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Abstract—Virtualization has been rapidly expanding its
applications in numerous server and desktop environments
to improve the utilization and manageability of physical
systems. Such proliferation of virtualized systems opens anew
opportunity to improve the scalability of future multi-cor e
architectures. Among the scalability bottlenecks in multi-cores,
cache coherence has been a critical problem. Although snoop-
based protocols have been dominating commercial multi-core
designs, it has been difficult to scale them for more cores, as
snooping protocols require high network bandwidth and power
consumption for snooping all the caches.

In this paper, we propose a novel snoop-based cache
coherence protocol, called virtual snooping, for virtualized
multi-core architectures. Virtual snooping exploits memory
isolation across virtual machines and prevents unnecessary
snoop requests from crossing the virtual machine boundaries.
Each virtual machine becomes a virtual snoop domain,
consisting of a subset of the cores in a system. However, in
real virtualized systems, virtual machines cannot partition the
cores perfectly without any data sharing across the snoop
partitions. This paper investigates three factors, which break
the memory isolation among virtual machines: data sharing
with a hypervisor, virtual machine relocation, and content-
based data sharing. In this paper, we explore the design
space of virtual snooping with experiments on real virtualized
systems and approximate simulations. The results show that
virtual snooping can reduce snoops significantly even if virtual
machines migrate frequently. We also propose mechanisms to
address content-based data sharing by exploiting its read-only
property.

I. I NTRODUCTION

Virtualization provides an illusion of multiple virtual
machines on a physical system. A software layer called
hypervisor manages physical resources and isolates virtual
machines from each other. Virtualization has been rapidly
expanding its applications in numerous server and desktop
environments to improve the utilization and manageability
of computing systems. In future many-core processors in
virtualized systems, many virtual machines will be running
on a processor, sharing cores dynamically.

The proliferation of virtualized systems opens a new
opportunity to improve the scalability of multi-core
architectures. One of the critical problems in multi-core
designs is to reduce the costs of supporting shared
memory through cache coherence mechanisms. Snoop-based
coherence protocols have been dominating commercial
multi-core designs, since they are simple and support
fast cache-to-cache transfers. However, as the number of

cores increases, the cost of broadcasting all requests will
increase significantly, requiring higher network bandwidth,
and consuming more power for looking up all the cache tags
in a system.

In the context of non-virtualized systems, there have
been several studies to reduce the overheads of snoop-based
coherence by filtering out unnecessary snoop requests. Such
filtering reduces power consumption for snoop tag lookups
and network bandwidth consumption for broadcasting snoop
requests [1]–[4]. The techniques maintain the sharing states
of coarse-grained memory regions in hardware tables.

In this paper, we propose a snoop filtering technique,
called virtual snooping. It reduces unnecessary snoop
requests by dividing the cores in a virtualized system into
virtual snoop domains. Since virtual snooping uses virtual
machine (VM) boundaries to isolate snoop requests within
a VM, it does not require any hardware table to track
the private or shared states of memory blocks. A snoop
request from a VM is sent only to the cores mapped to
the VM. Using the existing VM boundaries, virtual snooping
can be implemented on conventional snoop-based coherence
protocols with a small cost. Optimizing cache hierarchy for
virtual machines was first proposed by Marty and Hill, but
it is based on two-level directory-based protocols [5]. To the
best of our knowledge, this work is the first effort to improve
snoop-based coherence for virtualized multi-cores.

In virtualized systems, each VM mostly accesses the
physical memory pages allocated for the VM. For those
VM-private page accesses, snoop requests do not need to
be sent to the cores running the other VMs, which never
keep the copies of the private cachelines of the requesting
VM. Virtual snooping just needs to track on which cores
a VM is currently running. Although it may be expected
that most of the coherence transactions are for VM-private
pages, there are three problems which break the isolation
among VMs, and thus some cachelines used by a VM can
exist in the caches of other VMs.

• Data sharing with a hypervisor: Although the
majority of coherence transactions are for VM-private
memory regions, cache coherence must still support
communication through shared memory between VMs
and a hypervisor. A hypervisor can run on any core
in a system, and bring shared data to any cache.
Virtual snooping cannot simply eliminate all coherence
requests across VM domains to support such data



sharing.
• VM relocation : The mapping between virtual CPUs

(vCPUs) and physical cores is not fixed. A hypervisor
relocates vCPUs to different cores to utilize physical
cores as efficiently as possible. If a VM migrates to a
new core, the cache of the old core will have the VM-
private data of the relocated VM. Therefore, even if the
VM is not running on the old core, the core must be
in the snoop domain of the VM.

• Content-based page sharing: Another major source of
data sharing across VMs is content-based page sharing
among VMs. Sharing is used only for read-only pages,
and once a VM updates a content-based shared page, a
new physical page is allocated for the updated one by
a copy-on-write mechanism. The content-based shared
pages are guaranteed to be read-only and the external
memory can provide the data even if cached copies
exist in on-chip caches.

In this paper, we explore the design space of virtual
snooping architecture considering the negative effect of the
aforementioned three factors. A hypervisor can distinguish
which pages are VM-private or shared across VMs. It
records the sharing type of pages in shadow page tables or in
guest-physical to host-physical mapping tables. Depending
on page types, snoop requests are either broadcast to all the
cores or multi-cast to only the cores used by the requesting
VM.

The contributions of this paper are as follows. Firstly,
using a real hardware system and the open-source Xen
hypervisor, we present the effect of data sharing with
a hypervisor. We show that memory accesses by the
hypervisor account for a small portion of the total coherence
transactions for most of our compute-intensive workloads.
I/O-intensive workloads tend to have more memory accesses
by the hypervisor, but the ratios are still under 20%.
Secondly, we evaluate the effect of VM relocation on virtual
snooping. Virtual snooping performs best when each VM
runs on a fixed set of cores. However, pinning VMs to
physical cores can lead to the under-utilization of cores.
We propose a mechanism to track the number of the
private cachelines of a VM in a cache. It uses per-VM
cache residence counters in each cache. The mechanism
allows virtual snooping to adjust the snoop domain of a
VM dynamically, and thus prevents a VM from snooping
unnecessary cores, when vCPUs migrate to different cores
frequently. Thirdly, we evaluate the effect of content-based
sharing on virtual snooping. For a subset of our benchmark
applications, there are significant coherence transactions on
content-shared pages. For such applications, broadcasting
snoops on the content-shared pages reduces the effectiveness
of virtual snooping significantly. We propose schemes
to improve virtual snooping by exploiting the read-only
property of content-shared pages.

The rest of the paper is organized as follows. Section II

introduces the basics of virtualization and its implication
on snoop filtering. In Section III, with a real virtualized
system, we present the effect of memory accesses by
a hypervisor and the frequency of VM relocation. In
Section IV, we describe the architecture of virtual snooping,
considering VM relocation and inter-VM memory sharing.
In Section V, using simulations, we evaluate virtual
snooping. In Section VI, we present the effect of content-
based page sharing on virtual snooping and possible
improvements. Section VII reviews related work and
Section VIII concludes the paper.

II. V IRTUALIZATION AND CACHE COHERENCE

A. The Basics of Virtualization

Machine virtualization enables multiple virtual machines
(VMs), each of which encapsulates an individual computing
environment, to efficiently share underlying hardware. In a
virtualized environment, a hypervisor, a thin software layer
directly located on hardware, fully controls the hardware
resources and VMs. The primary goal of a hypervisor
is to provide efficient resource sharing while ensuring
performance and fault isolation. For CPU virtualization, the
hypervisor allocates one or more virtual CPUs (vCPUs) to
each VM. While a VM is provided with an illusion of its
own dedicated cores, each vCPU is scheduled under the
control of the hypervisor. As with general-purpose operating
systems, the hypervisor scheduler aims at guaranteeing the
fair allocation of CPUs among VMs.

Memory virtualization requires the hypervisor to maintain
an additional page table for each VM to allow the
isolated use of memory resources [6], [7]. The guest
OS on a VM maintains per-process page tables which
translate from guest-virtual addresses to guest-physical
addresses. A VM is not permitted to access memory
regions owned by others without necessary permissions. For
isolated memory accesses, guest-physical addresses (virtual
physical addresses) used by a VM are translated to host-
physical addresses (real machine addresses) assigned by the
hypervisor. Only the hypervisor is allowed to manipulate the
guest-physical to host-physical address mapping. To make
this translation efficient with TLBs, most hypervisors use
software-based shadow paging [20], with which a hypervisor
maintains direct page tables from guest-virtual to host-
physical addresses. Recent processors support hardware-
assisted address translation such as AMD nested paging [8]
and Intel extended paging [9], in which hardware walkers
traverse both guest page tables and hypervisor mapping
tables for guest-physical to host-physical translation. For a
para-virtualized OS, which is modified to be aware of the
underlying virtualization layer, a hypervisor can maintain
the guest-virtual to host-physical mapping directly in guest
page tables [6]. For this direct paging, the hypervisor should
validate every update of guest page tables to support VM
isolation.



B. Inter-VM Memory Sharing

A hypervisor maintains a mapping between the guest-
physical memory of a VM to the host-physical memory to
provide the dedicated memory view for each VM. A VM
does not usually access the memory area used by other
VMs. Such memory isolation is the basis of virtual snooping.
To filter coherence requests effectively across VMs, VMs
must share as little memory as possible. Furthermore, vCPUs
may migrate to different cores, which results in the data of
migrated VMs left in the caches that other VMs are using.
In this section, we discuss the two factors which reduce the
effectiveness of virtual snooping:inter-VM memory sharing
anddynamic VM relocation.

1) Inter-VM Memory Sharing: Although memory is
mostly partitioned for each VM and a VM does not
access the pages allocated to another VM, some memory
regions can be shared among VMs for performance
and efficiency. We explain three sources of memory
sharing:hypervisor, contents-based sharing, and inter-VM
communication. Firstly, the memory region of a hypervisor
is globally shared among VMs. When a VM conducts
a privileged operation, which must be validated and
virtualized, its control is forwarded to the hypervisor. For
this control, code and data of the hypervisor can be accessed
from any VM. Accordingly, the shared hypervisor data can
reside on the cache of any core.

Secondly, identical pages can be shared among VMs
via an inter-VM memory sharing mechanism. Considering
that memory is a limited resource for highly consolidated
systems, the memory pages are shared by VMs based on
the content of the pages. The content-based page sharing
mechanism constructs the hashes of page contents to keep
track of identical pages [10]–[12]. VMware ESX server
is the first hypervisor that adopts this mechanism and
reduces the memory footprints of homogeneous VMs by 10-
40% [10]. A shared identical page can reside in the caches
of different virtual machines.

Thirdly, direct inter-VM communications may use page
sharing between the VMs. For example, to support
high performance inter-VM networking, several techniques
allow multiple VMs to communicate via inter-VM
channels established on shared memory [13]. The inter-
VM communication based on page sharing can improve
the system throughput, when multiple VMs in a system
intensively communicate with each other.

The hypervisor can identify all these inter-VM shared
pages, and mark the page types in per-process shadow page
tables or mapping tables for guest-physical to host-physical
translation. Therefore, with a minor change in the TLB
lookup mechanism, processors can know page sharing types
for all memory accesses during address translation. Virtual
snooping uses the sharing types to filter unnecessary snoops.

2) Dynamic VM Relocation: Besides explicit memory
sharing, a hypervisor can relocate a VM via scheduling

and management policies. From the view of CPU resources,
VM relocation means the change of vCPU-to-core mapping.
Dynamic relocation occurs when the hypervisor scheduler
migrates a vCPU to another core for load balancing. To
improve core utilization, the hypervisor scheduler attempts
to make underlying cores as busy as possible. When a core
is idle, the scheduler moves a vCPU that is waiting on a
busy core to the idle core. Without dynamic scheduling, a
core may become idle, while another core has many pending
tasks. This relocation could make memory contents of a VM
spread out across the caches of cores through which the VM
passes.

Even though a VM allocates a fixed number of vCPUs,
it may not always use all the allocated vCPUs, since the
thread-level parallelism in the VM is dynamic and often
there may not be enough threads to fully utilize the vCPUs.
Such dynamic changes of active vCPUs makes loads on
physical cores unbalanced. Furthermore, the hypervisor is
capable of dynamically adjusting the number of vCPUs
initially allocated to a VM. Most commodity operating
systems support CPU hot-plugging to adjust available cores
without downtime. This capability enables the hypervisor
to deprive a VM of some vCPUs and re-allocate them to
another VM, which requires more parallelism.

If VM migrations occur, VM-private data can reside in
the caches of the cores on which the VM is not currently
running. By VM relocation, a long-running VM may pass
through all the cores in a system. It is possible that
some VM-private data remain in all caches, making virtual
snooping useless. Virtual snooping does not track each
individual cacheline. Therefore, if there is a chance that a
cacheline of a VM is in a cache, all snoop requests from the
VM must be sent to the cache.

III. M EASURING THEEFFECT OFHYPERVISORS

In this section, with experimental results from a real
virtualized system, we present the effects of two factors
which may reduce the benefit of virtual snooping. Firstly,
we investigate L2 cache misses caused by a hypervisor and
the privileged VM (domain0 in Xen). Those L2 misses must
be broadcast to all the cores, even if virtual snooping is used.
Secondly, we measure the frequency of VM relocation. VM
relocation can make virtual snooping less effective, as the
old core may contain the data of the previously located VM,
and virtual snooping must send snoop requests to the old
core too for the VM.

To measure the effect of a hypervisor, we use the Xen
hypervisor (version 4.0) on a dual-socket system with
two Intel quad-core x5550 processors. Each processor has
four cores and each core has 32KB instruction L1 and
data L1 caches, and a 256KB private L2 cache. The
processor also has an 8MB L3 cache shared by all the
cores on a chip. On each VM with four vCPUs, we
run Linux 2.6.18.8-xen kernel. We evaluate PARSEC [14],
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Figure 1. L2 miss decompositions: misses by hypervisor (Xen), domain0,
and guest VMs

0

20

40

60

80

100

S
no

op
 R

ed
uc

tio
n 

(%
)

ideal
5% 
10% 
20% 
30% 
40% 

 4 cores per VM 
 2 VMs =  8 cores 

 4 VMs = 16 cores 
 8 VMs = 32 cores 

16 VMs = 64 cores 

2 VMs  4 VMs  8 VMs  16 VMs  

Figure 2. Potential snoop reductions with varying ratios ofcoherence
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SPECweb2005, and OLTP as our benchmark applications.
The OLTP application is from SysBench, and SPECweb2005
uses the SPECweb2005 Banking benchmark. To measure L2
misses by a hypervisor, we use a profiling tool (oprofile)
which uses hardware performance counters. To measure the
frequency of VM relocation, we usexenperf which shows
the performance states of Xen including the number of
migrations.

A. Cache Misses by a Hypervisor

Coherence transactions by a hypervisor must be broadcast
to all the caches in a system, as the hypervisor can be
invoked from any VM and its memory regions may reside in
any cache in the system. Domain0 in Xen is a privileged VM
which handles I/O for guest VMs. The hypervisor forwards
I/O requests from guest VMs to domain0, and domain0
actually accesses I/O devices. Since domain0 serves all
VMs, without explicitly pinning it to a specific core, it
tends to migrate to different cores frequently. Although itis
possible to reduce the set of cores domain0 can use, we allow
domain0 to be scheduled to any core for performance. Due to
the frequent relocation of domain0, from the perspective of
virtual snooping, its effect is similar to that of the hypervisor.
The coherence requests by domain0 must be broadcast too.

Figure 1 presents the decomposition of L2 misses by
sharing types. For each result, we run two instances
of the same application on two VMs. In the figure,

L2 misses are decomposed to guest VM, domain0, and
hypervisor. For PARSEC applications, less than 5% of
L2 misses are for the hypervisor and domain0, except
for dedup(11%), freqmine(8%), and raytrace(7%). For
such compute-intensive applications, the ratio of coherence
transactions which cannot be filtered by virtual snooping
is low. For OLTP, 15% of L2 misses are for domain0 and
the hypervisor, and must be broadcast. For SPECweb, 19%
of L2 misses must be broadcast. Even for the I/O-intensive
server workloads, L2 misses for domain0 and the hypervisor
are less than 20%. Virtual snooping can potentially reduce
snoops for more than 80% of L2 misses.

Figure 2 presents the potential reductions of snoops
occurring in all the cores, compared to a broadcasting
snoop-based protocol. For the figure, we assume VMs
do not migrate, and the total number of virtual CPUs
from all the VMs is the same as the number of physical
cores. The number of virtual CPUs per VM is fixed to
four. The x-axis shows increasing numbers of VMs and
thus increasing numbers of physical cores. For example,
the 4 VMs configuration has 16 virtual and physical
cores. The figure shows six curves with different ratios of
coherence transactions by a hypervisor to the total coherence
transactions. As the number of VMs increases, and thus the
ratio of the number of per-VM vCPUs to the number of
physical cores decreases, virtual snooping can reduce more
snoops. An ideal configuration with no hypervisor misses
reduces more than 93% of snoops with 16 VMs running
on 64 cores. As the misses by the hypervisor increase,
the reductions decrease. However, with 5-10% hypervisor
misses, the potential reductions are still 84-89% with 16
VMs.

The simulator we use to evaluate virtual snooping later
does not run a hypervisor and domain0 VM. Its result will
present the snoop reductions only for coherence transactions
by guest VMs. However, as shown in Figure 1, coherence
transactions by the hypervisor and domain0 occur relatively
infrequently, and thus, the lack of hypervisor activities in
our simulator does not change the conclusion we draw from
the restricted simulator.

B. VM Relocation

VM relocation moves vCPUs to different cores. A
hypervisor makes the relocation decision based on its
scheduling policy. The default scheduler of Xen is a credit-
based scheduler, which is a proportional share scheduler
with global load balancing on multi-core systems. The credit
scheduler allocates a time slice to each vCPU, called credit,
for each scheduling period. vCPUs consume the assigned
credits as they run. For fairness guarantee, the scheduler
always picks a vCPU that has remaining credits ahead of
those that have run out of credits. Once a vCPU is picked,
it can run for a time slice of 30ms. A vCPU can be blocked
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(a) Undercommitted: two VMs (4 vCPUs per VM)
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(b) Overcommitted: four VMs (4 vCPUs per VM)

Figure 3. The effect of pinning VMs: undercommitted vs overcommitted systems

Table I
AVERAGE VM RELOCATION PERIODS(MILLISECONDS)

Workloads undercommit. overcommit.

blockscholes 2880.6 91.3
bodytrack 26.1 1.2
canneal 28.4 3.4
dedup 10.8 0.1
facesim 30.0 1.2
ferret 375.9 31.5
fluidanimate 46.6 7.9
freqmine 1968.0 2064.4
raytrace 528.8 23.6
streamcluster 36.2 1.3
swaptions 2203.1 80.3
vips 18.3 0.7
x264 29.2 8.2
average 629.4 178.1

when it is no longer runnable, even if it has not used up the
assigned credits.

For load balancing on multi-core systems, the credit
scheduler dynamically relocates waiting vCPUs to idle
cores. When all the vCPUs on a physical core have
exhausted their time slices, the scheduler actively stealsa
waiting vCPU which has remaining credits from another
busy core, and assign it to the idle core. This default
scheduling policy does not consider the cost of migration.
With this policy, all vCPUs aggressively migrate across
physical cores to make cores as busy as possible.

An alternative way of scheduling to avoid migration
is to pin vCPUs to physical cores. If a VM uses only
a fixed subset of physical cores, the adverse effect by
migration on virtual snooping can be reduced. However,
such restriction on scheduling may result in under-utilization
of cores. To show the effect of restricting physical cores a
VM can use, Figure 3 presents execution times with different
scheduling policies. The no migration policy pins virtual
CPUs to physical cores with a one-to-one mapping. The
full migration policy does not restrict migration to maximize
the throughput of the system. The figure shows two results,
one from an undercommitted system and the other from
an overcommitted system. The hardware system has eight

physical cores. Two VMs with four vCPUs per VM are
running on the undercommitted system, and four VMs are
running on the overcommitted system.

Figure 3(a) presents the normalized execution times
when vCPUs are undercommitted. In the undercommitted
system, pinning vCPUs to physical cores (no migration)
results in better performance than the full migration
policy by improving caching efficiency. However, as shown
in Figure 3(b), in the overcommitted system, allowing
migration provides much better performance than pinning
vCPUs to physical cores. In the overcommitted system,
improving the utilization of cores becomes critical, as
multiple VMs compete for the cores. It is also possible to
restrict the physical cores a VM can run to a subset of the
cores in a system, instead of a one-to-one mapping. It will
limit the size of the snoop domain of a VM, while it can
reduce the load unbalance caused by the strict scheduling in
the one-to-one pinning. Exploring such scheduling policies
will be our future work.

Table I presents the average relocation period in
milliseconds for any mapping changes between vCPUs and
physical cores. For example, in blackscholes running on the
overcommitted configuration, a vCPU changes its physical
core every 91ms. The migrations of vCPUs of a VM within
the current snoop domain of the VM do not negatively
impact virtual snooping. However, the results in the figure
include any mapping change for conservative evaluation. The
overcommitted configuration shows much higher frequencies
of migration than the undercommitted configuration does. In
the worst case, the average period can be as short as 0.1ms.
Also, the relocation periods vary widely depending on the
behaviors of applications. Virtual snooping must be able to
reduce snoops even with such frequent migrations.

IV. V IRTUAL SNOOPINGARCHITECTURE

A. Architecture

Exploiting isolation among VMs, virtual snooping sends
snoop requests only to the cores (nodes) mapped to a VM.
Although virtual snooping can be used with any cache
hierarchy, in this paper, to simplify discussion, we assume
a private L1 and L2 for each core. To identify the physical



Shadow Page Table 

0x100 VM−private

0x200

0x300 RO−Shared

RW−Shared

paddr status

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

Core

I D

L2

vCPU map register

VM1 P0, P1, P2, P4

VMID Core List

P0 P1 P2 P3

P7P6P4 P5

P8 P9 P10 P11

P15P14P13P12

16 core with 4x4 Mesh Network

Figure 4. Virtual snooping architecture

cores to which the virtual CPUs of a VM are mapped, each
core has a register, calledvCPU map register. The vCPU
map register, n-bit vector for n cores, represents the physical
cores used by the current VM running on a core. When a
hypervisor schedules a vCPU of a VM to a physical core,
the hypervisor is responsible to set the vCPU map to list
all the physical cores the VM must snoop. The hypervisor
must update the vCPU map before transferring the control
to a VM.

Memory pages can be used by only a VM or shared
among VMs and the hypervisor. Depending on the sharing
types of pages, coherence requests are either multicast within
a VM (by looking up the vCPU map), or broadcast to
all the cores. The types of pages, VM-private or shared,
are recorded in unused bits in page table entries. The
type information is stored in per-process shadow page
tables or nested page tables (guest-physical to host-physical
mapping tables). In direct paging used by a para-virtualized
hypervisor, the hypervisor sets the type information in guest
page tables directly. These page tables are already required
for virtualization, and virtual snooping needs only two
unused bits in the page tables, which are available in most
page table designs. For a coherence transaction for a VM-
private page, the cache controller checks the vCPU map and
sends snoop requests only to the cores listed in the vCPU
map.

However, not all the memory used by a VM can be
isolated within the VM boundary. There are two types of
page sharing between a VM and the hypervisor or among
VMs. The first type is page sharing to communicate data
between a VM and the hypervisor, or between VMs (RW-
shared pages). As discussed in Section II-B, this type of
sharing results from hypervisor data accesses and inter-VM
direct communications. Since the modified cache block can
be in any core, snoop requests must always be broadcast
for this type of shared pages. For example, some pages are
shared between a VM and the hypervisor to communicate
I/O requests and responses. For every page shared by the
VM and hypervisor, the snoop requests must be broadcast,
since the hypervisor can run and leave its data on any cache
in the system. The second type is read-only page sharing to
support content-based page sharing across VMs (RO-shared
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pages). We will discuss how to reduce snoops for content-
shared pages in Section VI.

Depending on the types of memory pages (VM-private,
RW-shared, RO-shared), virtual snooping must send snoop
requests differently. The page sharing type bits (2 bits) must
also be in the TLB to find the sharing type directly for
every coherence transaction. Figure 4 presents the overall
architecture of virtual snooping. Each core has a vCPU map
register for the VM currently running on the core. The cores
used by a VM must have the same vCPU map, which is
maintained by the hypervisor. The shadow page table records
sharing status, which can be updated only by the hypervisor.

B. Supporting VM Relocation

VM relocation may reduce filtering efficiency as the
cache in the old location of an already relocated VM may
contain some valid data of the VM. A naive method to
guarantee the correctness is to flush the entire cache of the
old node when a VM is relocated. However, flushing not
only removes valuable data from on-chip caches causing
expensive external memory accesses later, but also requires
slow write-backs of modified blocks to the memory. If the
VM-private data in the old location are not flushed, the
vCPU map of the VM must include the old core, even if
the VM is not running on the core. The old core cannot be
removed from the vCPU map, since it may contain the data
of the VM.

The vCPU map registers in the cores on which a VM
is running, must be synchronized for each relocation. The
hypervisor must update the vCPU map registers before
relocation, and the hardware architecture can support a fast
synchronization mechanism for vCPU map registers. The
mechanism sends vCPU update messages with a new value
to a subset of cores, and waits for acknowledgments from the
cores. The latency is similar to or lower than broadcasting
snoop requests and receiving responses. VM relocation is
significantly infrequent compared to coherence transactions,
and thus its cost is negligible. Figure 5 shows how the vCPU
map is updated to include new cores, while the old cores
are still in the map. In the second step of the figure, two



new cores are added in the vCPU map of the VM. After
adding the cores, the vCPU map has six cores, reducing
the effectiveness of filtering by 50% from the optimal four
cores.

However, although adding new cores to vCPU maps
guarantees correctness, not removing obsolete cores from the
vCPU maps may make virtual snooping useless eventually.
As a VM migrates to different cores in a system, its vCPU
map will include more cores, eventually containing all the
cores in the system. Once it contains all the cores, the snoop
filtering of virtual snooping does not occur. Unlike processes
on conventional operating systems, which may finish its task
and be destroyed after some time, VMs on the hypervisor
tend to stay alive for a long time and thus eventually use
all the cores in the system. Therefore, virtual snooping must
support an efficient mechanism to remove obsolete cores
from the vCPU map of a VM.

The first mechanism for efficient relocation support uses
per-VM cache residence counters for each cache. Each per-
VM counter records the number of VM-private blocks in
the cache for a VM. Whenever a block is added to a cache,
the corresponding counter for the current VM is increased.
Cache tags must be extended to include a VM identifier for
each block to mark the VM. When a cacheline is evicted
by replacement or invalidated by snoops, the counter of the
corresponding VM is decreased. When the counter becomes
zero, it is certain that the private data of the VM do not exist
in the cache, and then the core can be safely removed from
the vCPU map of the VM. The core invokes the hypervisor
to update the vCPU map registers of the removed VM. In
the third step of Figure 5, a core is removed from the vCPU
map, as it no longer contains any data for VM1.

A problem with the counter-based mechanism is that it
waits for all cachelines for a VM to be evicted. However,
it is possible that some data can stay in the cache for a
long time, if a new VM running on the core has a small
working set. Once the VM-private data of a VM spread
to all the caches, the counter-based mechanism will not be
able to filter any more snoop requests. A straightforward
solution for the problem is to flush the cache selectively for
a specific VM, if the counter is decreased under a threshold.
However, it requires an additional controller logic to do it
and it may need to check the entire cache to search the
cachelines belonging to the VM.

In this paper, in addition to the counter mechanism, we
evaluate a speculative mechanism to mitigate the effect
of slowly evicted cachelines, using the property of the
underlying Token Coherence protocol. In Token Coherence,
if the first attempt of a coherence transaction fails for
not being able to collect enough tokens, more transient
request can be retried for the transaction. If the number
of retries exceeds a threshold, Token Coherence resorts to
heavy-weighted persistent requests which guarantee forward
progress [15]. Using the property of Token Coherence, we

Table II
SIMULATED SYSTEM CONFIGURATIONS

Parameter Value

Processors 16 in-order SPARC core
L1 I/D cache 32KB, 4-way, 64B block, 2 cycle latency
L2 cache 256KB, 8-way, 64B block, 10 cycle latency
Coherence Token Coherence, MOESI protocol
On-chip Network 4x4 2D mesh with 16B links

4 cycle router pipeline

Table III
APPLICATION INPUT PARAMETERS

Application Dataset Application Dataset

SPLASH-2 PARSEC
cholesky tk29.O blackscholes simmedium
fft 4,194,304 points canneal simsmall
lu 512 x 512 dedup simsmall
ocean 258 x 258 grid ferret simsmall
radix 4,194,304 integers

Servers
SPECjbb2k 4 warehouses

remove a core aggressively from the vCPU map of a VM,
even if the counter is not zero for the core. For a VM-private
page, the first two attempts to collect tokens will send only
to the cores in the vCPU map of the VM. If the two attempts
fail, the next transient request will be broadcast. It removes
a core from the vCPU map, when the VM is not running on
the core and the cache residence counter becomes under
a threshold (counter-threshold policy). The base counter
mechanism can be used with any snoop-based coherence, but
counter-threshold can be used only with coherence protocols
supporting safe retries of coherence transactions.

V. EXPERIMENTAL RESULTS

A. Methodology

To evaluate virtual snooping, we use the Virtual-GEMS
simulator [16]. Virtual-GEMS is based on Simics, a full
system simulator, and GEMS, a timing simulator for
memory hierarchies. Virtual-GEMS runs multiple instances
of Simics to emulate virtual machines and feed the execution
traces to the GEMS execution model. In this simulation
environment, a hypervisor is not running, and its effect is
not included. To overcome the weakness of this simulation
methodology, we investigated the effect of a hypervisor
separately using a real hardware system and the Xen
hypervisor in Section III. Snoop reductions shown in this
section is applicable only to the guest VM portions in
Figure 1.

We model 16 in-order cores with 32KB L1 data and
instruction caches, and a 256KB L2 private cache. The
model uses Token Coherence for cache coherence among
on-chip caches. The interconnection networks use the Garnet
model for 4x4 2D mesh with 16B links. Table II shows



Table IV
NETWORK TRAFFIC REDUCTION OF VIRTUAL SNOOPING WITH IDEALLY

PINNED VM S

Workloads Reduction (%) Workloads Reduction (%)

cholesky 63.79 blackscholes 64.22
fft 63.20 canneal 63.35
lu 64.27 dedup 64.97
ocean 63.74 ferret 63.05
radix 63.39 specjbb 62.79
Average 63.68
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Figure 6. Execution times: virtual snooping with ideally pinned VMs

the detailed configurations for the simulated system. We run
applications from SPLASH-2, PARSEC, and SPECjbb. The
model uses four virtual machines with each VM having
four vCPUs. The application input parameters, shown in
Table III, are for a single virtual machine. For this paper, we
do not model overcommitted systems due to the limitation
of our simulator. The total number of vCPU is 16 (four for
each VM), which is the same as the number of physical
cores.

B. Ideally Pinned Virtual Machines

In this section, we evaluate the effectiveness of virtual
snooping when VM migration does not occur. For this result,
each VM is running on fixed four cores, and the vCPU-
to-core mapping does not change. Without hypervisor or
domain0 activities in Virtual-GEMS, all snoops are to VM-
private pages, and thus no snoop requests must be broadcast.
Therefore, in this ideal configuration, snoop reduction is
always 75%, since a VM is using four cores out of the
16 cores in the system. The snoop reduction results in the
reduction of not only snoop request messages but also power
consumption for looking up cache tags. As discussed in
Moshovos et al. [1], the snoop tag lookups will consume
a significant portion of dynamic power of caches, as the
number of caches increases.

Table IV presents the traffic reduction compared to
the baseline TokenB, which always broadcasts requests.
The measured network traffic is the total amount of data
transferred through the network, including both data and
coherence messages. Virtual snooping can reduce the total
network traffic by 62-64%, compared to the broadcasting
TokenB. Figure 6 shows the execution times normalized
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Figure 9. Cumulative distributions of the core removal period after a
vCPU relocation in the counter mechanism (5ms migration period)

to the baseline TokenB. Virtual snooping in the ideal
configuration reduces the execution time by 0.2-9.1%. The
average execution time is reduced by 3.8%. The results show
modest improvements in performance, as network bandwidth
is not utilized intensively in this experimental configuration.
This small improvement results are consistent with prior
snoop filtering work [4]. However, the first goal of snoop
filtering is to reduce the power consumption for snoop tag
lookups and snoop message transfers, allowing the saved
power budget to be used for other performance features or
higher clock frequencies.

C. The Effect of VM Relocation

In this section, we evaluate the effect of VM relocation.
However, without hypervisor activities, the Virtual-GEMS
simulator cannot simulate the migration effect accurately.
As an approximate method to simulate the migration effect,
we shuffle the locations of two vCPUs periodically. Table I
shows that the average migration period for an application
in overcommitted systems can be as low as 0.1ms. Note
that the migration periods in the table include all migrations
both within and across VM boundaries. In this section,
we simulate migrations only across VMs for conservative
evaluation. We evaluate the migration effect with four
different migration periods, 5ms, 2.5ms, 0.5ms, and 0.1ms.
For example, for the 5ms configuration, two vCPUs from
different VMs are randomly selected and their physical cores
are exchanged every 10ms.

For the four migration periods, we evaluate three virtual
snooping mechanisms. The base virtual snooping (vsnoop-
base) does not remove cores from the vCPU map, as it does
not check whether the migrated VM leaves any cachelines in
the old location. The second mechanism (counter) has per-
VM counters for each cache to count the number of VM-
private cachelines in the cache. Once a counter reaches zero,
the core is removed from the vCPU map of the VM. The
third mechanism (counter-threshold) aggressively removes a
core once the counter becomes less than a threshold. The
threshold is set to 10 in the experiments, which is set to be
low, not to remove cores from the vCPU maps prematurely.
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Figure 7. Total snoops with virtual snooping protocols: a vCPU is relocated every 5 or 2.5ms
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Figure 8. Total snoops with virtual snooping protocols: a vCPU is relocated every 0.5 or 0.1ms

Figures 7 and 8 present the total number of snoops
occurring in all the cores, normalized to the baseline
TokenB protocol. For each application, four sets of bars
are shown for 5ms, 2.5ms, 0.5ms, and 0.1ms migration
periods. Without counter-based optimizations, the base
virtual snooping may lose its effectiveness significantly
when VMs can migrate. As migration periods become
shorter, more migrations occurs for each VM during its
execution, and all the physical cores are included in the
vCPU map of each VM very fast. With 0.1ms period, the
base virtual snooping can only reduce 4% of snoops on
average.

However, the counter mechanism can effectively remove
obsolete cores from the vCPU map of a VM when the
migration period is 5 or 2.5ms. The snoops with the counter
mechanism is close to the ideal 25% from the baseline
TokenB. With 0.5ms and 0.1ms, more vCPUs migrate to
other cores, even before their previously located cores are
removed from the vCPU map. The counter mechanism
can still reduce 45% snoops on average even with a very
aggresive 0.1ms migration period. Counter-threshold slightly
improves the counter mechanism when the migration period
is 0.5ms or 0.1ms. However, considering the restriction of
the scheme requiring a fall-back mechanism in coherence
protocols, its benefit seems to be too small to justify the
additional complexity. Exploring more speculative schemes,
which rely on the availability of safe retry in coherence
protocols, will be our future work.

From the result, we observe that the VM-private data
cached in the old location of a vCPU are replaced or
invalidated relatively fast. Figure 9 presents the cumulative
distributions of the periods to remove the previous core
from the vCPU map of a relocated VM. The removal period
measures the time difference from the relocation of a vCPU

to the eviction of all the VM-private data of the VM from the
old core. As shown in the figure, for most of the occurrences
of vCPU relocation, the old core is removed from the vCPU
map within 10ms. Two applications (radix and ferret) have a
few occurrences of relocation with longer removal periods.
For blackscholes which has short execution times and small
working sets in L2 caches, the counters never become zero,
and thus each relocation of a vCPU adds a new core to
the vCPU map of the VM. In the results of blackscholes in
Figures 7 and 8, the counter scheme does not improve the
base virtual snooping, as it cannot remove any old core from
vCPU maps. However, in the results, blackscholes shows
snoop reductions even with vsnoop-base, since only a small
number of migrations occurred during the short execution
times.

VI. V IRTUAL SNOOPING FORCONTENT-BASED

SHARING

A. The Effect of Content-based Page Sharing

To consolidate multiple under-utilized systems to a
virtualized one, the hypervisor allows the overcommitment
of memory, and thus the total memory of all VMs running on
the system can be greater than the actual physical memory.
With such memory overcommitment, it is important to
reduce the memory footprints of VMs to accommodate
more VMs per physical system. Content-based page sharing
allows read-only memory pages with the same content to
be shared by VMs. The hypervisor maintains the hash
values of all the memory pages for fast comparison, and
checks their contents periodically. The content-based shared
pages (content-shared pages) are marked as read-only pages,
and any attempt to update them causes an exception,
which invokes the hypervisor to create a copy of the page
on write (copy-on-write mechanism). The content-based



Table V
THE PERCENTAGES OFL1 ACCESSES ANDL2 MISSES FOR

CONTENT-SHARED PAGES

Workloads Access (%) L2 miss (%)

cholesky 1.45 2.66
fft 5.43 30.64
lu 0.43 8.87
ocean 0.40 0.83
radix 20.47 0.96
blackscholes 46.16 41.10
canneal 25.16 51.49
ferret 3.64 5.13
SPECjbb 9.48 37.74
Average 12.51 19.94

page sharing, although it can reduce memory footprints
significantly for certain workloads, can adversely affect
virtual snooping, by increasing inter-VM memory sharing.
Without any optimization for content-shared data, read
requests to the content-shared pages must be broadcast to all
the caches, as other VMs may use the pages simultaneously.

To investigate the effect of content-based sharing, we
show how often coherence transactions occur on such
content-shared pages. With the same configuration as
described in Section V-A, we ran four VMs with the same
application for each VM. The contents of all memory
pages are compared, and the pages with the same content
are marked as content-shared pages until one of the
VMs attempts to update the pages. The content-shared
pages include both application and guest operating system
memory pages. Sharing detection in the experiment is more
aggressive than what commercial hypervisors can do, since
we ignore any performance impact of checking hash values
of memory pages continuously. Therefore, the experiments
show sharing statistics close to an ideal page-level content-
based sharing mechanism.

Table V presents the ratios of the L1 accesses for content-
shared pages to the total L1 accesses, and the ratios of the
L2 misses for content-shared pages to the total L2 misses.
As shown in the table, there are wide differences in the
ratios of the L1 accesses and L2 misses for content-shared
pages in different applications. Content-based sharing affects
virtual snooping significantly only when a large number
of L2 misses for content-shared pages occur. Among 9
applications, only 4 applications have more than 30% of L2
misses for content-shared pages. Without any optimization,
coherence requests by those misses must be broadcast to all
the caches.

B. Improving Virtual Snooping for Content-based Sharing

Exploiting the read-only property of content-shared pages,
we can further reduce coherence requests on such pages.
The hypervisor finds identical pages from different VMs
and allows read-only page sharing among VMs. At the time
when a page is marked as an RO-shared page, the hypervisor
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Figure 10. Expected snoops by memory-direct, intra-VM, andfriend-VM
optimizations

Table VI
POTENTIAL DATA HOLDERS FOR CONTENT-SHARED DATA

fft blacksch. canneal specjbb

Cache: all 47.3% 53.2% 63.9% 54.3%
Cache: intra-VM 0.1% 6.9% 26.9% 14.8%
Cache: friend-VM 24.4% 27.7% 21.0% 21.5%

Memory 52.7% 46.8% 37.1% 45.7%

flushes any modified cachelines of the page to the memory
to ensure the memory has a clean page. After flushing, there
are no modified cachelines for the content-shared page, and
any core or memory can provide the data for read requests.
We propose three mechanisms to filter snoops on content-
shared pages.

• memory-direct sends miss requests for content-shared
pages directly to the memory, and the memory will
provide the data. As used in CGCT [3], this technique
can reduce snoops effectively on clean data. However,
it may increase the latencies of L2 misses for content-
shared data, since it does not check whether there are
cached copies, which can be obtained by fast on-chip
cache-to-cache transfers.

• intra-VM sends the requests only to the memory and
the cores in the vCPU map of the requesting VM. If no
cacheline is found in the intra-VM caches, the memory
will send the data.

• friend-VM sends the requests to the requesting VM and
another VM,friend-VM, which shares the most content-
shared pages with the requesting VM. If the caches used
by the two VMs do not have the data, the memory will
provide the data.

To support the intra-VM and friend-VM schemes, the
cache coherence protocol should be slightly modified. In
common snoop-based coherence protocols, only one copy of
a cacheline in the entire system is designated as a provider
for the address. It prevents multiple cores from sending
the same data to the requester. Even if several caches have
shared copies of the same address, only one of the caches,
which has the provider copy, must send the data. However,
for the intra-VM and friend-VM schemes, virtual snooping



must designate the provider copy for each VM, since read
requests will go only to the intra-VM caches or friend-VM
caches. The first copy of a cacheline brought into a VM
can be the provider copy for the VM. For the friend-VM
scheme, it is possible that two copies are transferred to the
requester, as both the requesting VM and its friend VM may
send a copy of the data.

Figure 10 presents the expected snoops occurring on every
core, normalized to the baseline tokenB. The total snoops
are estimated from the ratios of coherence transactions
on content-shared pages to the total transactions and the
required snoops for each scheme. Optimizations on content-
shared pages affect four applications (fft, blackscholes,
canneal, and specjbb). Memory-direct has the least snoops,
often less than the ideal 25% snoops compared to TokenB,
since it does not send snoop requests to the other
cores for content-shared pages. All three optimizations
can reduce snoops significantly compared to the base
virtual snooping which broadcasts requests on content-
shared pages. However, there are trade-offs between snoop
reductions and L2 miss latencies in these three schemes.

Table VI presents the decompositions of data holders for
L2 misses on content-shared pages. It first divides data
holders into caches and memory. The external memory
becomes a holder only if none of the on-chip caches have
a copy of a missed address. For 37-53% of L2 misses on
content-shared pages, the data holder is memory. However,
for the rest of the misses, there is at least a cache holding
the requested data, and the memory-direct scheme cannot
use the cached copies. Although the memory-direct scheme
has the most snoop reduction, it may degrade the overall
performance by increasing miss latencies for 47-63% of the
misses on content-shared pages.

When the data holder is a cache, it could be in a cache
belonging to the requesting VM, a friend VM, or other
VMs. The chances of getting data from the other caches in
the requesting VM are relatively low from 0.1-27%. If the
caches of a friend VM are included for snooping, the chances
of cache-to-cache transfers increase significantly to 25-48%.
The friend-VM scheme may reduce unnecessary external
memory accesses significantly, reducing miss latencies for
content-shared data. As the number of cores and the number
of VMs increase, sending extra snoop requests to a similar
VM will not increase the overall snoop count significantly.

VII. RELATED WORK

There have been several recent studies to reduce the
overheads of handling snoops for snoop-based coherence.
The approaches mostly rely on tracking the sharing
states of coarse-grained memory regions at requesting
nodes, routers, and receiving nodes. RegionScount maintains
region-based coherence filters at requesting nodes to avoid
broadcasting snoop requests for private data [2]. Coarse-
grain coherence tracking (CGCT) also uses additional

coarse-grained coherence tags for each cache and tracks
the private or shared states of regions, in addition to the
conventional cacheline-unit coherence [3]. Snoop requests
are either broadcast or sent directly to the memory
depending on the coarse grain states. In-network Coherence
Filtering (INCF) embeds region-based tracking in routers,
and removes unnecessary snoops on the fly during the
transmission of requests [4]. Instead of using additional
filters or tags, Ekman et al. use TLBs to track the private or
shared states of pages [17]. With operating system support,
subspace snooping uses page tables to track sharers at
page granularity [18]. Virtual tree coherence relies on the
support from on-chip networks to build virtual multicasting
trees. For each memory region, a virtual tree, which
connects a subset of cores, is formed for snooping [19].
Destination-set prediction provides a speculative filtering
mechanism [20]. Compared to the aforementioned studies,
virtual snooping uses a virtual machine as a natural snoop
domain, and also handles minor cases when data sharing
crosses VM boundaries. Unlike the previous region-based
filtering techniques which store sharing states or sharer
information in on-chip storage or page tables, virtual
snooping requires only a small addition in cache tags to
add VM identifiers.

Marty and Hill (Virtual Hierarchies) inspired us to pursue
this study [5]. They explore the design space of flexible
cache hierarchies and two-level directory protocols for
virtualized systems. Instead of designing a new protocol,
virtual snooping uses a conventional snooping protocol, and
improves the scalability of snooping protocols by filtering
unnecessary snoops. Marty and Hill did not evaluate the
effect of a hypervisor, VM migration, and content-based
sharing. This paper looks into those issues which break
the memory isolation among VMs. Rodrigo et al. proposed
an efficient logic-based router design which can support
network regions [21]. The network region can be used to
divide cores into coherence domains in virtualized multi-
cores.

VIII. C ONCLUSIONS

In this paper, we proposed virtual snooping coherence,
which can partition cores in a virtualized system into virtual
snoop domains. It exploits memory isolation among VMs to
remove unnecessary snoop requests. However, such memory
isolation is not perfect in real virtualized systems due to data
sharing with a hypervisor, VM relocation, and content-based
data sharing. For data sharing due to a hypervisor, the results
showed that coherence transactions from the hypervisor are
relatively infrequent, mostly less than 10% of all transactions
for the compute-intensive workloads, and less than 20% for
the server workloads evaluated in this paper. For the VM
relocation effect, we showed that a simple counter-based
mechanism to check the cache residency of each VM, is
effective enough to mitigate the impact of relocation. Finally,



a subset of our benchmark applications have significant
coherence transactions on content-shared pages. For such
applications, virtual snooping must be further optimized
to reduce snoops by exploiting the read-only property of
content-shared pages.

With virtual snooping, future virtualized many-cores
can be divided into small snoop domains. The snoop
domains can dynamically change by hypervisor scheduling
to maximize the system utilization. The number of cores
is expected to continue to increase in future multi-core
architectures. However, for many virtualized systems, VMs
may use small scale virtual multiprocessors with a few
vCPUs. As the ratio of the number of per-VM vCPUs to
the total cores in a system decreases, virtual snooping will
become more effective for scaling snoop-based coherence.
Furthermore, the role of hypervisors will become critical
to limit the size of snoop domains. It will be necessary to
make hypervisors aware of the migration costs for virtual
snooping. The hypervisors must limit the range of VM
migration, as long as such restriction does not hurt the
overall system throughput.
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