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Nonlinear aeroelastic computations are presented for a sweptback wing with underpylon/finned-store in the
transonic and supersonic flow regions, where strong shock wave interactions exist. A modal-based coupled nonlin-
ear aeroelastic analysis system with the matched-point concept has been developed using the high-speed parallel
processing technique. Advanced numerical techniques such as computational structural dynamics and computa-
tional fluid dynamics are used. It is expected to provide accurate and useful engineering data in the aeroelastic and
structural design of flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Euler
equations based on an unstructured grid system have been applied to consider fully the complex geometries. Linear
and nonlinear aeroelastic computations have been conducted and are compared for the transonic and supersonic
flow regions. Typically, it is shown that the advanced numerical approach gives much more conservative flutter
boundary for the wing/pylon/store model than those predicted by the classical linear aerodynamic theories for high
transonic flow. Also, important results indicate that in transonic flow the critical nonlinear flutter or limit-cycle
oscillation-like phenomenon may be dominantly induced or within the bounds of strong possibility due to the shock

coupling effect of unstable store induced vibration.

Introduction

ENERIC multipurpose military aircraft usually carry several

types of wing-mounted external stores. Furthermore, loading
an external store that includes a pylon connection part is the ba-
sic configuration of modern fighters. External stores can change
the aerodynamic and aeroelastic characteristics of wings because
of the aerodynamic, inertial, and elastic coupling effect with the
wing. Some of the most difficult and most dangerous problems in
aircraft aeroelasticity arise in the transonic flight regime. The dif-
ficulty stems from that the governing equations of transonic flow
are inherently nonlinear, which has effectively precluded analytical
solution by traditional approaches. Also, the danger arises because
the transonic regime is often the most critical from a structural dy-
namic viewpoint. Nevertheless, the actual extent of the safety mar-
gins present in the design, such as the traditional flutter speed mar-
gin of 15-20% over a design dive-speed, cannot be demonstrated in
flight tests because of either safety or performance limitations. It is
essential, therefore, that accurate analysis methods, supported and
verified by carefully conducted experimental procedures, form the
cornerstone of the structural dynamicist’s contribution to the pro-
cess of designing transonic aircraft. With regard to these aspects,
there is a practical need to develop a delicate computational anal-
ysis system based on the accurate theories such as computational
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fluid dynamics/computational structural dynamics (CFD/CSD), and
it must be an essential and powerful tool to simulate effectively sev-
eral complex flutter phenomena with various nonlinearities.

Since the 1980s, theoretical, numerical, and application studies of
CFD/CSD-based aeroelastic analyses for clean wing models have
been reported in Refs. 1-8. Those papers were based on several
aerodynamic theories, such as transonic small disturbance (TSD),
Euler, and Navier—Stokes codes. Recently, the parallel processing
technique has become a most effective tool to reduce the huge
wall clock time of accurate computational aeroelastic approaches.
Alonso and Jameson® developed a two-dimensional parallel code
that couples the solution of the Euler equations with the solution of
the structural equations. Farhat et al.'” suggested a family of mixed
explicit/implicit staggered solution algorithms including some ge-
ometric conservation law problems. They also described the nu-
merical investigations of effectiveness of some parallel coupling
schemes. Byun and Guruswamy'! developed a parallel version of
the ENSAERO code, which was then used and extended by Goodwin
etal.!? Recently, Liu et al.'* developed an integrated CFD/CSD sim-
ulation code for flutter calculations based on a parallel, multiblock,
multigrid flow solver for the Euler/Navier—Stokes equations. Also,
Bohbot et al.'* demonstrated the damping properties of the flow
viscosity on the flutter boundary using a parallel Navier-Stokes
solver with the one-equation Spallart—Almaras turbulence model.
Melville'> conducted a practical nonlinear aeroelastic simulation
for an F-16 fighter configuration in transonic flight. The inviscid
parallelized Euler code based on the structured grid system was
applied for numerical computations.

There have been some previous investigations of the effect of ex-
ternal stores on aeroelastic instability using relatively simple aero-
dynamic theories. Pollock et al.'® presented the effect of slender
store aerodynamics on wing/store flutter and the numerical method
based on the doublet-lattice method and wind-tunnel data correction.
Triplett!” conducted linear flutter analyses for an F/A-18 wing with a
tip store using the doublet-lattice method. Guruswamy et al.'® effec-
tively developed a computational method based on the ATRAN3S
code and examined the influence of a tip store on transonic aeroelas-
tic stability. Gern and Librescu'® conducted efficiently work on the
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static and the dynamic aeroelasticity of laminated composite wings
carrying external stores. Various useful parametric studies have used
efficient numerical methods. Also, Kim and Lee,?*?! using a TSD
code, conducted an investigation of the effect of underpylon/store
aerodynamics and tip launcher and missile for a practical wing-box
model in transonic and supersonic flows. It was shown that the tip
store can make the wing aeroelastically unstable and even induce
nonlinear limit-cycle oscillations.

Nowadays, accurate prediction of flutter boundary has becomes
really important to reduce structural weight and to estimate actual
flight performance in the design process. The main purposes of this
paper are to develop a delicate and general computational analysis
system and to consider exactly the effect of underpylon/store con-
figurations. In this study, a modal-based numerical flutter analysis
system in the time domain has been developed that includes the
physical matched-point concept. Also, the full configurations in-
cluding pylon/fined-store were completely considered. The parallel
unstructured Euler solver (see Ref. 22) was adopted and newly mod-
ified to be coupled with the dynamic aeroelastic solver. Structural
free vibration analyses have been performed using finite element
method. Detailed nonlinear time responses are computed by the
simultaneous coupled time-integration method in the transonic and
supersonic flow regions. Various computational results are presented
and investigated in detail.

Unsteady Aerodynamic Modeling

Governing Equations
The compressible Euler equations can be written in an integral
form over a control volume V' moving with a velocity V,,

0
— [ QdV + QP F(Q)-ndS =0 (1)
ot J, B
where
p pit
ou puil + pny
o= pv |, FQ,n) = pvu + pn,
ow pwii + pn;
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Also,
i=n-(V-V). Vi=n-V

where V, and n are the grid velocity and the outward unit normal
vector. Pressure and total enthalpy can be expressed from ideal gas
relations:

p=—Dleo— 30+ +wh] )

h=1Iy/(y = DI(p/p) + 3p* + v* + w?) 3)

where y is the specific ratio.

The inviscid flux across each cell face is computed by using Roe’s
flux-difference splitting formula.?* For high-order spatial accuracy,
the estimation of state variables at each cell face is achieved by in-
terpolating the solution with a Taylor series expansion in the neigh-
borhood of each cell center. The cell-averaged solution gradient
required at the cell center for the preceding expansion is computed
using the Gauss theorem by evaluating the surface integral for the
closed surface of the tetrahedrons.

For unsteady computations, the governing equations can be dif-
ferenced to include temporal numerical subiterations as a dual-time
stepping. With the subiteration counter denoted by m, the solution
vector @ at advancing time level n + 1 is now defined as

V. o3V IR by o
[(Mﬁm)’ BQ] AQ"=-R'Q")

where AQ" =Q"*! — Q™. Also, t* denotes the pseudotime for
dual-time stepping and R*(Q™) is the unsteady residual newly de-
fined as

3 mvn+1 — 4 nvn+ n—lvn—]
R(Q") + ¢ %A ¢ (&)
T

R*@") =

The solution vector AQ denotes the change in state variables be-
tween numerical subiterations during a certain time step. When the
subiterations drive the residual toward zero, not only second-order
time accuracy is achieved, but the linearization errors are also driven
to zero. In this study, the Gauss—Seidel relaxation method is effec-
tively used to solve iteratively the system of flow equations.

Furthermore, to avoid numerical errors induced by the deforming
or moving mesh, the cell volumes are integrated forward in time
adopting the geometric conservation law (GCL). The GCL used in
this study is of the same integral form as the mass conservation law
and defined by

d

dv — fv -ndQ =0 (6)
31 Q

Discretization of Eq. (7) yields
V,-"H:Vf”"‘ATZVﬁ'" 7

The local cell volumes at time level (n + 1) in Eq. (5) are computed
to satisfy the GCL by applying the preceding equation at every
global time step.

Parallel Implementation of the Solver

Parallelization of the Gauss—Seidel implicit scheme is fairly
straightforward and has been well described in the literature.”* The
present flow solver is parallelized by partitioning the global com-
putational domain into local subdomains. The intermediate decom-
position or partitioning is performed using the MeTiS library.?> The
local-domain mesh data are allocated on each processor, and the
calculation is performed on the local computational domain by up-
dating the solution information among subdomain boundaries. The
interboundaries commonly included in each subdomain are consid-
ered as artificial boundaries for data communication. To do this,
ghost cells attached to these interboundaries for the present cell-
centered scheme were also introduced. Initially, face-center values
of the flow variables are interchanged through the interboundary
faces. These values are used to calculate the flux Jacobian on the
interboundary. Data communication among processors is achieved
using the standard message-passing interface (MPI) library installed
on a LINUX operating system. Next, the cell-center values are
exchanged across the boundary during the Gauss—Seidel iteration
(GSI). Boundary node values and the weighting factors for Lapla-
cian averaging are also communicated to achieve the high-order
reconstruction. In the present study, cell data are exchanged in each
GSL and face and node data are transferred for the next global iter-
ation. Because 25-30 numerical iterations are typically required in
each time step to obtain the local converged solution, much com-
munication time is spent during the GSI process. Therefore, three
or five times of actual communication are generally performed to
reduce the communicational overhead due to the GSI. The details
of fundamental aerodynamic theories and numerical validations can
be found in Ref. 22.

Modified Spring Analogy for Robust Moving Grid

For analyses of complex moving body problems, a modified type
of the spring analogy? is used to compute the deformation of the
mesh during the time integration of the fluid. In the spring analogy,
the mesh is considered as fictitious springs. Boundary nodes are to be
moved by aeroelastic computations, and interior nodes are moved by
the spring analogy with several iterations. In the present research, the
segment spring method proposed by Batina?’ is basically adopted.
Here, the equilibrium lengths of the springs are equal to the initial
lengths of the segments.
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At static equilibriums of the spring system, the forces at every
node i have to be zero. The iterative equation can be expressed as

o= ia,-,é’; i“"f ®

j=1 j=1

where 6; = Ax;i+ Ay;j+ Az;k and o;; are the moving displace-
ment of node i and the spring stiffness of node i connected to node
J, respectively. The spring stiffness was classically considered as
being inversely proportional to the segment lengths of each cell.
This simple treatment of the spring network may often cause a ma-
jor numerical instability because of the wrong regeneration of the
grid for a complex geometry. Thus, in the present method, the near-
est distance from the surface boundary is additionally considered
to minimize the deformation of grids near the surface boundary as
presented in Ref. 28:

ap = 1/d"'\/ (i —x)* + (i —y)* + G — 2> (9)

where d; is the nearest distance from the moving boundary sur-
face and m is a user-defined number to control the rigidity of near-
body cells. In this study, the order of m is assumed as 2-3 be-
cause it is sufficient to keep the numerical stability for the problems
considered herein. The present method distributes stiffness quan-
tities among springs in such a way that the value is a maximum
for the spring attached to the moving boundaries and is gradually
diminished as the distance from the boundaries increases. In ad-
dition, the present method is much more cost effective for large
three-dimensional unsteady problems with moving boundaries be-
cause of much less required communication data and memory size.
This simple treatment of the spring network may often cause a ma-
jor numerical instability because of the highly skewed small cells
near surface boundary. Basically, the small cells near the surface
boundary cannot endure large deformation of the surface boundary.
Thus, in the present method, the nearest distance from the surface
boundary is additionally considered to add weights to the spring
stiffness near the surface boundaries, as presented in Ref. 28. In
this way, the major portion of grid deformations can be derived
away from the surface boundaries, whereas the small cells near sur-
face boundaries can maintain the nearly previous shapes with small
deformations.

The grid distance information is computed only once during the
preprocessing step of the domain decomposition process for parallel
computing on the whole grid system. The original interdomain grids
are finally moved by adding the final displacements obtained from
the iterative numerical solution of Eq. (8):

x;lew — X?ld + 6f+l.ﬁnal (10)
Note that because the present moving grid technique coupled with
parallel processing is applied locally on each processor, disagree-
ments of nodes at the communication boundaries occur due to the
independent local applications of the spring analogy. To avoid this
kind of nonsynchronization problem, coordinates of nodes at the
communication boundaries also have to be transferred into each
other as the numerical constraints.

Computational Aeroelastic Analysis

The governing aeroelastic equations of motion of a flexible wing
are obtained by using the Rayleigh—Ritz method. In this method,
the resulting aeroelastic displacement at any time can be expressed
as a function of a finite set of selected modes. The general motion
of the wing can be described by the separation of time and space
variables as follows:

{u@®)} =Y (x, y, 2)l{g®)}, v} =¥, (x, y, g (1)}
{w®} = [W:(x, y, g ®)} an

where {u}, {v}, and {w} are the structural deflections and [, ], [, ],
and [, ] are the matrices of x-, y-, and z-direction displacements of

the natural vibration modes. Usually, the number of columns for the
modal matrix [y ] directly depends on the selection by consideration
of natural mode used in the coupled aeroelastic analysis.

The aeroelastic equations of motion for an elastic wing are formu-
lated in terms of generalized displacement response vector {g(¢)},
which is a solution of

MG (D} + [Coltg (D) + [K Mg (D) = {F, (. ¢, )} (12)

where ¢ is the physical time, [M,] is the generalized mass matrix,
[C,] is the generalized damping matrix, [K,] is the generalized
stiffness matrix, and {F,} is the vector of generalized aerodynamic
forces computed by integrating the pressure distributions on the
wing surface as

1 ds
Fy = 5pU% f / —Cpt, 3, 2, Dtpy + 3ty +mtp)
S

13)
where p is the freestream air density, U is the freestream velocity, ¢,
is the reference chord length, S is the wing area, C, is the unsteady
pressure coefficient on the arbitrary wing surface, n,, n,, and n. are
the surface normal vectors for the x, y, and z directions, respectively,
and p; are the ith natural mode shape vectors interpolated on the
aerodynamic surface mesh. The generalized aerodynamic forces of
Eq. (13) are integrated numerically on the wing, pylon, and store
surfaces.

In general, the computation time needed to solve the structural
equation is much less than that required for the decomposed fluid
domains. Thus, for the parallel coupling with the unsteady fluid do-
mains, one single computer node is usually prepared to solve the
structural equations. Ateach global time step, all of the local general-
ized forces computed from each computer node are to be transferred
into the structural dynamic solver. Then, the generalized displace-
ments can be obtained by solving the generalized structural dynamic
equations. Next, the transformed physical displacements data for
moving boundaries are to be transferred into each corresponding
computer nodes for spring analogy and unsteady fluid solution. Data
communications among computer nodes are also conducted using
the standard MPI library installed on a LINUX operating system.
In addition, this includes the staggered coupling algorithm with in-
ternal iterations to increase the temporal coupling accuracy. In this
study, the time-marching process of the structure—fluid coupling
was performed by similarly adopting the second-order staggered
algorithm used in Ref. 29. It was known that this algorithm is con-
structed as a leap-frog scheme, where the fluid subsystem is always
computed at half-time stations, whereas the structure subsystem is
always computed at full-time stations. A road map of the temporal
coupling process applied in this study is shown in Fig. 1. Here, the
transferred structural displacement and velocity are to be normal-
ized to maintain numerical consistency with the normalized fluid
domain.

When state vector {x} is introduced to perform efficiently the
numerical integration, Eq. (12) can be recast into first-order form as

() = [ANx () + [BIT(0)) (14)
where
0 1 0
[A]=[ o1 n } [B]=[ ”1}
CIM K] (M 1(C] M)
g(0) ()
= s T =
b {{qa)}} o) {{Fgm}}

For nonlinear structural systems, a typical numerical technique such
as the Runge—Kutta method is commonly used, and for linear struc-
tural systems, we can use more efficient approaches. One of the
most useful and fast techniques for linear system analysis can be
derived from the assumption of setting the external force during a
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Fig. 1 Computation process of the second-order time-accurate staggered procedure.

certain small interval of the time-marching process. Thus, we can
use the accurate analytical form of the solution obtained through the
Laplace transform and inverse transform processes as

x@®)} = e[A]’{X(O)}+/ DB (D)} dr (15)
0

The solution of Eq. (15) can be obtained numerically by replacing
the continuous system by a discrete-time system. When a computa-
tional time interval is considered so that nAf <t < (n+ 1)At, and
through the useful matrix manipulation for the integration of tran-
sition matrix, Eq. (15) can be derived as the following closed form:

{x}nJrl — e[A]At{X}n 4 [A]fl(e[A]At _ I)[B]{F}” (16)

From now on, Eq. (16) can be effectively integrated in time to predict
the modal displacement and velocity using a digital computer as the
following modified equation:

)"t = [@){x})" 4 SOIBIGTY —{T)"~H (A7)

where

[@] =M%, [O] = [A]7 (" = 1)

Note that the elements of the ® and ® matrices are dependent only
on the values of time-step size and structural matrices [M,], [C,],
and [K, ]. The detailed numerical method for Eq. (17) may be found
in Ref. 30.

Surface Spline Techniques

The computed natural vibration mode shapes for a wing with py-
lon/store model are interpolated into the aerodynamic grid points
using the surface spline methods. Using the surface spline method
can map the structural model into the aerodynamic grid. By the ap-
plication of the principle of virtual work, the relations between the
finite element node and the aerodynamic grid points can be defined
to interconnect each other. In this study, the numerical interpolations
for the wing and the pylon parts are carried out by the infinite-plate
spline because of its numerical smoothness and robustness. For the
external stores with fins, the method based on the beam deflection
theory is simply used because of its axisymmetric shape. As men-
tioned before, the store is assumed as a nearly rigid-beam structure
with concentrated mass located at the c.g. point. This is straightfor-
ward and practical because the bending stiffness of the store body
is relatively very high compared with those of the wing and pylon
structures. In addition, applying a superposition technique with or
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Fig. 2 Geometric configuration of a wing with pylon and finned-store.

without overlapping regions is basically useful in considering the
complex shapes of flight vehicle structures that can be also decom-
posed as multicomponents. Enforcing the overlapping region can
increase continuity at the decomposed structural boundaries. Af-
ter performing surface splines for each structural component, these
can be simply assembled into the original global configuration.
The global free vibration modes interpolated on the aerodynamic
surface mesh can be effectively displayed by the postcombination
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process using a plotting program. Recent useful information for
several spline techniques with numerical experiments may be found
in Refs. 31 and 32.

Results and Discussion

The validation results of the present aeroelastic computation for
the benchmark model of AGARD standard aeroelastic configuration
(weakened 445.6) may be found in Ref. 30. Computational unstruc-
tured grids used in this study were generated by an in-house code
and also the GAMBIT, which is a GUI-based grid- (structured and
unstructured) generation module embedded in FLUENT (version
5.5) software. Figure 2 shows the geometric configurations of the
present wing/pylon/finned-store model. Figure 3 shows an example
of the unstructured surface grid generated by GAMBIT. The irregu-
lar bold lines indicate the communication boundaries decomposed
for parallel computation. The full domain grid consists of 146,748

SOSISERS
25 SRS
SISO E
SIS 1:”':»:5%..#"

-

Fig. 3 Unstructured surface mesh of the wing with pylon/finned-store.
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Fig. 4 Steady pressure contour of wing/pylon/finned-store model,
M =0.95 and 1.2.

\

Upper Surface

tetrahedral cells and 30,642 nodes. The surface boundaries on the
wing, pylon, and store include 19,880 surface triangles and 10,035
nodes. Grid resolution is enforced at the leading edge, trailing edges,
and tip of the main wing and store noses and fins. Far-field bound-
aries are located at about 10-chord lengths from the wing surface.
The global mesh is usually decomposed as 20-24 subdomains using
the MeTiS library (version 4.0). All of the computations were effec-
tively carried out on a personal computer-clustered parallel machine
with LINUX operating system. Steady aerodynamic flows are com-
puted basically to investigate the shock interference effects. Mach
numbers assumed for the present calculation are 0.95 and 1.2 at
o =0 deg. Figure 4 shows the surface pressure distributions on the
upper and lower wing surface interfering with the pylon and store
at Mach 0.95 and 1.2. In Fig. 4, we can see the clear normal shock
waves and strong interference effects between the lower wing sur-
face and the pylon/store. Also, additional aerodynamic results for

140 { —e— Wing Only
—r - Wing+Pylon

N 120 | —a— W+P+S (C.G: 27.3%)
z —o— W+P+S (C.G: 45.5%)
2 100 || —o— W+P+S (C.G: 63.6%)
c
£ 8ot
o
2 eof
g 40 |
©
= 20¢}
0 1 1 1 1 1
1 2 3 4 5 6
Mode Number

Fig. 5 Comparison of natural vibration frequencies of the wing/pylon/
store model.
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Fig. 6 Comparison of flutter dynamic pressure and frequency due to
variation of store c.g location at M = 0.6.
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Fig. 7 Contour plot of free vibration mode shapes for model with 45.5% store c.g point.

steady and unsteady flows for the wing/pylon/pinned-store model
may be found in Ref. 30.

A finite element model for the wing with a pylon-store model
was created and structural vibration analyses were performed by the
MSC/NASTRAN (version 70.5) finite element program. The finite
element model consists of the quadrilateral (CQUAD4) plate, the
beam (CBAR), the concentrated mass (CONM?2) with mass moment
of inertias, and the rigid-link (RBAR) elements. In this study, the

wing and the pylon are modeled as the plate elements. For academic
clearance, the pylon was perfectly attached to the wing structure.
The store body is modeled as the equivalent beam with nearly rigid
stiffness. The material of the wing and pylon structure is considered
as aluminum alloy with properties E = 10.5 x 10° psi (72.39 GPa),
v=0.33, and p, =2.588 x 107* Ibf - s%/in.* (2765.8 kg/m?). The
wing is cantilevered and fixed at its root. The weight and mass
moment of inertia of the store are considered a concentrated mass
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Mode 2

Fig. 8 Three-dimensional view of interpolated free vibration mode
shapes.
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element at the center of gravity. The structural connections be-
tween the pylon and the store were modeled as a rigid-link ele-
ment at two nodes. The store weight is assumed as about 50%
of the wing structural weight. In this case, the mass moment of
inertia (MOI) of the store is I, =1..=0.2968 Ibf- s2-in. The
MOI effect for the x axis is negligible for this axisymmetic
store case.

Comparison of the lowest six natural frequencies is presented
in Fig. 5. In the case of wing with pylon/store, the natural fre-
quencies tend to be decreased because of the inertia effect of ad-
ditional store mass. The changes of each natural frequency due to
store locations seem to be small for the present model. To inves-
tigate the effect of store c.g. location on the flutter instability, lin-
ear flutter analyses have been conducted using a subsonic doublet-
lattice and supersonic doublet-point aerodynamics, and then the
solutions were obtained by applying the p—k method with the
matched-point concept.’®* Figure 6 shows the comparison of nor-
malized flutter dynamic pressure and frequency at Mach 0.6. It
basically shows that the store location can significantly affect the
flutter stability of the wing structure. From this investigation, the
45.5% c.g. location model is selected as a benchmark model for
further study. Both six and eight natural modes were used in this
analysis, and they give nearly similar flutter solutions for the present
model.

Figure 7 shows the contour plots of the first six natural vibration
modes for the model with 45.5% store mass center. Figure 8 shows
the three-dimensional view of the interpolated modes for nonlin-
ear Euler-based analysis. Here, the first mode is a pure bending,
the second is a store pitch coupled bending/torsion mode, and the
third is second bending with pylon bending and so on. In this study,
the second mode is the major observed one in view of the critical
store coupled flutter phenomenon in the high transonic flow region.
Figures 9a and 9b show the V—g and V—f diagrams of the 45.5%
c.g. location model at Mach 0.6 and 1.4, respectively. For subsonic
flow, mode 2 is a dominant flutter mode, but for supersonic flow,
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Fig. 9 V-g and V—f plots for the wing/pylon/store model with 45.5% store c.g location: a) M =0.6 and b) M =1.4.
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a)

b)

Fig. 10 Three-dimensional views of a static wing deflection at Mach
0.95 and o =2.0 deg.

mode 1 is a dominant one. The nonlinear flutter analysis using
the coupled time-integration method includes the solution of static
aeroelastic deflections for the nonzero steady lifting conditions.
Figure 10 shows the three-dimensional view of static deflections
due to the pressure loads under the flow conditions of M = 0.9 and
a =2 deg. Here, we can clearly see the deformation of wing with
some wash-out effect at the wing tip.

Figure 11 shows the lowest four computed generalized displace-
ments at the given dynamic pressures for several Mach numbers.
The total number of natural modes used for this computation is
six. For M = 0.6, the dominant unstable flutter modes can be con-
sidered as the first and second mode in this case. The first modal
velocity was enforced as an initial condition. For M = 1.2, the first
mode response is still dominant compared to the other modal re-
sponses. This trend can be also observed in the frequency-domain
solutions of Fig. 9. For M =0.95, note that the flutter is rapidly
induced by the second natural mode. From 1.0 s, we can see that
the second mode has already become unstable, although the first
mode still shows a stable response. As shown in Figs. 7 and 8,
the second natural mode can be considered as a store pitch cou-
pled (or induced) wing torsion dominant mode. Although not pre-
sented in this paper, no similar unstable responses for the clean wing
model were observed. Thus, this unstable phenomenon can be con-
sidered as a typical store-induced flutter in the high transonic flow
region.

The physical aeroelastic static and dynamic responses at the wing
tip and the store nose near the flutter dynamic pressure are shown
in Fig. 12. We can see the negative static deflection for subtran-
sonic flow and the positive deflection for low-supersonic flow even
at zero angle of attack. If there are no aerodynamic interference
effects between the wing and the under-pylon/store, no static aeroe-
lastic deflections of the wing are expected at zero angle of attack
because the wing section is a symmetric airfoil. Note that static
deflection indirectly can determine the amount of aerointerference
effect and that the directions of static deflections for subsonic and
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Fig. 11 First four aeroelastic modal responses: a) M = 0.6, b) M =0.95,
and ¢c) M =1.2.

supersonic Mach numbers are opposite, as shown in Fig. 12. Be-
cause the first modal velocity is enforced as an initial condition, the
generalized displacements of the first mode are dominantly shown
for the cases of M =0.6 and M =1.2. However, an unusual result
for M =0.95 is the dominancy of the first modal response shown
for the first-half of the time response. Then strong instability of the
second mode due to wing/store aerodynamic interactions appeared
for the latter-half of the response (Fig. 11). This is an important
indication that there can be transition instabilities derived by non-
linear store-induced vibrations. After 1.0 s, we can observe unusual
vibration patterns between lateral (U,) and normal (U.) displace-
ments of the store nose. This result suggests that store-induced un-
stable motion due to shock wave interactions can be a major region
for the global unstable vibration of the wing including limit-cycle
oscillations. Classical fast Fourier transform was used, and the au-
tospectral density functions of the aeroelastic responses are shown
in Figs. 13 and 14 for each case. For M =0.6 and M =1.2, the
resonance flutter frequency shows one value for both the wing tip
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Fig. 12 Physical aeroelastic responses at the wing tip and the store
nose: a) M =0.6,b) M =0.95, and ¢c) M =1.2.

and the store nose. However, for M = 0.95, there are two different
flutter frequencies, as shown in Fig. 14. Especially, for the latter-
half of responses at the store nose, the unusual combination of two
different frequencies in both pitch and yaw directions are shown.
The second peak in Fig. 14b indicates the independent store domi-
nant frequency, which is also close to the second natural vibration
frequency.

Finally, the comparison of normalized flutter dynamic pressures
is presented in Fig. 15. Here, the flutter dynamic pressure is nor-
malized by the reference value of Mach 0.6. For the results using
linear aerodynamic theories, the aerodynamic effects of pylon and
store are not considered in the aerodynamic model. The two differ-
ent approaches show similar trends at Mach 0.6 and over Mach 1.2.
This also gives a preview for the present model that the aerodynamic
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Fig. 13 Autospectral density functions for responses at wing tip and
store nose: a) M =0.6, ¢ =2.70 psi and b) M =1.2, g =5.26 psi.
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Fig. 14 Autospectral density functions for responses at wing tip and
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interference effects of the pylon/store may be negligible for these
Mach numbers. However, for the transonic region, such as Mach
0.9 and 0.95, the situation is very different, and a typical transonic
dip phenomenon is shown. The CFD-based advanced flutter com-
putations considering the accurate aerodynamic shape of the pylon
and finned-store with shock wave effects gives much more con-
servative data than those predicted by classical linear aerodynamic
theory.
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Fig. 15 Comparison of normalized flutter dynamic pressures.

Conclusions

We have developed a general computational aeroelastic analy-
sis system coupled with advanced numerical technologies such as
CFD/CSD and high-speed parallel processing. The robust numerical
computation of the unstructured grid system has been successfully
applied to a complex configuration of a wing with pylon/finned-
store. A matched-point concept using standard atmosphere is ap-
plied to yield a physically meaningful solution for the actual flow
conditions. With use of the developed analysis system, the nonlinear
static and dynamic aeroelastic behavior of a wing with pylon/finned-
store was investigated and simulated in the transonic and low-
supersonic flow regions. From the present computational results,
it is typically shown that the advanced numerical approach yields
a much more conservative flutter boundary for a wing/store model
than those of classical linear aerodynamic theories in high transonic
flow. The aerodynamic interference effect of the pylon/store for the
present model seems to be negligible in the low subsonic flow region,
such as Mach 0.6. For transonic flow, an important result is that crit-
ical nonlinear flutter or limit-cycle oscillationlike phenomena tend
to be dominantly induced by, or within the bounds of strong pos-
sibility due to, the shock coupling effect of unstable store induced
vibration. In addition, for transonic flow, it is shown that there can
be unusual transition phenomenon with different frequencies under
the flutter vibration conditions of the wing with pylon/finned-store.
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