Appears in the 43¢ Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-43)

Virtual Snooping: Filtering Snoops in Virtualized Multi-c ores

Daehoon Kim, Hwanju

Kim, and Jaehyuk Huh

Computer Science Department, KAIST
{daehoon, hjukim, and jhuh}@calab.kaist.ac.kr

Abstract—Virtualization has been rapidly expanding its
applications in numerous server and desktop environments
to improve the utilization and manageability of physical
systems. Such proliferation of virtualized systems opens aew
opportunity to improve the scalability of future multi-cor e
architectures. Among the scalability bottlenecks in multicores,
cache coherence has been a critical problem. Although snoep
based protocols have been dominating commercial multi-cer
designs, it has been difficult to scale them for more cores, as
snooping protocols require high network bandwidth and powe
consumption for snooping all the caches.

In this paper, we propose a novel snoop-based cache
coherence protocol, called virtual snooping, for virtualzed
multi-core architectures. Virtual snooping exploits memay
isolation across virtual machines and prevents unnecessar
snoop requests from crossing the virtual machine boundarig
Each virtual machine becomes a virtual snoop domain,
consisting of a subset of the cores in a system. However, in
real virtualized systems, virtual machines cannot partiton the
cores perfectly without any data sharing across the snoop
partitions. This paper investigates three factors, which beak
the memory isolation among virtual machines: data sharing
with a hypervisor, virtual machine relocation, and content
based data sharing. In this paper, we explore the design
space of virtual snooping with experiments on real virtualzed
systems and approximate simulations. The results show that
virtual snooping can reduce snoops significantly even if viual
machines migrate frequently. We also propose mechanisms to
address content-based data sharing by exploiting its readnly

property.

I. INTRODUCTION

Virtualization provides an illusion of multiple virtual

cores increases, the cost of broadcasting all requests will
increase significantly, requiring higher network bandivjdt
and consuming more power for looking up all the cache tags
in a system.

In the context of non-virtualized systems, there have
been several studies to reduce the overheads of snoop-based
coherence by filtering out unnecessary snoop requests. Such
filtering reduces power consumption for snoop tag lookups
and network bandwidth consumption for broadcasting snoop
requests [1]-[4]. The techniques maintain the sharingstat
of coarse-grained memory regions in hardware tables.

In this paper, we propose a snoop filtering technique,
called virtual snooping. It reduces unnecessary snoop
requests by dividing the cores in a virtualized system into
virtual snoop domains. Since virtual snooping uses virtual
machine (VM) boundaries to isolate snoop requests within
a VM, it does not require any hardware table to track
the private or shared states of memory blocks. A snoop
request from a VM is sent only to the cores mapped to
the VM. Using the existing VM boundaries, virtual snooping
can be implemented on conventional snoop-based coherence
protocols with a small cost. Optimizing cache hierarchy for
virtual machines was first proposed by Marty and Hill, but
it is based on two-level directory-based protocols [5]. fie t
best of our knowledge, this work is the first effort to improve
snoop-based coherence for virtualized multi-cores.

In virtualized systems, each VM mostly accesses the
physical memory pages allocated for the VM. For those
VM-private page accesses, snoop requests do not need to

machines on a physical system. A software layer calledbe sent to the cores running the other VMs, which never
hypervisor manages physical resources and isolates Virtu&eep the copies of the private cachelines of the requesting
machines from each other. Virtualization has been rapidlyvM. Virtual snooping just needs to track on which cores

expanding its applications in numerous server and deskto

p VM is currently running. Although it may be expected

environments to improve the utilization and manageabilitythat most of the coherence transactions are for VM-private
of computing systems. In future many-core processors irpages, there are three problems which break the isolation

virtualized systems, many virtual machines will be running
on a processor, sharing cores dynamically.

The proliferation of virtualized systems opens a new
opportunity to improve the scalability of multi-core
architectures. One of the critical problems in multi-core

among VMs, and thus some cachelines used by a VM can
exist in the caches of other VMs.
« Data sharing with a hypervisor: Although the
majority of coherence transactions are for VM-private
memory regions, cache coherence must still support

designs is to reduce the costs of supporting shared
memory through cache coherence mechanisms. Snoop-based
coherence protocols have been dominating commercial
multi-core designs, since they are simple and support
fast cache-to-cache transfers. However, as the number of

communication through shared memory between VMs
and a hypervisor. A hypervisor can run on any core
in a system, and bring shared data to any cache.
Virtual snooping cannot simply eliminate all coherence
requests across VM domains to support such data



sharing. introduces the basics of virtualization and its implicatio
« VM relocation: The mapping between virtual CPUs on snoop filtering. In Section Ill, with a real virtualized
(vCPUs) and physical cores is not fixed. A hypervisorsystem, we present the effect of memory accesses by
relocates vCPUs to different cores to utilize physicala hypervisor and the frequency of VM relocation. In
cores as efficiently as possible. If a VM migrates to aSection 1V, we describe the architecture of virtual snogpin
new core, the cache of the old core will have the VM- considering VM relocation and inter-VM memory sharing.
private data of the relocated VM. Therefore, even if theln Section V, using simulations, we evaluate virtual
VM is not running on the old core, the core must be snooping. In Section VI, we present the effect of content-
in the snoop domain of the VM. based page sharing on virtual snooping and possible
« Content-based page sharingAnother major source of improvements. Section VII reviews related work and
data sharing across VMs is content-based page sharingection VIII concludes the paper.
among VMs. Sharing is used only for read-only pages,
and once a VM updates a content-based shared page, a
new physical page is allocated for the updated one by® The Basics of Virtualization
a copy-on-write mechanism. The content-based shared Machine virtualization enables multiple virtual machines
pages are guaranteed to be read-only and the extern@Ms), each of which encapsulates an individual computing
memory can provide the data even if cached copiegnvironment, to efficiently share underlying hardware. In a
exist in on-chip caches. virtualized environment, a hypervisor, a thin softwareday
In this paper, we explore the design space of virtualdirectly located on hardware, fully controls the hardware
snooping architecture considering the negative effechef t resources and VMs. The primary goal of a hypervisor
aforementioned three factors. A hypervisor can distinguis is to provide efficient resource sharing while ensuring
which pages are VM-private or shared across VMs. Itperformance and fault isolation. For CPU virtualizatiome t
records the sharing type of pages in shadow page tables or fypervisor allocates one or more virtual CPUs (vCPUs) to
guest-physical to host-physical mapping tables. Dep@ndineach VM. While a VM is provided with an illusion of its
on page types, snoop requests are either broadcast to all togn dedicated cores, each vCPU is scheduled under the
cores or multi-cast to only the cores used by the requestingontrol of the hypervisor. As with general-purpose ope@gti
VM. systems, the hypervisor scheduler aims at guaranteeing the
The contributions of this paper are as follows. Firstly, fair allocation of CPUs among VMs.
using a real hardware system and the open-source Xen Memory virtualization requires the hypervisor to maintain
hypervisor, we present the effect of data sharing withan additional page table for each VM to allow the
a hypervisor. We show that memory accesses by thésolated use of memory resources [6], [7]. The guest
hypervisor account for a small portion of the total coheeenc OS on a VM maintains per-process page tables which
transactions for most of our compute-intensive workloadsiranslate from guest-virtual addresses to guest-physical
I/O-intensive workloads tend to have more memory accesseaddresses. A VM is not permitted to access memory
by the hypervisor, but the ratios are still under 20%.regions owned by others without necessary permissions. For
Secondly, we evaluate the effect of VM relocation on virtualisolated memory accesses, guest-physical addressasa(virt
snooping. Virtual snooping performs best when each VMphysical addresses) used by a VM are translated to host-
runs on a fixed set of cores. However, pinning VMs tophysical addresses (real machine addresses) assigned by th
physical cores can lead to the under-utilization of coreshypervisor. Only the hypervisor is allowed to manipulate th
We propose a mechanism to track the number of theyuest-physical to host-physical address mapping. To make
private cachelines of a VM in a cache. It uses per-VMthis translation efficient with TLBS, most hypervisors use
cache residence counters in each cache. The mechanisoftware-based shadow paging [20], with which a hypervisor
allows virtual snooping to adjust the snoop domain of amaintains direct page tables from guest-virtual to host-
VM dynamically, and thus prevents a VM from snooping physical addresses. Recent processors support hardware-
unnecessary cores, when vCPUs migrate to different coreassisted address translation such as AMD nested paging [8]
frequently. Thirdly, we evaluate the effect of contentdshs and Intel extended paging [9], in which hardware walkers
sharing on virtual snooping. For a subset of our benchmarkraverse both guest page tables and hypervisor mapping
applications, there are significant coherence transastion tables for guest-physical to host-physical translatioor. &
content-shared pages. For such applications, broadgastipara-virtualized OS, which is modified to be aware of the
snoops on the content-shared pages reduces the effestiveneinderlying virtualization layer, a hypervisor can maintai
of virtual snooping significantly. We propose schemesthe guest-virtual to host-physical mapping directly in sue
to improve virtual snooping by exploiting the read-only page tables [6]. For this direct paging, the hypervisor $thou
property of content-shared pages. validate every update of guest page tables to support VM
The rest of the paper is organized as follows. Section llisolation.

Il. VIRTUALIZATION AND CACHE COHERENCE



B. Inter-VM Memory Sharing and management policies. From the view of CPU resources,

A hypervisor maintains a mapping between the guestVM relocation means the change of vCPU-to-core mapping.
physical memory of a VM to the host-physical memory to Dynamic relocation occurs when the hypervisor scheduler
provide the dedicated memory view for each VM. A VM migrates a vCPU to another core for load balancing. To
does not usually access the memory area used by oth&Ppprove core utilization, the hypervisor scheduler attésnp
VMs. Such memory isolation is the basis of virtual snooping.to make underlying cores as busy as possible. When a core
To filter coherence requests effectively across VMs, VMsiS idle, the scheduler moves a vCPU that is waiting on a
must share as little memory as possible. Furthermore, vCPURUSY core to the idle core. Without dynamic scheduling, a
may migrate to different cores, which results in the data ofcore may become idle, while another core has many pending
migrated VMs left in the caches that other VMs are using_tasks. This relocation could make memory contents of a VM
In this section, we discuss the two factors which reduce théPread out across the caches of cores through which the VM

effectiveness of virtual snoopingiter-VM memory sharing ~ Passes.
and dynamic VM relocation. Even though a VM allocates a fixed number of vCPUSs,

1) Inter-VM Memory Sharing: Although memory is it may not always use all the allocated vCPUs, since the
mostly partitioned for each VM and a VM does not thread-level parallelism in the VM is dynamic and often
access the pages allocated to another VM, some memoijere may not be enough threads to fully utilize the vCPUs.
regions can be shared among VMs for performanceSuch dynamic changes of active vVCPUs makes loads on
and efficiency. We explain three sources of memoryPhysical cores unbalanced. Furthermore, the hypervisor is
sharing: hypervisor, contents-based sharing, and inter-vM capable of dynamically adjusting the number of vCPUs
communication. Firstly, the memory region of a hypervisor initially allocated to a VM. Most commodity operating
is globally shared among VMs. When a VM conductsSystems support CPU hot-plugging to adjust available cores
a privileged operation, which must be validated andwithout downtime. This capability enables the hypervisor
virtualized, its control is forwarded to the hypervisor.rFo to deprive a VM of some vCPUs and re-allocate them to
this control, code and data of the hypervisor can be accesséother VM, which requires more parallelism.
from any VM. Accordingly, the shared hypervisor data can If VM migrations occur, VM-private data can reside in
reside on the cache of any core. the caches of the cores on which the VM is not currently

Secondly, identical pages can be shared among VMginning. By VM relocation, a long-running VM may pass
via an inter-VM memory sharing mechanism. Consideringthrough all the cores in a system. It is possible that
that memory is a limited resource for highly consolidatedsome VM-private data remain in all caches, making virtual
systems, the memory pages are shared by VMs based @mooping useless. Virtual snooping does not track each
the content of the pages. The content-based page sharitigdividual cacheline. Therefore, if there is a chance that a
mechanism constructs the hashes of page contents to keepcheline of a VM is in a cache, all snoop requests from the
track of identical pages [10]-[12]. VMware ESX server VM must be sent to the cache.
is the first hypervisor that adopts this mechanism and
reduces the memory footprints of homogeneous VMs by 10-
40% [10]. A shared identical page can reside in the caches In this section, with experimental results from a real
of different virtual machines. virtualized system, we present the effects of two factors

Thirdly, direct inter-VM communications may use page Which may reduce the benefit of virtual snooping. Firstly,
sharing between the VMs. For example, to supporiwe investigate L2 cache misses caused by a hypervisor and
high performance inter-VM networking, several techniquesthe privileged VM (domainQ in Xen). Those L2 misses must
allow multiple VMs to communicate via inter-VM be broadcastto all the cores, even if virtual snooping isluse
channels established on shared memory [13]. The interSecondly, we measure the frequency of VM relocation. VM
VM communication based on page sharing can improveelocation can make virtual snooping less effective, as the
the system throughput, when multiple VMs in a systemold core may contain the data of the previously located VM,
intensively communicate with each other. and virtual snooping must send snoop requests to the old

The hypervisor can identify all these inter-VM shared core too for the VM.
pages, and mark the page types in per-process shadow pagelo measure the effect of a hypervisor, we use the Xen
tables or mapping tables for guest-physical to host-playsic hypervisor (version 4.0) on a dual-socket system with
translation. Therefore, with a minor change in the TLB two Intel quad-core x5550 processors. Each processor has
lookup mechanism, processors can know page sharing typdeur cores and each core has 32KB instruction L1 and
for all memory accesses during address translation. \firuadata L1 caches, and a 256KB private L2 cache. The
snooping uses the sharing types to filter unnecessary snooggocessor also has an 8MB L3 cache shared by all the

2) Dynamic VM Relocation: Besides explicit memory cores on a chip. On each VM with four vCPUs, we
sharing, a hypervisor can relocate a VM via schedulingrun Linux 2.6.18.8-xen kernel. We evaluate PARSEC [14],

IIl. M EASURING THEEFFECT OFHYPERVISORS
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L2 misses are decomposed to guest VM, domain0O, and
hypervisor. For PARSEC applications, less than 5% of
L2 misses are for the hypervisor and domainO, except
for dedup(11%), fregmine(8%), and raytrace(7%). For
such compute-intensive applications, the ratio of cohazen
transactions which cannot be filtered by virtual snooping
is low. For OLTP, 15% of L2 misses are for domain0 and
the hypervisor, and must be broadcast. For SPECweb, 19%
of L2 misses must be broadcast. Even for the 1/O-intensive
server workloads, L2 misses for domain0O and the hypervisor
are less than 20%. Virtual snooping can potentially reduce
snoops for more than 80% of L2 misses.
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Figure 1. L2 miss decompositions: misses by hypervisor {XéomainO,
and guest VMs

100

—oideal | o Figure 2 presents the potential reductions of snhoops
o] e + occurring in all the cores, compared to a broadcasting
9} T 20 ! snoop-based protocol. For the figure, we assume VMs
2 6o e 20% | do not migrate, and the total number of virtual CPUs
3 : ‘ from all the VMs is the same as the number of physical
< 4 cores per VM cores. The number of virtual CPUs per VM is fixed to
g R =16 ores four. The x-axis shows increasing numbers of VMs and
{ 8VMs=32rores thus increasing numbers of physical cores. For example,
: 16 VMs = 64 cores . . . .

. ‘ ‘ 3 3 the 4 VMs configuration has 16 virtual and physical
2VMs 4VMs 8 VMs 16 VMs cores. The figure shows six curves with different ratios of

Figure 2.  Potential snoop reductions with varying ratioscoherence coherence transactions by a hypervisor to the total coeren

transactions. As the number of VMs increases, and thus the
ratio of the number of per-VM vCPUs to the number of
physical cores decreases, virtual snooping can reduce more

~_snoops. An ideal configuration with no hypervisor misses

The OLTP application is from S_ysBench,and SPECweb200%, 64 cores. As the misses by the hypervisor increase,
uses the SPECweb2005 Banking benchmark. To measure ke reductions decrease. However, with 5-10% hypervisor
misses by a hypervisor, we use a profiling tool (oprofile) misses, the potential reductions are still 84-89% with 16
which uses hardware performance counters. To measure thgs.

frequency of VM relocation, we useenperf which shows The simulator we use to evaluate virtual snooping later
the performance states of Xen including the number Ofjoes not run a hypervisor and domain0 VM. Its result will

migrations. present the snoop reductions only for coherence transectio
by guest VMs. However, as shown in Figure 1, coherence
transactions by the hypervisor and domainQ occur relativel
Coherence transactions by a hypervisor must be broadcagifrequently, and thus, the lack of hypervisor activities i

to all the caches in a system, as the hypervisor can bgyr simulator does not change the conclusion we draw from
invoked from any VM and its memory regions may reside inthe restricted simulator.

any cache in the system. DomainO in Xen is a privileged VM
which handles 1/O for guest VMs. The hypervisor forwards .
I/O requests from guest VMs to domain0O, and domainOB' VM Relocation
actually accesses /O devices. Since domainO serves all VM relocation moves vCPUs to different cores. A
VMs, without explicitly pinning it to a specific core, it hypervisor makes the relocation decision based on its
tends to migrate to different cores frequently. Althougisit scheduling policy. The default scheduler of Xen is a credit-
possible to reduce the set of cores domain0 can use, we allokased scheduler, which is a proportional share scheduler
domainO to be scheduled to any core for performance. Due twith global load balancing on multi-core systems. The dredi
the frequent relocation of domainO, from the perspective okcheduler allocates a time slice to each vCPU, called gredit
virtual snooping, its effect is similar to that of the hypisar.  for each scheduling period. vCPUs consume the assigned
The coherence requests by domain0 must be broadcast tooredits as they run. For fairness guarantee, the scheduler
Figure 1 presents the decomposition of L2 misses bylways picks a vCPU that has remaining credits ahead of
sharing types. For each result, we run two instanceshose that have run out of credits. Once a vCPU is picked,
of the same application on two VMs. In the figure, it can run for a time slice of 30ms. A vCPU can be blocked

transactions by a hypervisor to the total transactions:, B, 4nd 16 VMs
(4 cores per VM)

A. Cache Misses by a Hypervisor
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(b) Overcommitted: four VMs (4 vCPUs per VM)

Figure 3. The effect of pinning VMs: undercommitted vs owenenitted systems

Table |

physical cores. Two VMs with four vCPUs per VM are
running on the undercommitted system, and four VMs are

Workloads | undercommit.]| overcommit. running on the overcommitted system.

blockscholes 2880.6 91.3 Figure 3(a) presents the normalized execution times
bodytrack 26.1 12 when vCPUs are undercommitted. In the undercommitted
gzgﬂea' ig-g 3'111 system, pinning vCPUs to physical cores (no migration)
facesFi)m 30.0 12 res_ults in bette_r perfor_manc_e_than the full migration
ferret 375.9 315 policy by improving caching efficiency. However, as shown
fluidanimate 46.6 7.9 in Figure 3(b), in the overcommitted system, allowing
freqmine 1968.0 2064.4 migration provides much better performance than pinning
raytrace 528.8 23.6 vCPUs to physical cores. In the overcommitted system,
streamcluster 36.2 1.3 . . e o
swaptions 2203 1 80.3 improving the utilization of cores bec_omes cr|t|cz_;ll, as
vips 18.3 0.7 multiple VMs compete for the cores. It is also possible to
X264 29.2 8.2 restrict the physical cores a VM can run to a subset of the
average 629.4 178.1 cores in a system, instead of a one-to-one mapping. It will

limit the size of the snoop domain of a VM, while it can

reduce the load unbalance caused by the strict scheduling in
when it is no longer runnable, even if it has not used up thehe one-to-one pinning. Exploring such scheduling paddicie
assigned credits. will be our future work.

For load balancing on multi-core systems, the credit Table | presents the average relocation period in
scheduler dynamically relocates waiting vCPUs to idlemilliseconds for any mapping changes between vCPUs and
cores. When all the vCPUs on a physical core havephysical cores. For example, in blackscholes running on the
exhausted their time slices, the scheduler actively staals overcommitted configuration, a vCPU changes its physical
waiting vVCPU which has remaining credits from anothercore every 91ms. The migrations of vCPUs of a VM within
busy core, and assign it to the idle core. This defaultthe current snoop domain of the VM do not negatively
scheduling policy does not consider the cost of migrationimpact virtual snooping. However, the results in the figure
With this policy, all vCPUs aggressively migrate acrossinclude any mapping change for conservative evaluatior. Th
physical cores to make cores as busy as possible. overcommitted configuration shows much higher frequencies

An alternative way of scheduling to avoid migration of migration than the undercommitted configuration does. In
is to pin vCPUs to physical cores. If a VM uses only the worst case, the average period can be as short as 0.1ms.
a fixed subset of physical cores, the adverse effect bylso, the relocation periods vary widely depending on the
migration on virtual snooping can be reduced. Howeverpehaviors of applications. Virtual snooping must be able to
such restriction on scheduling may result in under-utila  reduce snoops even with such frequent migrations.
of cores. To show the effect of restricting physical cores a
VM can use, Figure 3 presents execution times with different .
scheduling policies. The no migration policy pins virtual A- Architecture
CPUs to physical cores with a one-to-one mapping. The Exploiting isolation among VMs, virtual snooping sends
full migration policy does not restrict migration to maximei  snoop requests only to the cores (nodes) mapped to a VM.
the throughput of the system. The figure shows two resultsAlthough virtual snooping can be used with any cache
one from an undercommitted system and the other fromhierarchy, in this paper, to simplify discussion, we assume
an overcommitted system. The hardware system has eiglat private L1 and L2 for each core. To identify the physical

IV. VIRTUAL SNOOPINGARCHITECTURE
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cores to which the virtual CPUs of a VM are mapped, each Figure 5. Virtual machine relocation

core has a register, calledCPU map register. The vCPU
map register, n-bit vector for n cores, represents the ghysi pages). We will discuss how to reduce snoops for content-
cores used by the current VM running on a core. When &, 4 pages in Section VI.
hypervisor _sche_dules a vC_:PU of a VM to a physical core, Depending on the types of memory pages (VM-private,
the hyperwspr is responsible to set the vCPU map to l'StRW-shared, RO-shared), virtual snooping must send snoop
all the physical cores the VM must snoop. T_he hyperwsorrequests differently. The page sharing type bits (2 bitsstmu
must update the vCPU map before transferring the contro‘lﬂSO be in the TLB to find the sharing type directly for
toa VM. every coherence transaction. Figure 4 presents the overall
Memory pages can be used by only a VM or sharedychitecture of virtual snooping. Each core has a vCPU map
among VMs and the hypervisor. Depending on the sharingegister for the VM currently running on the core. The cores
types of pages, coherence requests are either multicashwit ;5o by a VM must have the same vCPU map, which is
a VM (by looking up the vCPU map), or broadcast t0 maintained by the hypervisor. The shadow page table records

all the cores. The types of pages, VM-private or shareédgparing status, which can be updated only by the hypervisor.
are recorded in unused bits in page table entries. The

type information is stored in per-process shadow pagd. Supporting VM Relocation
tables or nested page tables (guest-physical to hostgalysi VM relocation may reduce filtering efficiency as the
mapping tables). In direct paging used by a para-virtudlize cache in the old location of an already relocated VM may
hypervisor, the hypervisor sets the type information ingfue contain some valid data of the VM. A naive method to
page tables directly. These page tables are already relquirgyuarantee the correctness is to flush the entire cache of the
for virtualization, and virtual snooping needs only two old node when a VM is relocated. However, flushing not
unused bits in the page tables, which are available in mosinly removes valuable data from on-chip caches causing
page table designs. For a coherence transaction for a VMexpensive external memory accesses later, but also require
private page, the cache controller checks the vCPU map anglow write-backs of modified blocks to the memory. If the
sends snoop requests only to the cores listed in the vVCPVYM-private data in the old location are not flushed, the
map. vCPU map of the VM must include the old core, even if
However, not all the memory used by a VM can bethe VM is not running on the core. The old core cannot be
isolated within the VM boundary. There are two types of removed from the vCPU map, since it may contain the data
page sharing between a VM and the hypervisor or amongf the VM.
VMs. The first type is page sharing to communicate data The vCPU map registers in the cores on which a VM
between a VM and the hypervisor, or between VNR\f is running, must be synchronized for each relocation. The
shared pages). As discussed in Section 1I-B, this type ofhypervisor must update the vCPU map registers before
sharing results from hypervisor data accesses and inter-VNelocation, and the hardware architecture can supportta fas
direct communications. Since the modified cache block casynchronization mechanism for vCPU map registers. The
be in any core, snoop requests must always be broadcastechanism sends vCPU update messages with a new value
for this type of shared pages. For example, some pages ate a subset of cores, and waits for acknowledgments from the
shared between a VM and the hypervisor to communicateores. The latency is similar to or lower than broadcasting
I/O requests and responses. For every page shared by teaoop requests and receiving responses. VM relocation is
VM and hypervisor, the snoop requests must be broadcassjgnificantly infrequent compared to coherence transastio
since the hypervisor can run and leave its data on any cachend thus its cost is negligible. Figure 5 shows how the vCPU
in the system. The second type is read-only page sharing tmap is updated to include new cores, while the old cores
support content-based page sharing across Msghared  are still in the map. In the second step of the figure, two



Table I

new cores are added in the vCPU map of the VM. After SIMULATED SYSTEM CONFIGURATIONS
adding the cores, the vCPU map has six cores, reducing
the effectiveness of filtering by 50% from the optimal four _Parameter | Value
cores. Processors 16 in-order SPARC core

However, although adding new cores to VCPU maps L1 I/D cache 32KB, 4-way, 64B block, 2 cycle latency
guarantees correctness, n_ot removinglobsolete coresfrem t lc‘:zoﬁgfehni e %gggani}]ﬁ?Z}]Sg,BN?gégl %?o(t:ggcﬁ latency
vCPU maps may make virtual snooping useless eventually.on-chip Network | 4x4 2D mesh with 16B links
As a VM migrates to different cores in a system, its vCPU 4 cycle router pipeline
map will include more cores, eventually containing all the
cores in the system. Once it contains all the cores, the snoop Table 11l
filtering of virtual snooping does not occur. Unlike process APPLICATION INPUT PARAMETERS
on conventional operating systems, which may finish its t_ask Application | Dataset [ Application | Dataset
and be destroyed after some .t|me, VMs on the hypervisofF SPLAGH-2 PARSEC
tend to stay alive for a long time and thus eventually use cholesky k29.0 blackscholesl simmedium
all the cores in the system. Therefore, virtual snoopingtmus  fft 4,194,304 points || canneal simsmall
support an efficient mechanism to remove obsolete coreslu 512x512 dedup simsmall
from the VCPU map of a VM. ocean 258 x 258 grid ferret simsmall

. . . . radix 4,194,304 integers

The first mechanism for efficient relocation support uses

per-VM cache residence counters for each cache. Each perSPECJbekfir\cs;?ehouses

VM counter records the number of VM-private blocks in
the cache for a VM. Whenever a block is added to a cache,
the corresponding counter for the current VM is increased,

Cache tags must be extended to include a VM identifier for o OVE a core aggressively from the vCPU map of a VM,

each block to mark the VM. When a cacheline is evictedeven if the counter is not zero for the core. For a VM-private

. . age, the first two attempts to collect tokens will send only
by replacement or !nvahdated by snoops, the counter of th 0 the cores in the vCPU map of the VM. If the two attempts
corres_p_ondlng_VM IS decregsed. When the counter becof“‘??an, the next transient request will be broadcast. It regsov
zero, it is certain that the private data of the VM do not exist . :

: a core from the vCPU map, when the VM is not running on
in the cache, and then the core can be safely removed from) .
the core and the cache residence counter becomes under

the vCPU map of the VM. The core invokes the hypervisor . .
to update the vCPU map registers of the removed VM. Ina threshold gounter-threshold policy). The base counter

the third step of Figure 5, a core is removed from the VCPUmechanlsm can be used with any snoc_)p-based coherence, but
; . counter-threshold can be used only with coherence pragocol
map, as it no longer contains any data for VM1.

A problem with the counter-based mechanism is that itsupporting safe retries of coherence transactions.
waits for all cachelines for a VM to be evicted. However, V. EXPERIMENTAL RESULTS
it is possible that some data can stay in the cache for a
long time, if a new VM running on the core has a small ™ Méthodology
working set. Once the VM-private data of a VM spread To evaluate virtual snooping, we use the Virtual-GEMS
to all the caches, the counter-based mechanism will not beimulator [16]. Virtual-GEMS is based on Simics, a full
able to filter any more snoop requests. A straightforwardsystem simulator, and GEMS, a timing simulator for
solution for the problem is to flush the cache selectively formemory hierarchies. Virtual-GEMS runs multiple instances
a specific VM, if the counter is decreased under a thresholdf Simics to emulate virtual machines and feed the execution
However, it requires an additional controller logic to do it traces to the GEMS execution model. In this simulation
and it may need to check the entire cache to search thenvironment, a hypervisor is not running, and its effect is
cachelines belonging to the VM. not included. To overcome the weakness of this simulation

In this paper, in addition to the counter mechanism, wemethodology, we investigated the effect of a hypervisor
evaluate a speculative mechanism to mitigate the effecteparately using a real hardware system and the Xen
of slowly evicted cachelines, using the property of thehypervisor in Section Ill. Snoop reductions shown in this
underlying Token Coherence protocol. In Token Coherencesection is applicable only to the guest VM portions in
if the first attempt of a coherence transaction fails forFigure 1.
not being able to collect enough tokens, more transient We model 16 in-order cores with 32KB L1 data and
request can be retried for the transaction. If the numbemstruction caches, and a 256KB L2 private cache. The
of retries exceeds a threshold, Token Coherence resorts tnodel uses Token Coherence for cache coherence among
heavy-weighted persistent requests which guarantee fdrwa on-chip caches. The interconnection networks use the Garne
progress [15]. Using the property of Token Coherence, wemodel for 4x4 2D mesh with 16B links. Table Il shows



Table IV 10

NETWORK TRAFFIC REDUCTION OF VIRTUAL SNOOPING WITH IDEALLY N" ______ X$X+ ''''''' I
PINNEDVM s 0.8+ SIS ; feeons lu
" - radix
Workloads | Reduction (%)][ Workloads | Reduction (%) S °°7 o ferret
© A
cholesky 63.79 blackscholes 64.22 S o4 :
fft 63.20 canneal 63.35 = T
lu 64.27 dedup 64.97 0.2 3 : : :
ocean 63.74 ferret 63.05 s :10ms i20ms :30ms
radix 63.39 specjbb 62.79 0.0 : — —
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Average . million cycles
_ o Token B = Virtual Snooping Figure 9. Cumulative distributions of the core removal périafter a
& 10 : : : VvCPU relocation in the counter mechanism (5ms migrationopgr
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s 60— . . .
5 a0 i i i to the baseline TokenB. Virtual snooping in the ideal
N . . . . . . .
g 20 g g g configuration reduces the execution time by 0.2-9.1%. The
3 3 3 3 average execution time is reduced by 3.8%. The results show
> &8 = g X . & ® 2 B @ 2 o) . . .
2 § 8§ 3 g - 5 g modest improvements in performance, as network bandwidth
° o ] S © - w . - . . . . . .
£ i 8 & < is not utilized intensively in this experimental configuoat

This small improvement results are consistent with prior
snoop filtering work [4]. However, the first goal of snoop
filtering is to reduce the power consumption for snoop tag

lookups and snoop message transfers, allowing the saved

the detailed configurations for the simulated system. We rurﬂ)ower budget to be used for other performance features or
applications from SPLASH-2, PARSEC, and SPECjbb. Thehigher clock frequencies

model uses four virtual machines with each VM having
four vCPUs. The a_lppllca_'uon input parameter; shown NS The Effect of VM Relocation
Table 1ll, are for a single virtual machine. For this papeg, w
do not model overcommitted systems due to the limitation In this section, we evaluate the effect of VM relocation.
of our simulator. The total number of vCPU is 16 (four for However, without hypervisor activities, the Virtual-GEMS
each VM), which is the same as the number of physicakimulator cannot simulate the migration effect accurately
cores. As an approximate method to simulate the migration effect,
) ) we shuffle the locations of two vCPUs periodically. Table |
B. Ideally Pinned Virtual Machines shows that the average migration period for an application
In this section, we evaluate the effectiveness of virtualin overcommitted systems can be as low as 0.1ms. Note
snooping when VM migration does not occur. For this result,that the migration periods in the table include all migrago
each VM is running on fixed four cores, and the vCPU-both within and across VM boundaries. In this section,
to-core mapping does not change. Without hypervisor owe simulate migrations only across VMs for conservative
domainO activities in Virtual-GEMS, all snoops are to VM- evaluation. We evaluate the migration effect with four
private pages, and thus no snoop requests must be broadcadifferent migration periods, 5ms, 2.5ms, 0.5ms, and 0.1ms.
Therefore, in this ideal configuration, snoop reduction isFor example, for the 5ms configuration, two vCPUs from
always 75%, since a VM is using four cores out of thedifferent VMs are randomly selected and their physical sore
16 cores in the system. The snoop reduction results in thare exchanged every 10ms.
reduction of not only snoop request messages but also power For the four migration periods, we evaluate three virtual
consumption for looking up cache tags. As discussed irsnooping mechanisms. The base virtual snooping (vsnoop-
Moshovos et al. [1], the snoop tag lookups will consumebase) does not remove cores from the vCPU map, as it does
a significant portion of dynamic power of caches, as thenot check whether the migrated VM leaves any cachelines in
number of caches increases. the old location. The second mechanism (counter) has per-
Table IV presents the traffic reduction compared toVM counters for each cache to count the number of VM-
the baseline TokenB, which always broadcasts requestgrivate cachelines in the cache. Once a counter reaches zero
The measured network traffic is the total amount of datahe core is removed from the vCPU map of the VM. The
transferred through the network, including both data andhird mechanism (counter-threshold) aggressively rera@ve
coherence messages. Virtual snooping can reduce the totabre once the counter becomes less than a threshold. The
network traffic by 62-64%, compared to the broadcastinghreshold is set to 10 in the experiments, which is set to be
TokenB. Figure 6 shows the execution times normalizedow, not to remove cores from the vCPU maps prematurely.

Figure 6. Execution times: virtual snooping with ideallynped VMs
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Figure 7. Total snoops with virtual snooping protocols: &\Cis relocated every 5 or 2.5ms
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Figure 8. Total snoops with virtual snooping protocols: &PtLCis relocated every 0.5 or 0.1ms

Figures 7 and 8 present the total number of snoopsgo the eviction of all the VM-private data of the VM from the
occurring in all the cores, normalized to the baselineold core. As shown in the figure, for most of the occurrences
TokenB protocol. For each application, four sets of barsof vCPU relocation, the old core is removed from the vCPU
are shown for 5ms, 2.5ms, 0.5ms, and 0.1ms migratiomap within 10ms. Two applications (radix and ferret) have a
periods. Without counter-based optimizations, the basdew occurrences of relocation with longer removal periods.
virtual snooping may lose its effectiveness significantlyFor blackscholes which has short execution times and small
when VMs can migrate. As migration periods becomeworking sets in L2 caches, the counters never become zero,
shorter, more migrations occurs for each VM during itsand thus each relocation of a vCPU adds a new core to
execution, and all the physical cores are included in thahe vCPU map of the VM. In the results of blackscholes in
vCPU map of each VM very fast. With 0.1ms period, the Figures 7 and 8, the counter scheme does not improve the
base virtual snooping can only reduce 4% of snoops oibase virtual snooping, as it cannot remove any old core from
average. vCPU maps. However, in the results, blackscholes shows

However, the counter mechanism can effectively remove100P reducti_ons even with vsnoop-_base, since only a small
obsolete cores from the VCPU map of a VM when therllumber of migrations occurred during the short execution
migration period is 5 or 2.5ms. The snoops with the countef'M€s:
mechanism is close to the ideal 25% from the baseline
TokenB. With 0.5ms and 0.1ms, more vCPUs migrate to
other cores, even before their previously located cores are
removed from the vCPU map. The counter mechanismA. The Effect of Content-based Page Sharing
can still reduce 45% snoops on average even with a Very 1, congolidate multiple under-utilized systems to a
aggresive 0.1ms migration period. Counter-thresholdljg  \jiy,alized one, the hypervisor allows the overcommitment

@mproves the counter mechanism W_hen_ the migratiqn _perio%f memory, and thus the total memory of all VMs running on
is 0.5ms or 0.1mt5._ However, considering _the restnctlon Ofe system can be greater than the actual physical memory.
the schemg requiring a fall-back mechanism in .Coh.erencgvith such memory overcommitment, it is important to
protp_cols, its beneﬁt seems_to be too small Fo justify thereduce the memory footprints of VMs to accommodate
ad(_jmonal complexity. E.xpl_o.rlng more speculz_itlve scheme more VMs per physical system. Content-based page sharing
which rely on the availability of safe retry in coherence jjows read-only memory pages with the same content to
protocols, will be our future work. be shared by VMs. The hypervisor maintains the hash
From the result, we observe that the VM-private datavalues of all the memory pages for fast comparison, and
cached in the old location of a vCPU are replaced orchecks their contents periodically. The content-basedesha
invalidated relatively fast. Figure 9 presents the cunivgat pages (content-shared pages) are marked as read-only pages
distributions of the periods to remove the previous coreand any attempt to update them causes an exception,
from the vCPU map of a relocated VM. The removal periodwhich invokes the hypervisor to create a copy of the page
measures the time difference from the relocation of a vCPlbn write (copy-on-write mechanism). The content-based

VI. VIRTUAL SNOOPING FORCONTENT-BASED
SHARING



Table V o vsnoop-broadcast @ memory-direct = intra-VM = friend-VM
THE PERCENTAGES ORL1 ACCESSES ANDL2 MISSES FOR
CONTENT-SHARED PAGES
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Workloads | Access (%)] L2 miss (%)

Norm. Snoops (%)
B
o

cholesky 1.45 2.66

fft 5.43 30.64 20-

lu 0.43 8.87

ocean 0.40 0.83 0 > & =2 & = R = »
radix 20.47 0.96 f: § 8.8 ¢ 5 % ¢
blackscholes 46.16 41.10 g ° 8 8 g 2
canneal 25.16 51.49 °

ferret 3.64 5.13 : : : .
SPECjbb 948 3774 zlr?ti%?z;gbnslzxpeded snoops by memory-direct, intra-VM, &i@hd-VM
Average 12.51 19.94

Table VI
POTENTIAL DATA HOLDERS FOR CONTENFSHARED DATA

page sharing, although it can reduce memory footprints

significantly for certain workloads, can adversely affect | fit_| blacksch. | canneal] specjbb

. . . Lo . Cache: all 47.3% 53.2% | 63.9% | 54.3%
virtual snooping, by increasing inter-VM memory sharing. =, he' inravM | 0.1% 6.9% | 269% | 14.8%
Without any optimization for content-shared data, read cache: friend-VM | 24.4% 27.7% | 21.0% | 21.5%
requests to the content-shared pages must be broadcalst to&{zemory [52.7% ] 46.8% | 37.1%] 45.0%

the caches, as other VMs may use the pages simultaneously:
To investigate the effect of content-based sharing, we

show how often coherence transactions occur on such,shes any modified cachelines of the page to the memory
content-shared pages. With the same configuration ag, engyre the memory has a clean page. After flushing, there
described in Section V-A, we ran four VMs with the same 5e 1o modified cachelines for the content-shared page, and
application for each VM. The contents of all memory any core or memory can provide the data for read requests.

pages are compared, and the pages with the same CONt&jf hropose three mechanisms to filter snoops on content-
are marked as content-shared pages until one of thg,, g pages

VMs attempts to update the pages. The content-shared
pages include both application and guest operating system
memory pages. Sharing detection in the experiment is more
aggressive than what commercial hypervisors can do, since
we ignore any performance impact of checking hash values
of memory pages continuously. Therefore, the experiments
show sharing statistics close to an ideal page-level conten
based sharing mechanism.

Table V presents the ratios of the L1 accesses for content-
shared pages to the total L1 accesses, and the ratios of the®
L2 misses for content-shared pages to the total L2 misses.
As shown in the table, there are wide differences in the
ratios of the L1 accesses and L2 misses for content-shared
pages in different applications. Content-based sharifeg tf
virtual snooping significantly only when a large number
of L2 misses for content-shared pages occur. Among 9 .
applications, only 4 applications ha\f)e ?nore than 30% ofgLZ by the two VMs do not have the data, the memory wil
misses for content-shared pages. Without any optimization provide the data.

coherence requests by those misses must be broadcast to allfo support the intra-VM and friend-VM schemes, the
the caches. cache coherence protocol should be slightly modified. In

) ] ] common snoop-based coherence protocols, only one copy of
B. Improving Mrtual Snooping for Content-based Sharing a cacheline in the entire system is designated as a provider
Exploiting the read-only property of content-shared pagesfor the address. It prevents multiple cores from sending
we can further reduce coherence requests on such pageke same data to the requester. Even if several caches have
The hypervisor finds identical pages from different VMs shared copies of the same address, only one of the caches,
and allows read-only page sharing among VMs. At the timewhich has the provider copy, must send the data. However,
when a page is marked as an RO-shared page, the hypervidor the intra-VM and friend-VM schemes, virtual snooping

o memory-direct sends miss requests for content-shared
pages directly to the memory, and the memory will
provide the data. As used in CGCT [3], this technique
can reduce snoops effectively on clean data. However,
it may increase the latencies of L2 misses for content-
shared data, since it does not check whether there are
cached copies, which can be obtained by fast on-chip
cache-to-cache transfers.
intra-VM sends the requests only to the memory and
the cores in the vCPU map of the requesting VM. If no
cacheline is found in the intra-VM caches, the memory
will send the data.
« friend-VM sends the requests to the requesting VM and
another VM friend-VM, which shares the most content-
shared pages with the requesting VM. If the caches used



must designate the provider copy for each VM, since readoarse-grained coherence tags for each cache and tracks
requests will go only to the intra-VM caches or friend-VM the private or shared states of regions, in addition to the
caches. The first copy of a cacheline brought into a VMconventional cacheline-unit coherence [3]. Snoop reguest
can be the provider copy for the VM. For the friend-VM are either broadcast or sent directly to the memory
scheme, it is possible that two copies are transferred to thdepending on the coarse grain states. In-network Coherence
requester, as both the requesting VM and its friend VM mayFiltering (INCF) embeds region-based tracking in routers,
send a copy of the data. and removes unnecessary snoops on the fly during the
Figure 10 presents the expected snoops occurring on evetyansmission of requests [4]. Instead of using additional
core, normalized to the baseline tokenB. The total snoopfilters or tags, Ekman et al. use TLBs to track the private or
are estimated from the ratios of coherence transactionshared states of pages [17]. With operating system support,
on content-shared pages to the total transactions and tiseibspace snooping uses page tables to track sharers at
required snoops for each scheme. Optimizations on contenpage granularity [18]. Virtual tree coherence relies on the
shared pages affect four applications (fft, blackscholessupport from on-chip networks to build virtual multicagtin
canneal, and specjbb). Memory-direct has the least snoopsges. For each memory region, a virtual tree, which
often less than the ideal 25% snoops compared to TokenBonnects a subset of cores, is formed for snooping [19].
since it does not send snoop requests to the othdbestination-set prediction provides a speculative fitigri
cores for content-shared pages. All three optimizationsnechanism [20]. Compared to the aforementioned studies,
can reduce snoops significantly compared to the baseirtual snooping uses a virtual machine as a natural snoop
virtual snooping which broadcasts requests on contentlomain, and also handles minor cases when data sharing
shared pages. However, there are trade-offs between snogpsses VM boundaries. Unlike the previous region-based
reductions and L2 miss latencies in these three schemes. filtering techniques which store sharing states or sharer
Table VI presents the decompositions of data holders fomformation in on-chip storage or page tables, virtual
L2 misses on content-shared pages. It first divides datanooping requires only a small addition in cache tags to
holders into caches and memory. The external memoradd VM identifiers.
becomes a holder only if none of the on-chip caches have Marty and Hill (Virtual Hierarchies) inspired us to pursue
a copy of a missed address. For 37-53% of L2 misses othis study [5]. They explore the design space of flexible
content-shared pages, the data holder is memory. Howeverache hierarchies and two-level directory protocols for
for the rest of the misses, there is at least a cache holdingrtualized systems. Instead of designing a new protocol,
the requested data, and the memory-direct scheme cannattual snooping uses a conventional snooping protocal, an
use the cached copies. Although the memory-direct schemieproves the scalability of snooping protocols by filtering
has the most snoop reduction, it may degrade the overallnnecessary snoops. Marty and Hill did not evaluate the
performance by increasing miss latencies for 47-63% of theeffect of a hypervisor, VM migration, and content-based
misses on content-shared pages. sharing. This paper looks into those issues which break
When the data holder is a cache, it could be in a cachéhe memory isolation among VMs. Rodrigo et al. proposed
belonging to the requesting VM, a friend VM, or other an efficient logic-based router design which can support
VMs. The chances of getting data from the other caches imetwork regions [21]. The network region can be used to
the requesting VM are relatively low from 0.1-27%. If the divide cores into coherence domains in virtualized multi-
caches of a friend VM are included for snooping, the chancesores.
of cache-to-cache transfers increase significantly to @%-4
The friend-VM scheme may reduce unnecessary external
memory accesses significantly, reducing miss latencies for In this paper, we proposed virtual snooping coherence,
content-shared data. As the number of cores and the numbwethich can partition cores in a virtualized system into \aftu
of VMs increase, sending extra snoop requests to a similasnoop domains. It exploits memory isolation among VMs to
VM will not increase the overall snoop count significantly. remove unnecessary snoop requests. However, such memory
isolation is not perfect in real virtualized systems dueatad
VII. RELATED WORK sharing with a hypervisor, VM relocation, and content-lsase
There have been several recent studies to reduce ttaata sharing. For data sharing due to a hypervisor, thetgesul
overheads of handling snoops for snoop-based coherencghowed that coherence transactions from the hypervisor are
The approaches mostly rely on tracking the sharingrelatively infrequent, mostly less than 10% of all trangats
states of coarse-grained memory regions at requestinfpr the compute-intensive workloads, and less than 20% for
nodes, routers, and receiving nodes. RegionScount maintaithe server workloads evaluated in this paper. For the VM
region-based coherence filters at requesting nodes to avoreélocation effect, we showed that a simple counter-based
broadcasting snoop requests for private data [2]. Coarsenechanism to check the cache residency of each VM, is
grain coherence tracking (CGCT) also uses additionakffective enough to mitigate the impact of relocation. Hina

VIII. CONCLUSIONS



a subset of our benchmark applications have significant[8] “AMD64 virtualization codenamed pacifica technology:
coherence transactions on content-shared pages. For such Secure virtual machine architecture reference manualy Ma
applications, virtual snooping must be further optimized
to reduce snoops by exploiting the read-only property of [9] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M.
content-shared pages.

With virtual snooping, future virtualized many-cores

can be divided into small snoop domains. The snhoo
domains can dynamically change by hypervisor schedulin
to maximize the system utilization. The number of cores

3101

is expected to continue to increase in future multi-core
architectures. However, for many virtualized systems, VMs[11]

may use small scale virtual multiprocessors with a few

VvCPUs. As the ratio of the number of per-VM vCPUs to
the total cores in a system decreases, virtual snooping willl2]
become more effective for scaling snoop-based coherence.
Furthermore, the role of hypervisors will become critical
to limit the size of snoop domains. It will be necessary to
make hypervisors aware of the migration costs for virtual[13]
shooping. The hypervisors must limit the range of VM
migration, as long as such restriction does not hurt the
overall system throughput.
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