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Conventional support vector machines (SVMs) find optimal hyperplanes that have maximal margins by treating all data equiv-
alently. In the real world, however, the data within a data set may differ in degree of uncertainty or importance due to noise,
inaccuracies or missing values in the data. Hence, if all data are treated as equivalent, without considering such differences, the
optimal hyperplanes identified are likely to be less optimal. In this paper, to more accurately identify the optimal hyperplane
in a given uncertain data set, we propose a membership-induced distance from a hyperplane using membership values, and
formulate three kinds of membership-induced SVMs.

1. Introduction
Despite many benefits of SVMs [1][2], conventional SVMs

lack a mechanism for reflecting variations in the uncertainty or
importance of data in a data set, and hence treat all data as
equivalent. In many real world problems, however, data may
have different degree of uncertainty due to noise, inaccuracies
or missing values in the data set.

One approach, called Fuzzy SVMs (FSVMs), to including
differences in importance in input data within the SVM for-
malism was proposed by Lin and Wang [3]. They introduced
fuzzy membership values µi into the compensation part for mis-
classification in the objective function of conventional SVMs,
and modified the error term in the conventional SVMs as

Of =
1
2

w · w + C

n∑

i=1

µiξi, (1)

, where ξi is a slack variable [1]. However, FSVMs are limited
in that they reflect all the differences in an input data set; only
margin error data are treated differently in this approach, even
though all the data may have differing degrees of uncertainty
or importance.

To resolve the above problems in FSVMs and find more rea-
sonable and more optimal OHPs from uncertain data, in the
present study we propose three kinds of SVMs that take into
account all differences in uncertainty or importance by means
of a membership-induced distance measure.

2. Membership-induced SVMs

2.1 Motivation and approach

Conventional SVMs cannot reflect the different uncertainties
of below two types of data in finding the OHP. Consider, two
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Fig. 1. Uncertainty handling in conventional SVMs and FSVMs.

data sets (Figs. 1a and 1b) whose uncertain input vector xu

has moved to Pu from original point Po due to noise in xu. If
xu has not moved, then the optimal solution is OHPo.

Regarding xu as a margin error: If the xu in Fig. 1a
is regarded as a margin error, then the slack variable ξu for
xu is nonzero, and thus the data set is regarded as linearly
nonseparable. In this case, conventional SVMs identify OHPc

in Fig. 1c as the OHP, even though OHPo or similar hyper-
planes are more optimal. FSVMs partially solve this problem
by decreasing the effect of the margin error through the use of
fuzzy membership. FSVMs would identify a hyperplane such
as OHPf as the OHP. There is, however, no golden rule gov-
erning the location of OHPf is located in Fig. 1c because we do
not know the original position of the input vector xu. In other
words, the FSVMs find only one of many feasible candidate
OHPs between OHPc and OHPo.
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Regarding xu as a support vector on the margin: If
the xu in Fig. 1b is regarded as a support vector on the margin,
then all the slack variables for the data including the input
vector xu are zero, and thus the data set is regarded as linearly
separable. This is a more serious problem for FSVMs because,
in this case, FSVMs find the same OHP as conventional SVMs
(shown in Fig. 1d), even though the OHP may be closer to
OHPo. That is, neither the conventional SVMs nor FSVMs
have a mechanism to reflect the uncertainty in xu, and hence
neither will find the optimal solution.

In this paper, we define membership-induced distances using
fuzzy membership values for all data to reflect all the uncer-
tainties in a given set of data. By maximizing the membership-
induced distance, we find membership-induced OHPs that are
more reliable and more optimal hyperplanes than those identi-
fied by conventional SVMs and FSVMs.

2.2 Membership-induced Distance

Suppose we have an uncertain data set S = {si : (yi, xi, µi)
| i = 1, ..., n} in which each datum si has three components:
a label (yi ∈ {−1, +1}); an input vector (xi ∈ RN ); and a fuzzy
membership value (µi, 0 < µi ≤ 1), where µi is the degree of
certainty of the datum si. We define a membership-induced
distance (mi-distance) between si and a hyperplane.

Definition 1 (Membership-induced Distance) Let m (∈ {R+∪
{0}}) be a fuzziness control parameter, and (w, b) be a hyper-
plane. The membership-induced distance between datum si

and the hyperplane, denoted by δmi(i), is then defined as

δmi(i) =
|w · xi + b|
µm

i ‖ w ‖ , i = 1, ..., n. (2)

Note that δmi(i) decreases with increasing µm
i . Hence, data

with larger values of µm
i more strongly influence the OHP. Fur-

thermore, when m = 0, the mi-distance equals the Euclidean
distance, and thus our SVMs based on the mi-distance act like
conventional SVMs. When m → ∞, the mi-distance for uncer-
tain data approaches infinity, and thus all uncertain data are
neglected in the calculation for finding the OHP.

2.3 Formulation for Membership-induced OHPs

2.3.1 Formulation of MISVM for the linearly separable case

We first define the membership-induced margin (mi-margin),
denoted as δm

mi, of a fuzzy set S with respect to a hyperplane
(w, b) as the minimum mi-distance while classifying the data
set S correctly. By maximizing the mi-margin δm

mi, we find the
membership-induced OHP (MIOHP).

Let us suppose that an uncertain data set S is linearly sep-
arable. For this case, δm

mi can be written as

δm
mi = min

i=1,...,n

1
µm

i

|w · xi + b| / ‖ w ‖ (3)

Because scalar multiplication does not affect identical equa-
tion, we can normalize the hyperplane (w, b) to satisfy
mini=1,...,n

1
µm

i
|w · xi + b| = 1. Then, we can maximize the

mi-margin by minimizing the objective function Ol
mi

Ol
mi =

1
2
w · w (4)

subject to
1

µm
i

yi(w · xi + b) − 1 ≥ 0, i = 1, ..., n. (5)

The problem of minimizing Eq.4 subject to Eq.5 is a convex
optimization problem, thus by introducing Lagrange multipli-
ers αi, and by using KKT conditions[1], we obtain the dual
representation of the optimization problem: maximize D(α)l

mi

D(α)l
mi =

n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

1
µm

i

1
µm

j

αiαjyiyjxi · xj , (6)

subject to
n∑

i=1

1
µm

i

αiyi = 0, 0 ≤ αi, i = 1, ..., n. (7)

This dual representation is a constrained quadratic problem;
hence we can derive the α̌i that satisfy the Eq.6. Furthermore,
we can see that if the fuzziness control parameter m equals
zero, then this dual representation is equivalent to the sepa-
rable case in conventional SVMs. Thus, our MISVMs are a
general extension of conventional SVMs. The complementary
KKT condition of this case is defined as

α̌i{ 1
µm

i

yi(w · xi + b) − 1} = 0, i = 1, ..., n. (8)

In this case, the data xi corresponding to α̌i > 0 are the sup-
port vectors that lie on the mi-margin.

After solving Eq.6, the offset bo of the MIOHPl can be ob-
tained using the complementary KKT condition, Eq.8.

The decision function for a test input vector xt is

f(xt)l
mi = sgn(

n∑

i=1

1
µm

i

α̌iyixu · xi + bo). (9)

2.3.2 Formulation for the soft mi-margin

If an uncertain data set S is linearly nonseparable, we first
handle this case using slack variables ζi for each datum. The
ζi for each datum is the amount of mi-distance from the limit
(the corresponding mi-margin) to a opposite class. Since the
exponential-weighted fuzzy membership µm

i of each datum si

determines the degree of certainty or importance on a MIOHP,
the term µvm

i ζi of the datum si is a measure of the weighted
mi-margin error for that datum, where v (≥ 1) is a constant.
Thus, the MIOHP for this case can be found by minimizing the
objective function Oc

mi,

Oc
mi =

1
2
w · +C

n∑

i=1

µvm
i ζi (10)

subject to
1

µm
i

yi(w ·xi +b)−1+ζi ≥ 0, (ζi ≥ 0, i = 1, ..., n).

(11)
, where C (∈ R+) is a regulation parameter.

Similar to the linearly sparable case, we can obtain the dual
representation of the optimization problem: maximize D(α)c

mi

D(α)c
mi =

n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

1
µm

i

1
µm

j

αiαjyiyjxi · xj , (12)
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TABLE I

Prediction accuracy of FSVMs and MISVMs when γ = 1.4

MISVMsC FSVMs
m =0.0 0.1 0.5 1.0 4.0

1 37.33 60.00 58.44 62.40 61.60 61.07
2 37.60 70.40 71.47 71.73 72.27 63.20
5 37.60 71.47 76.27 74.67 73.60 60.80
50 39.67 64.67 76.33 77.00 67.00 59.33
500 49.67 57.33 71.33 67.33 58.00 59.33
2000 59.33 57.33 71.00 65.67 56.67 59.33
10000 42.67 34.00 63.33 52.00 36.00 50.00

subject to
n∑

i=1

1
µm

i

αiyi = 0, 0 ≤ αi ≤ µvm
i C, i = 1, ..., n.

(13)
, and we can derive the complementary KKT conditions:

α̌i{ 1
µm

i

yi(w · xi + b) − 1 + ζi} = 0, i = 1, ..., n. (14)

(µvm
i C − α̌i)ζi = 0, i = 1, ..., n. (15)

The decision function for a test vector xt is

f(xt)l
mi = sgn(

n∑

i=1

1
µm

i

α̌iyixt · xi + bo), (16)

2.3.3 Formulation for kernelization

As seen in Eqs.12, and 16, the dual form of the objective
function and the decision function of MISVMs are represented
entirely in terms of inner products of pairs of input vectors.
Thus we can kernelize the MISVMs. The kernelized version of
the decision function in Eq.16 for MISVMs is

f(xt)k
mi = sgn(

n∑

i=1

1
µm

i

α̌iyik(xt, xi) + bo). (17)

3. Experiments
To investigate the success of these attempts, we conducted a

variety of tests in which FSVMs and MISVMs were applied to
Iris Plant data [4]. The Iris plant data set has three classes; one
of these classes is linearly separable from the others, but the
other two classes are not linearly separable from each other.
The original Iris Plant data set does not contain any uncer-
tainty. Thus, to create a training data set with uncertainty, we
randomly created missing attributes γ. We randomly divided
the Iris plant data set into two sets, and carried out a cross-
validation with these sets after creating missing attributes.

Table I shows selected results obtained using the FSVMs and
MISVMs for a data set generated using γ = 1.4, a relatively
high value that gave an average missing rate of attributes of
approximately 0.46. The accuracies of the FSVMs ranged from
37.33% to 59.33%. Thus, 59.33% was the optimal case of the
FSVMs for the data set. By comparison, our proposed MISVMs
gave substantially better results for all selected C values con-
sidered, with accuracies ranging from 63.33% to 77.00%. For

Fig. 2. Comparison of the accuracies of FSVMs and MISVMs with γ.

each C, the improvement achieved by MISVMs compared to
FSVMs ranged from 19.67% up to 102.34%. For the optimal
case, the accuracy of the MISVMs was 77.00%, a 29.78% im-
provement on the result achieved using FSVMs.

We performed an experiment in which we chose 15 values of
γ in the range of 0.1 to 1.5, and randomly generated five data
sets for each value of γ. We then performed a cross-validation
for each data set, found the prediction accuracies for the opti-
mal case, and averaged the accuracies for each value of γ. The
results of this experiment are depicted in Fig. 2. In general, the
averaged prediction accuracies of the FSVM and MISVMs de-
crease with increasing γ. However, the gradient of this decrease
in the averaged prediction accuracies is steeper for the FSVMs
than for the MISVMs, indicating that, for the present data sets,
the MISVMs give increasingly superior results compared to the
FSVMs as the uncertainty is increased (see upper part of Fig.
2). Thus, the results of this experiment demonstrate the supe-
riority of MISVMs over FSVMs in handling uncertainty when
the degree of uncertainty is large.

4. Concluding Remarks
In this paper we have discussed the problems of uncertainty

handling in SVMs. To resolve the problems and to more
precisely reflect the uncertainties in a given data set, in the
present work we introduced a fuzziness control parameter and
proposed a membership-induced distance measure. Using this
measure, we developed three kinds of MISVMs. Comparisons of
the prediction performance of MISVMs with the performances
of conventional SVMs and FSVMs showed that the proposed
MISVMs approach better reflects uncertainties in a data set
compared to the FSVMs method.
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