupling such that no sequential greedy algorithm can return a good solution, regardless of the information assumptions. An example of this type
of environment is when no agents are close enough to any task to create an initial positive score. Therefore, starting with an empty bid space, the
marginal score for adding any task will be negative and the final allocation will be empty. An optimal allocation in this scenario could foreseeably
take a negative incremental score on some initial tasks in order to achieve a larger positive reward for other important tasks. Physically, this could
be realized if all of the agents start in one corner of the environment and all of the tasks are on the other side of the space. This is a problem with
sequential task assignment, and not just the BW-CBBA, and is in general a very difficult problem to solve, evenwith centralizedmethods. Indeed,
all sequential assignment algorithms will be a poor choice for these environments, and more advanced approaches that evaluate bundles of
assignments simultaneously will be needed. In general, these problems are very computationally hard (specifically, NP hard) but, in special cases,
other approximate solvers may be able to explore these complex spaces efficiently.
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