
Easy Screens and Play: A Library for Information Visualization in Tiled
Display Environments

 Younghun Jung*, Geongi Gim†, Myeongjae Kim‡, Yejin Kim§, Kwangyun Wohn¶

Graduate School of Culture Technology, Korea Advanced Institute of Science and Technology

ABSTRACT

In this work, we present a library, called Easy Screens and Play

(ESP), for information visualization in tiled display systems. We

describe the design of the ESP library in the tiled display

environment for novice users and its unique features as compared

to other distributed display libraries. We also demonstrate the

efficacy and effectiveness of the ESP library by using several

examples of information visualization. Discussions on the

extension of the library and future improvements are presented as

well.

Keywords: Information visualization, client-server architecture,
programming interface, tiled display system.

1 INTRODUCTION

A tiled display system is a platform to visualize information. In

particular, when a large amount of information needs to be

visualized at once, such a system offers more pixels for data than

any single display [1]. It builds a large high-resolution display by

combining multiple displays and computers. However, thus far,

such a system has been used only in a few professional fields

because of its price and complexity. Several libraries and software

have been developed for tiled displays, but they are still difficult

to use for information visualization by novice developers with

little experience.

In this work, we have developed a library facilitating easy

programming for non-experts to create information visualization

on a tiled display system. Using this library, users do not need to

consider the architecture of a distributed display system; they can

create a visualization application on the server by assuming that

they are dealing with one gigantic display canvas. The library also

offers additional functions to create several common information

visualizations so that users can visualize data effectively with

minimal programming.

2 PREVIOUS WORK

Several approaches to develop software for a tiled display system

have been studied in the past. The Scalable Adaptive Graphics

Environment (SAGE) [3] is a passive client system in that the

server calculates each and every piece of pixel information and

sends it to the appropriate client. Cross Platform Cluster Graphics

Library (CGLX) [4] is an active client system in that the server

sends only the visualization commands, and each client renders

and visualizes the data for itself. Massive Pixel Environment

(MPE) [5] is a well-known active client system and is similar to

our ESP library in that it uses processing as the basic

programming platform [2].

3 DESIGN

3.1 Design Approach

The goal of this research is to facilitate the use of tiled displays

for information visualization. Hence, the library should be easy to

use. A passive client system can easily create visualizations but is

very expensive. In contrast, an active client system may not be

easy to use but is relatively cheap to build. Hence, ESP is

designed to facilitate the creation of visualization by programming

only at the server of an active client system. Processing is selected

as the programming language. It is easy and is widely used by the

information visualization community. The ESP library provides

basic visualization functions imitating those of Processing.

Therefore, Processing users can easily create various types of

visualizations on tiled displays without any additional knowledge.

The library should also be able to run on tiled displays of various

sizes. This is made possible by putting several size variables in the

template and the setup file of each client when installing ESP.

3.2 Visualization Function

The names of visualization functions for tiled displays are very

similar to those of the original functions of Processing. What

users need to do is just replace the first letter of an original

function with a capital letter and then add “mServer.m” before it.

For example, when drawing a rectangle, the rect() function is

used on a Processing sketch window. For the corresponding task

on tiled displays, the function should be mServer.mRect().

Processing users do not need to study how to use this library.

3.3 Operation Process

The server runs Processing, the ESP library, and the template for

programming. Clients have a setup file containing the client

information and the program for visualization. The server sends

the frameStart and frameEnd commands at the start and the end

of every frame, respectively. When executing an imitated

visualization function, its name and arguments are sent to clients.

Clients store them in each queue until frameEnd is received.

Once this has been done, the clients execute the original

visualization functions of the current frame. Clients can visualize

their area by translating to the origin of the integrated screen prior

to the actual drawing because clients have the corresponding

location and size information in the setup file.

3.4 Improvements

For improving performance, visualization functions have a
provision for detecting the visualizing area so that any command

* email: youngj6169@kaist.ac.kr
† email: raynuzeek@kaist.ac.kr
‡ email: donijoya@kaist.ac.kr
§ email: cheshire@kaist.ac.kr
¶ email: wohn@kaist.ac.kr

that does not have to draw is not sent to the client. For people
unfamiliar with programming, an additional library is developed.
It provides functions for several basic visualizations such as bar
graph, line graph, pie chart, and scatterplot matrices.

4 IMPLEMENTATION

The developed ESP library has been extensively tested on
numerous examples ranging from a simple visualization such as a
pie chart to a real-time interactive visualization on tiled displays.

Figure 1: Multivariate visualization on tiled displays

Figure 2: Visualization of city weather data in real time

Figure 3: Artwork exhibition on tiled displays

Figure 4: Image visualization using the photo mosaic technique

We use a dataset related to vehicles [6] and perform

multivariate visualization by using a scatterplot matrix (see Figure

1). We can also export weather data from a weather API [7].

Users select a specific city on the web by using their mobile

devices, and the corresponding weather data are visualized real

time at the location of each city on the world map (see Figure 2).

In the case of artworks exhibition, a user can select a specific

artwork from the several artworks on the tiled display by using a

mobile device (Figure 3). In an example of media art, a large

image can be visualized by using several images combined with

the photo mosaic process (Figure 4).

5 RESULTS AND DISCUSSION

We have identified some problems and limitations through the
above implementations. The current ESP library supports 2D
visualization functions offered by Processing. From the
perspective of a client system, the higher the performance and the
frame rate of a visualization application, the less accurate is the
synchronization. When developers use the ESP library to visualize
contents on tiled displays, external libraries for visualization in
Processing cannot be used for visualization on tiled displays.
Meanwhile, the ESP library has unique features. Compared to
MPE, users run the visualization application on the server and
they do not need to work each client program. Compared to
CGLX implemented by using C++, the ESP library is based on
Processing for novice developers and users need to create a
visualization application on the server only. In comparison with
SAGE, the network load is less and there is no need to set up
expensive high-performance facilities.

6 CONCLUSION

ESP is a visualization library for tiled display systems, targeted
for users with little programming skill. As the ESP library is based
on the Processing programming language, even a person without
any knowledge of the architecture of tiled display systems can
create non-trivial information visualization with minimal effort.
This library is also easy to use for developers with some
experience of the Processing language, as all they need to do is
just add simple keywords to the existing visualization functions
that Processing offers. Further, the use of the ESP library can be
extended. We aim to forge an integrated display environment that
includes not only the tiled display system (having a uniform
configuration) but also a heterogeneous mixture of the displays of
laptops, mobile devices, and other computing devices.

7 ACKNOWLEDGMENTS

This research was partially supported by NRF and the BK21 Plus
Framework.

REFERENCES

[1] Johnson, G. P., Abram, G. D., Westing, B., Navr'til, P., & Gaither, K.

(2012, September). Displaycluster: An interactive visualization

environment for tiled displays. In Cluster Computing (CLUSTER),

2012 IEEE International Conference on (pp. 239-247). IEEE.

[2] Processing.org, http://processing.org.

[3] Jeong, B., Renambot, L., Jagodic, R., Singh, R., Aguilera, J.,

Johnson, A., & Leigh, J. (2006, November). High-performance

dynamic graphics streaming for scalable adaptive graphics

environment. In SC 2006 Conference, Proceedings of the

ACM/IEEE (pp. 24-24). IEEE.

[4] Doerr, K. U., & Kuester, F. (2011). CGLX: a scalable, high-

performance visualization framework for networked display

environments. Visualization and Computer Graphics, IEEE

Transactions on, 17(3), 320-332.

[5] Westing, B. M., & Turknett, R. (2012). Extending the Processing

Programming Environment to Tiled Displays. Vis, 2–3.

[6] Interactive Data Visualization, http://www.idvbook.com

[7] http://openweathermap.org

