
Best and Worst-Case Coverage Problems for
Arbitrary Paths in Wireless Sensor Networks

Chunseok Lee∗, Donghoon Shin∗, Sang Won Bae† and Sunghee Choi∗
∗Department of Computer Science, Korea Advanced Institute of Science and Technology, Daejeon, Korea

†Department of Computer Science, Kyonggi University, Suwon, Korea

Email: ∗{stonecold, dhshin, sunghee}@tclab.kaist.ac.kr, †swbae@kgu.ac.kr

Abstract—The best-case and the worst-case coverage were
proposed originally for a single source and destination
pair in a sensor network. In this paper, we propose a
new coverage measure of the sensor network considering
arbitrary paths. Surprisingly, this new measure captures
both the best-case and the worst-case coverage of the sensor
network simultaneously, enabling us to evaluate the given
network in a global viewpoint. Accordingly, we pose the
evaluation and the deployment problems; the former is
to evaluate the new coverage measure of a given sensor
network, and the latter is to find an optimal placement of k
additional sensor nodes to improve the coverage for a given
positive integer k. We present several algorithms solving
the problems that are either centralized or localized with
theoretical proofs and simulation results, showing that our
algorithms are efficient and easy to implement in practice
while the quality of outputs is guaranteed by formal proofs.

Our algorithms are based on an interesting relation
between our new coverage measure and a certain quantity of
a point set, called the bottleneck, which has been relatively
well studied in other disciplines. In doing so, we prove that a
maximal support path can always be found in the minimum
spanning tree; this is another contribution of ours.

I. INTRODUCTION

Thanks to improvement of wireless sensor technology,

lots of practical applications of wireless sensor networks

continue to emerge [1]–[3]. Especially, wireless sensor

networks provide a promising infrastructure for surveil-

lance and monitoring applications such as fire monitoring

[4], [5] and intruder detection [6], [7]. By these applica-

tions, the coverage problem has been posed as one of the

fundamental problems in wireless sensor networks [8]–

[11]. Coverage characterizes the ability or the quality of

a sensor network in monitoring its sensing field.

In this work, we deal with the path-based coverage
of wireless sensor networks. Meguerdichian et al. [12]

introduced two path-based coverage problems: the best-
case and the worst-case coverage problems, dealing with

maximal support paths and maximal breach paths, respec-

tively.

The maximal support path between a source and a

destination is a path such that the maximum distance from

every point on it to the sensors is minimized. Suppose

that several robots are assigned to a job of monitoring an

area. While they are traveling to collect information in

the area, they can communicate with the wireless sensor

nodes to transmit information or to be assigned a new job.

In this case, one would expect the robots to be as close as

possible to the sensor nodes while moving in the field by

several reasons; for example, saving power consumption

of sensors or watching the robots by the sensors. In this

situation, the maximal support path is the best path for the

robots. Meguerdichian et al. [12] presented a polynomial

time algorithm finding a maximal support path connecting

two given points by exploiting the Delaunay triangulation.

The problem of deploying additional sensors to improve

a maximal support path was also considered in [12]–[15].

The maximal breach path is defined as a path between

a source and a destination which maximizes the mini-

mum distance from every point on it to the sensors. For

example, imagine that an intruder of the network would

want to traverse the sensor field while being as far as

possible to the sensors to avoid detection. In this case,

the maximal breach path is the worst path for the detec-

tor. Meguerdichian et al. [12] showed that the maximal

breach path can be found in the Voronoi diagram. The

deployment problem to improve the maximal breach path

was also considered by Gau et al. [16] and Duttagupta et

al. [17].

However, previous works mostly considered only the

case of a given pair of source and destination, and thus

would not provide a global look at the given sensor

network, just giving a narrow view restricted to the

specified path. In the above example, one might manage

several robots and the robots might have different source-

destination pairs individually; even the destinations of

the robots could be currently undecided but specified

afterwards. Moreover, for the worst-case coverage, it is

unrealistic to assume that we always know the source and

destination points of an intruder: if we knew, we could

just place the sensors to the known source and destination

points to minimize breach. This motivates us to extend the

concept of the best-case and the worst-case coverage to

consider arbitrary paths in the network. In this paper, we

introduce new coverage measures, called the support and

breach of a sensor network considering arbitrary maximal

support paths and maximal breach paths, respectively,

978-1-4244-7489-9/10/$26.00 ©2010 IEEE 127

depending on the distribution of the sensor nodes, not

on a specific pair of points or a path connecting them.

We consider two problems with respect to the support

and the breach of the sensor network: the evaluation

problem is to compute the value of the support/breach

of a given sensor network, and the deployment problem

is to find optimal locations of k additional sensors to

improve the support/breach the most for a given integer

k. A remarkable result is that for arbitrary paths the two

measures for the best-case and the worst-case coverage

coincide. Thus, unlike previous results which require dif-

ferent schemes for the best-case or worst-case coverage,

for our new coverage measure, a unified algorithm suffices

for both.

We show that our evaluation and deployment prob-

lems surprisingly correlate with the bottleneck spanning
tree and the bottleneck Steiner tree, which have been

well studied in Operations Research and Computational

Geometry [18]–[21]. Consequently, the support/breach

of a given network of n sensors can be computed in

O(n log n) time in a centralized manner or in O(n log n)
communication cost bits in a localized manner, and the

deployment problem is shown to be NP-hard even to

approximate within approximation ratio
√

2. In doing so,

we also prove that a maximal support path can always be

found in the minimum spanning tree of the given network.

This is of independent interest, providing us a much easier

way to handle and maintain maximal support paths in a

localized environment. Moreover, this improves the result

of Li et al. [22] which states that a maximal support

path can be found in the relative neighborhood graph, a

supergraph of the minimum spanning tree.

In summary, the main contributions of our paper are

as follows. First, we define a new coverage measure for

sensor networks and show that it captures both the best-

case and worst-case coverages for arbitrary paths. Second,

we show how to obtain the value of this new coverage

measure of a given network. This can be done efficiently

either using a centralized algorithm or a localized algo-

rithm. Third, we show that this new coverage measure

is closely related to the bottleneck spanning tree, and

from this observation give a new algorithm for deploying

additional sensors to improve the value of the coverage

measure with a guaranteed performance.

The rest of the paper is organized as follows: In Sec-

tion II, we briefly introduce some preliminaries including

geometric notations and the bottleneck spanning/Steiner

tree. In Section III, we newly formulate path coverage

problems with respect to arbitrary paths. In Section IV,

we formally prove that a maximal support path can be

found in the minimum spanning tree of the given sensor

network. Based on this new discovery, we prove that

our problems can be transformed to finding a bottleneck

spanning/Steiner tree and present algorithms solving the

evaluation and the deployment problems with theoretical

guarantees. Some simulation results are given in Section V

and finally we conclude the paper with discussion in

Section VI.

II. PRELIMINARIES

A. Knowledge from Computational Geometry

Coverage problems in wireless sensor networks are

mostly discussed in geometric models; thus, most known

algorithms are based on common knowledge from Com-

putational Geometry. Here, we briefly introduce several

geometric structures that are frequently referred.

The Delaunay triangulation DT (S) of the set S of

points in the plane R
2 is a triangulation such that the

circumcircle of each triangle contains no point of S in its

interior. The Delaunay triangulation is also well known

as a dual structure of the Voronoi diagram. The Voronoi

diagram V D(S) of the points S is a subdivision of the

plane into Voronoi regions. The Voronoi region of p ∈ S
is the set of points that are closer to p than the others in

S. These two structures DT (S) and V D(S) have been

intensively studied in Computational Geometry and are

widely used in many areas. For more details about the

Voronoi diagram and the Delaunay triangulation, we refer

to a survey paper by Aurenhammer and Klein [23].

Though the Delaunay triangulation DT (S) well spans

all the nodes in S, it is known that DT (S) is hard to

construct in a localized way [22]. Thus, several sub-

graphs were proposed. The relative neighborhood graph
RNG(S) consists of all edges uv such that the intersec-

tion of two circles centered at u and at v with radius ‖uv‖
contains no other points in S in its interior [24], [25]. The

(Euclidean) minimum spanning tree MST (S) of a point

set S is a tree spanning all points in S in the plane that

minimizes the sum of the (Euclidean) lengths of its edges.

Following their definitions, it is not difficult to show the

following relation

MST (S) ⊆ RNG(S) ⊆ DT (S);

that is, MST (S) is a subgraph of RNG(S) and RNG(S)
is a subgraph of DT (S) [26]. The subgraphs MST (S)
and RNG(S) can be constructed efficiently in O(n log n)
time [24] in a centralized manner or in communication

cost O(n log n) bits in a localized manner [22], [27].

B. Bottleneck Spanning/Steiner Tree

A bottleneck spanning tree of S is a tree spanning all

points in S that minimizes the maximum of the lengths

of its edges. We call the length of a longest edge in a

bottleneck spanning tree of S the bottleneck of the set
S, denoted by btn(S). Notice that the bottleneck btn(S)
of S is only dependent on S, not on how to construct a

spanning tree. It is easy to see that there may be many

bottleneck spanning trees for a set S and the minimum

128

spanning tree MST (S) is also a bottleneck spanning

tree [21].

A (Euclidean) bottleneck Steiner tree of S with k
Steiner points is a tree spanning S and k additional

nodes that minimizes its longest edge by selecting optimal

locations of k nodes. The (Euclidean) bottleneck Steiner

tree problem is described as follows: given n points in the

plane and a positive integer k, find a bottleneck Steiner

tree with at most k Steiner points. Unlike the classical

Steiner tree problem where the total length of the Steiner

tree is minimized, this problem asks a Steiner tree where

the maximum of the edge lengths is minimized and the

Steiner points in the resulting tree can be chosen in the

whole plane R
2. These problems, and their variations,

have known applications in VLSI layout [28], multi-

facility location, and wireless communication network

design [29].

The bottleneck Steiner tree problem is known to be

NP-hard to approximate within ratio
√

2 [29]. This means

that it is impossible to get an approximate solution within

ratio
√

2 in polynomial time unless P=NP. The best known

upper bound on approximation ratio is 1.866 by Wang and

Li [30]. There has been some effort on devising an exact

algorithm for finding the locations of k Steiner points [19],

[31]. To the best knowledge of the authors, there is no

known exact algorithm with exponential running time yet.

Very recently, Bae et al. [21] presented an O(n log n)
time exact algorithm when k = 1 and proved this is best

possible.

III. PROBLEM FORMULATION

We assume that the sensor nodes are given as a set S
of n points in a two-dimensional domain Ω, which is a

bounded and convex subset of R
2. This guarantees that the

convex hull of the set S of sensors is completely contained

in the domain Ω.

A. Previous Works for Best-case/Worst-case Coverage

To formulate our problem, we need to introduce re-

sults from previous works. We first define the distance

dist(x, A) between a point x ∈ Ω and a set A ⊂ Ω of

points as follows:

dist(x, A) = min
y∈A
‖xy‖,

where ‖xy‖ denotes the Euclidean distance between x and

y. Then, we define the support of a point set by another

set as follows.

Definition 1. The support of a point set A ⊂ Ω by another
set B ⊂ Ω is

support(A, B) = max
x∈A

dist(x, B).

Since any path Π contained in Ω can be viewed as a set

of points in Ω, now we can discuss the distance between a

s
t

Fig. 1. A maximal support path (thick segments) from s to t can be
found by using the Delaunay triangulation (thin gray segments) of the
given set of sensors.

path Π and the set S of sensors with respect to the support

defined above. For a path Π, the support support(Π, S)
of Π by the sensors S is also called the support of Π [14].

Definition 2. For fixed s, t ∈ Ω, a path Π connecting s
and t is called a maximal support path in the sensor field
if Π achieves the possible minimum support. That is,

support(Π, S) = min
any path Π′ between s and t

support(Π′, S).

Also, this value is called the support distance between s
and t, denoted by support(s, t).

For maximal breach paths, we first define the breach

between two sets of points as follows.

Definition 3. The breach of a point set A ⊂ Ω by another
set B ⊂ Ω is

breach(A, B) = min
x∈A

dist(x, B).

In other words, breach(A, B) represents the minimum

Euclidean distance between two sets of points. Then, for

a given source and destination pair, the maximal breach

path is defined as a path with the maximum breach.

Definition 4. For fixed s, t ∈ Ω, a path Π connecting s
and t is called a maximal breach path in the sensor field
if Π achieves the possible maximum breach. That is,

breach(Π, S) = max
any path Π′ between s and t

breach(Π′, S).

The best-case/worst-case coverage problem asks to find

a maximal support/breach path connecting two given

points in the domain, respectively. Meguerdichian et

al. [12] proposed efficient algorithms to find a maximal

support/breach path by exploiting the Delaunay triangu-

lation and the Voronoi diagram of the given sensors,

respectively. Figs. 1 and 2 illustrate a maximal support

path and a maximal breach path, which goes through the

Delaunay triangulation and the Voronoi diagram of the

sensors S, respectively. Li et al. [22] gave a formal proof

of the correctness of the algorithm by Meguerdichian et al.

and further showed that the relative neighborhood graph

is enough to find a maximal support path.

Theorem 1 (Li et al. [22]). Given a set S of sensors in
the domain Ω and any pair of two points s, t ∈ Ω, there

129

s t

Fig. 2. A maximal breach path (thick segments) from s to t can be
found by using the Voronoi diagram (thin gray segments) of the given
set of sensors.

is a maximal support path Π from s to t such that (1) Π
connects s to its closest sensor us ∈ S and t to its closest
sensor ut ∈ S and (2) the sub-path of Π from us to ut

goes along only edges of the relative neighborhood graph
of S.

The coverage deployment problem asks to find the

deployment locations for additional k sensor nodes so that

the support/breach between two given points is improved

the most. For the maximal support paths, Meguerdichian

et al. [12] mentioned a simple heuristic method: for a

given pair of points, it finds a maximal support path

and places sensors on the longest segment of the path.

Recently, Hou et al. [15] proposed an optimal placement

algorithm to improve the maximal support paths using

Dijkstra’s shortest path algorithm.

For the maximal breach paths, Gau et al. [16] proposed

two approaches to improve the worst-case coverage by

adding k additional sensors. One is by exploiting the

dual relationship between the worst-case and the best-case

coverage and the other is using a genetic algorithm. But,

their algorithms do not guarantee an optimal placement.

Duttagupta et al. [17] proposed a measure called the av-

erage maximal breach considering maximal breach paths

connecting Voronoi vertices. But, their average maximal

breach does not represent the maximum breach of the

sensor network.

B. New Measure for Best-case/Worst-case Coverage con-
sidering Arbitrary Paths

Here, we extend the support and breach of a given pair

of source and destination to consider any arbitrary path

by defining two new measures for the quality of service

of a given sensor network, called the support and breach
of the sensor network.

Definition 5. The support of the set S of sensors in
the domain Ω, denoted by support(S), is the maximum
value among the support distances of all pairs of points
belonging to S. That is,

support(S) = max
u,v∈S

support(u, v).

Since a maximal support path connecting s, t ∈ Ω can

be obtained by finding the closest sensors u ∈ S from s

and v ∈ S from t and a maximal support path between

u and v by Theorem 1, support(S) well represents the

coverage of the network S, giving a guaranteed quantity of

support distances between any pair of two points. Unlike

the coverage problems studied previously [12], [14], [15],

[22] where only a single path is considered, this new

quantity gives us a way of viewing the given network in a

more global viewpoint by considering arbitrary maximal

support paths.

The breach of the set S of sensors is defined similarly,

but, here we need to define all possible paths more care-

fully since we cannot use the set of sensors as candidates

for source and destination points. Thus, for the maximal

breach paths, we consider all paths such that sensors lie on

both sides of the paths. In other words, we do not consider

the paths so that all the sensors in S lie completely on

one side of the path. This is a reasonable assumption since

we are interested in detecting an intruder that traverses the

sensing field. We say that a path crosses the sensing field
Ω if the path has at least one sensor in both sides.

Definition 6. The breach of the set S of sensors in the
domain Ω, denoted by breach(S), is the maximum breach
among all possible paths crossing Ω:

breach(S) = max
any path Π′ crossing Ω

breach(Π′, S).

In the worst-case coverage, we are interested in finding

the most vulnerable area of the sensor network from an

intruder. Since breach(S) represents the maximal breach

among paths that cross the sensing field, it gives the

measure of how vulnerable the network is, considering

arbitrary paths.

This paper considers the evaluation and deployment

problems with respect to support(S) or breach(S) of

the given sensor network: The evaluation problem is

to compute the values support(S) or breach(S). The

deployment problem, for given integer k > 0, is to find

a set Q of k locations for additional sensors to minimize

support(S ∪Q) or breach(S ∪Q), the support or breach

of S ∪Q, respectively.

IV. ALGORITHMS AND THEORETICAL GUARANTEES

A. Minimum Spanning Trees for Maximal Support Paths

To compute the support and breach of the sensor

network, we use the minimum spanning tree. Li et al. [22]

showed that a maximal support path between any two

points in Ω can be found in the relative neighborhood

graph of the sensors S, as stated in Theorem 1. Here,

we first show that the minimum spanning tree which is a

subset of the relative neighborhood graph is sufficient to

find maximal support paths.

Theorem 2. Given a set S of sensors in the domain Ω
and any pair of two points s, t ∈ Ω, there is a maximal
support path Π from s to t such that (1) Π connects s to

130

its closest sensor us ∈ S and t to its closest sensor ut ∈ S
and (2) the sub-path of Π from us to ut goes along only
edges of the minimum spanning tree MST (S).

Proof: From Theorem 1 by Li et al. [22], we know

that there is a maximal support path that connects s to us

and t to ut. Thus, we can focus only on the case where

two endpoints are sensors us and ut in S.

u v

Π

Π′

(a) (b)

Fig. 3. Illustration to the proof of Theorem 2. (a) Two paths Π and
Π′ between u and v; (b) The set X = (Π ∪ Π′) \ (Π ∩ Π′) consists
of several cycles.

The proof is done by contradiction. Suppose that the

theorem is false and thus there exist u, v ∈ S such that

the path Π between u and v in MST (S) has strictly

larger coverage distance than another path Π′. Consider

the symmetric difference X of two paths Π and Π′,
that is, X = (Π ∪ Π′) \ (Π ∩ Π′). Since both are paths

connecting u and v, the set X is a union of several

cycles. See Fig. 3. Furthermore, X is not empty since

Π
= Π′ and thus consists of at least one cycle. Take

one of those cycles that contains the longest edge in

Π, say C. (Since support(Π, S) > support(Π′, S), the

longest edge of Π must appear in X .) Note that C can

be seen as a union of two parts, C ∩ Π and C ∩ Π′. By

our selection of C, we also have support(C ∩ Π, S) =
support(Π, S) > support(Π′, S) ≥ support(C ∩Π′, S).
Letting e be the longest edge in Π, we get
1
2‖e‖ = support(e, S) = support(C ∩ Π, S).
On the other hand, support(C ∩ Π′, S) =
maxe′∈C∩Π′ support(e′, S) = maxe′∈C∩Π′ 1

2‖e′‖.
Therefore, we have ‖e‖ = 2support(C ∩ Π, S) >
2support(C ∩ Π′, S) = maxe′∈C∩Π′ ‖e′‖, implying that

e is the longest edge in cycle C but e is contained in

MST (S). This is a contradiction to so-called Red Rule

for the minimum spanning tree; in any cycle of a given

graph, the edge with maximum length must be excluded

out from the minimum spanning tree of the graph [32].

Hence, we conclude that there does not exist such a path

Π′, completing the proof.

The minimum spanning tree MST (S) can be built

locally in optimal communication cost O(n log n) bits and

in the same time bound [27] since it is known that its

super graph RNG(S) can be computed in communication

cost O(n log n) bits [22]. Moreover, once MST (S) is

maintained, a maximal support path can be easily retrieved

since there is a unique path in it between any pair of

sensors in S.

In a theoretical point of view, Theorem 2 further implies

that MST (S) is the minimal graph in which one can find

the maximal support paths; since MST (S) is a spanning

tree of S, any graph with less edges than MST (S) cannot

be exploited as a topology of the sensor network.

B. The Evaluation Problem
The evaluation problem is to compute the support

support(S) and the breach breach(S) of the given sensor

network. Theorem 2 naturally implies an important rela-

tion between the bottleneck btn(S) of S and the support

support(S) of S.
Using the dual relationship between the maximal sup-

port paths and the maximal breach paths, we can show that

the breach breach(S) of a set S of sensors is actually the

same as the support support(S) of S.

Lemma 1. For any set S of n sensors distributed in the
domain Ω, we have

support(S) = breach(S) =
1
2
btn(S).

Proof: For any u, v ∈ S, let Π(u, v) be the path

between u and v in MST (S). By Theorem 2, we know

that Π(u, v) is a maximal support path connecting u and

v, and we have

support(Π(u, v), S) = max
e∈Π(u,v)

1
2
‖e‖ ≤ 1

2
btn(S),

since MST (S) is a bottleneck spanning tree of S. The

equality is realized when we take u, v as the sensors

incident the longest edge in MST (S). Hence, we have

support(S) = 1
2btn(S).

Let Π′ be a maximal breach path of the given sensors.

Then Π′ satisfies that breach(S) = breach(Π′, S) and

sensors are partitioned into two groups by the path. If

any edge e is removed from MST (S), two partitioned

trees T1, T2 remain and its minimum distance is equal

to ‖e‖ by the property of the minimum spanning tree.

Since Π′ crosses Ω, it should pass through at least one

edge of MST (S). Also, Π′ should passes through the

middle of edges to maximize breach. Thus, we obtain

breach(S) = 1
2btn(S) when Π′ passes thourgh the

longest edge of MST (S).
We obtain the following theorem from the above

lemma.

Theorem 3. Given a set S of n sensor nodes in the
domain Ω, support(S) and breach(S) of S can be
computed locally in O(n log n) communication cost bits
and time.

Proof: By Lemma 1, we are done by computing

a bottleneck spanning tree of S and traversing every

edge of the tree to compute the bottleneck btn(S) of

S. Recall that the minimum spanning tree MST (S) is

a bottleneck spanning tree. In the two-dimensional space

Ω, an optimal construction of MST (S) in a localized

manner is well known by Awerbuch [27], proving the

claimed communication cost and time.

131

C. The Deployment Problem

For a given positive integer k, the deployment problem

asks a set Q of k points in the domain Ω which minimizes

the support(S ∪ Q) or breach(S ∪ Q) of the sensor

network including n given sensor nodes and k additional

ones. Since the support and the breach of a given set

of sensors are the same, one deployment algorithm can

optimize both quantities at the same time.

Lemma 1 implies that our deployment problem is

equivalent to the bottleneck Steiner tree problem, which

finds k additional points Q minimizing the bottleneck

btn(S ∪ Q), as described in Section II. Therefore, the

hardness results of the bottleneck Steiner tree problem by

Wang and Du [29] are inherited into our problem.

Theorem 4. The deployment problem minimizing the
support or breach of given n sensors plus k additional
ones is equivalent to the Euclidean bottleneck Steiner tree
problem with at most k Steiner points. Therefore, the prob-
lem is NP-hard even to approximate within approximation
ratio

√
2.

In other words, it is impossible to get a polynomial-time

ratio-
√

2 approximation algorithm for our deployment

problem unless P=NP.

On the other hand, several known algorithms for the

bottleneck Steiner tree problem can be exploited. Wang

and Li [30] presented an approximation algorithm with

ratio 1.866. This gives the currently best known upper

bound on approximation ratio but the algorithm is hard to

implement and inefficient, taking O(n3k3) time.

In this paper, we propose a new 2-approximation algo-

rithm. To understand it, we first briefly describe two pre-

vious algorithms; an optimal exact algorithm for k=1 [21]

and an approximation algorithm by Wang and Du [29].

1) Exact Algorithm for k = 1: Here, we introduce the

exact algorithm for the deployment problem when k = 1,

that is, when we want to deploy a single sensor node.

Let e1, . . . , en−1 be the edges of MST (S) in the order

that their lengths are not increasing. Since MST (S) is a

bottleneck spanning tree of S, we have btn(S) = ‖e1‖,
the length of the longest edge in MST (S). In order to

have a strictly better bottleneck with a new node, we must

be able to remove the longest edge e1 by the additional

sensor. Intuitively, the algorithm removes the longest edge

in MST (S) by adding a node but it does not always

put a new node on the edge e1. Sometimes, the newly

added node with some new edges can replace the longest

and the second longest edges e1, e2, simultaneously, or

even the third e3. Fig. 5(c) shows an example where a

new node q and new edges incident to q replace e1 and

e2, simultaneously. But, it is shown in [21] that it is

impossible to remove all of e1, . . . , e5 simultaneously by

one newly added node.

In order to minimize btn(S ∪ {q}), it is obvious that

1: Algorithm EXACT(S)
2: Compute the minimum spanning tree MST (S)
3: Sort the edges of MST (S) by their lengths
4: Let e1, . . . , en−1 be the edges in the order
5: for c=1 to 4 do
6: Remove e1, . . . , ec from MST (S)
7: Let T1, . . . , Tc+1 be the c + 1 resulting subtrees
8: Color the points in Ti by color i for each i
9: Find the smallest color spanning disk D of the Ti

10: qc ← the center of D
11: end for
12: q ← one minimizing btn(S ∪ {qi}) among q1, . . . , q4

13: return q
14: end Algorithm

Fig. 4. Exact deployment algorithm when k = 1

effort to remove ei without removing ei−1 is useless.

Hence, we are left with only four cases; we could remove

e1, . . . , ec by an optimal solution for c = 1, . . . , 4. The

main idea of the algorithm is to check all these four cases.

Our algorithm does the following for c = 1, . . . , 4: (1)

Remove e1, . . . , ec from MST (S) to get c + 1 subtrees

T1, . . . , Tc+1, (2) find a smallest disk Dc containing at

least one point from each subtree Ti, and then its center

qc is a candidate of our solution. (See Fig. 5.)

e1

e2

(a) (b) (c)

q q

Fig. 5. Illustration to how Algorithm EXACT works. (a) Compute
MST (S). (b) Remove the longest and the second longest edges, e1

and e2 (when c = 2), color the points in each of the resulting subtrees,
and compute the smallest color spanning disk (dashed gray circle). (c)
Return the center q of the disk; this also shows an additional sensor
node can remove e1 and e2, simultaneously.

Now, the problem is transformed to finding a smallest

disk Dc containing at least one point in each subtree Ti.

This can be tackled by algorithms computing the smallest
color spanning disk [20], [33]; given points colored by

one in a color set C = {1, . . . , c}, the smallest color

spanning disk is a smallest disk that contains at least one

point for each color in C. The smallest color spanning disk

has been studied in Computational Geometry with ap-

plications in multicommodity facility location, and there

exists a simple algorithm that finds the disk in O(cn log n)
time when we are given n total points in the plane with

c colors [20].

The pseudo-code of the algorithm, named EXACT, is

described in Fig. 4. Also, Fig. 5 illustrates how Algorithm

EXACT works.

Lemma 2. Algorithm EXACT correctly finds an optimal
deployment for a single sensor node in O(n log n) time.

132

1: Algorithm WANG-DU(S, k)
2: Compute the minimum spanning tree MST (S)
3: Set ke ← 0 and le ← ‖e‖ for edge e in MST (S)
4: Build the max-heap of (le, e) for all e in le values
5: Pop the maximum (leM , eM) from the max-heap
6: Set keM ← keM + 1 and leM ← ‖e‖/(keM + 1)
7: Insert (leM , eM) into the max-heap
8: Repeat Steps 5–7 k times
9: For each edge e, locate ke sensors evenly on e

10: return the positions of k added sensors
11: end Algorithm

Fig. 6. Modified version of the algorithm by Wang and Du for deploying
k ≥ 1 sensor nodes

Proof: The correctness of Algorithm EXACT for

the bottleneck Steiner tree problem is proved in our

companion paper [21]. By Theorem 4, an optimal location

q minimizing the bottleneck also minimizes the support.

For the time complexity, computing MST (S) and

sorting its edges takes O(n log n) time and finding the

smallest color spanning disk takes O(cn log n) time [33].

Fortunately, c runs from 1 to 4 only, so the total time

complexity settles down to O(n log n).
2) Algorithm by Wang and Du: The algorithm by Wang

and Du [29] finds k locations for additional sensors in a

greedy way. It also starts with the minimum spanning tree

MST (S): for each edge e = (u, v) in MST (S), if we

add ke sensors on e, then the length of the longest edge

between u and v has the minimum value ‖e‖/(ke + 1),
where ‖e‖ is the Euclidean length of edge e. We denote

le = ‖e‖/(ke + 1) and initially set ke = 0 and le = ‖e‖
in the algorithm. The basic idea is to add one sensor on

edge e of MST (S) with the largest le value at a time.

After adding a sensor on e, we update ke ← ke + 1
and le accordingly. We repeat this until k sensors are all

added and at last fix their positions; for each edge e in

MST (S), locate newly added sensors evenly on e. The

original version of this algorithm takes O(kn + n log n)
time but we modify it to have a slightly better time bound

by using a heap structure. This algorithm, named WANG-

DU, is described as in Fig. 6, and Fig. 7 shows some

examples of how Algorithm WANG-DU finds locations

for additional sensor nodes.

1

2

3

1

4

3

2

(a) (b)

Fig. 7. Two examples of execution of Algorithm WANG-DU; The
results of (a) WANG-DU(S, 3) and (b) WANG-DU(S, 4) for 6 given
sensors S. The numbers in circle indicate the iteration of Algorithm
WANG-DU when the node is added.

This simple algorithm guarantees the quality of its

output theoretically.

Lemma 3. Algorithm WANG-DU returns a set Q of
locations for k additional sensors such that

support(S ∪Q) ≤ 2support(S ∪Qopt),

where Qopt is a set of optimal locations for k additional
sensors. Its running time is at most O((n + k) log n).

Proof: Since Algorithm WANG-DU is a 2-

approximation algorithm for the bottleneck Steiner tree

problem [29], the same approximation ratio holds for the

support or breach value. Steps 5–7 are executed k times.

Since he max-heap can be constructed in O(n log n) time

and each operation on it takes at most O(log n) time [34],

the claimed time complexity O((n + k) log n) is shown.

3) NEW Algorithm: We propose a new deployment al-

gorithm based on two algorithms, EXACT and WANG-DU.

Each algorithm described above has its own limitation:

Algorithm EXACT works only for k = 1 and Algorithm

WANG-DU finds locations of additional sensor nodes only

on the edges of the minimum spanning tree MST (S)
of S. Hence, by combining these two algorithms, we

could find better solutions in practice. As aforementioned,

Algorithm WANG-DU adds new nodes incrementally in a

greedy way, while Algorithm EXACT finds the location of

a new sensor node on an edge of MST (S) when there is

no better solution that is not on the edges of MST (S); in

that case EXACT(S) returns the same location as WANG-

DU(S, 1). Thus, we basically execute Algorithm EX-

ACT iteratively and if its output improves the bottleneck

reasonably much, then we accept the output; otherwise,

we simulate Algorithm WANG-DU. The new algorithm,

named NEW, is described in Fig. 8.

Since Algorithm NEW finds the same location as

WANG-DU or even better by EXACT at every iteration, it

returns a solution at least as good as that of WANG-DU(S,

k).

Lemma 4. Let Q be the output of NEW(S, k) and Q′

the output of WANG-DU(S, k) for any set S of sensors
and any positive integer k. Then, we have

support(S ∪Q) ≤ support(S ∪Q′).

The time complexity of Algorithm NEW is at most O(k(n+
k) log(n + k)).

Proof: Recall that Algorithm EXACT finds the small-

est color spanning disk internally and returns its center as

q. Thus, the edges incident to q that are newly added

in T ′ have the same length a. When the test at Step

12 is passed, we decide q to be included in the output

Q. Since, otherwise, it performs the same procedure as

Algorithm WANG-DU, the only possible way to get a

133

1: Algorithm NEW(S, k)
2: Set Q← ∅ and P ← ∅
3: Compute MST (S) and set T ←MST (S)
4: Set ke ← 0 and le ← ‖e‖ for edge e in T
5: Sort the le in decreasing order to get a list L
6: Execute EXACT(S ∪ P ∪Q)
7: Let q be the added node and T ′ be the resulting tree
8: Let a be the length of the edges incident to q in T ′

9: Let d be the degree of q in T ′

10: Let A = T \ T ′ and B = T ′ \ T
11: Let i be an integer such that L[i + 1] < a ≤ L[i]
12: if d ≥ 3 and

∑
e∈A

ke = 0 and k ≤ i− 1 then
13: Set Q← Q ∪ {q}
14: Modify T to be MST (S ∪Q)
15: For each e ∈ B, set ke ← 0 and le ← ‖e‖
16: else
17: Find the edge e of T with the maximum le value
18: Set q ← any point on e and P ← P ∪ {q}
19: Set ke ← ke + 1 and le ← ‖e‖/(ke + 1)
20: Reorganize ke points in P ∩ e evenly on e
21: end if
22: If k > 1, set k ← k − 1 and go to Step 5
23: Set Q← Q ∪ P
24: return Q
25: end Algorithm

Fig. 8. Proposed algorithm

different solution is getting into Steps 13–15 by satisfying

the conditions that (1) d ≥ 3, (2) for any edge e ∈ A
removed by addition of q, ke = 0, and (3) k ≤ i − 1,

where i is an integer such that the length a of the edges

in B incident to q in T ′ is larger than the (i+1)-th largest

l-value L[i+1] and smaller than or equal to the i-th largest

l-value L[i].
Now, assume that at some iteration all these conditions

are fulfilled. Let l(j) denote the j-th largest l-value, that

is, L[j] at this stage. If we do not accept q to be included

into the output Q, we are left with only at most i − 1
nodes to be added; thus, for any 1 ≤ m ≤ i − 1, the

bottleneck value will be at least l(m+1) after m iterations

of Algorithm WANG-DU. However, if we accept q, the

bottleneck value reduces to at most l(d) ≤ l(3) at once,

and the following m− 1 iterations of Algorithm WANG-

DU afterwards result in the bottleneck value at most l(m+
1) for 1 ≤ m ≤ i − 2 and at most a for m = i − 1
since l(i + 1) < a ≤ l(i). This implies that accepting q
with the conditions leads to a better solution than that by

Algorithm WANG-DU.

About the time complexity: For the j-th iteration of the

algorithm, we spend at most O((n + j) log(n + j)) time.

Summing O((n+ j) log(n+ j)) over j = 1, . . . , k results

in O(k(n + k) log(n + k))
Therefore, Algorithm NEW guarantees at least ratio-

2 approximation and is expected to find even a better

solution in practice. Note that in practice the number k of

deploying sensor nodes is usually smaller than the number

of sensor nodes distributed currently in the domain. In

this case, the asymptotic behavior of the running time of

Algorithm NEW becomes O(kn log n).

V. SIMULATION RESULTS

We empirically validate our deployment algorithms

presented in Section IV. In the case of k = 1, that is, if we

want to deploy a single sensor node, we have an efficient

algorithm, EXACT, that returns an optimal location. In the

case of k ≥ 2, we execute Algorithm NEW.

The experimental configuration is as follows: We take

the square with side length 400 units as our sensor field,

or the domain Ω and we spread initial sensor nodes S
uniformly at random within Ω. The number of initial

nodes is between 10 and 100. In this simulation, we

deploy up to 4 additional nodes to the given configuration

S in Ω by executing our deployment algorithms, and then

evaluate two quantities; support/breach improvement and

improved pair ratio. The support/breach improvement is

obtained from two support/breach values taken before and

after deployment. Computing the support/breach value is

done simply by finding the longest edge in the minimum

spanning tree by Theorem 3. The improved pair ratio is

the proportion of pairs of points in the domain Ω whose

maximal support path has been improved after deploy-

ing additional sensor nodes. To empirically measure the

improved pair ratio, we randomly generated 500 pairs

of a source s and a destination t in the domain Ω and

counted the number of pairs such that the support distance

support(s, t) gets improved. For the given number n of

initial sensors, we repeated each experiment 100 times and

took the average values. However, we do not measure the

improved pair ratio for the maximal breach paths, since

the breach of the sensor network is defined to find the

most vulnerable point of the network, i.e., the maximum

breach, and to improve it, not to decrease breaches of

many maximal breach paths.

0%

10%

20%

30%

40%

50%

10 20 30 40 50 60 70 80 90 100

S
u

p
p
o
rt

/
B

re
a
ch

 I
m

p
ro

ve
m

e
n

t
R

a
ti

o

Initial Nodes

Add 4
Add 3
Add 2
Add 1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

10 20 30 40 50 60 70 80 90 100

Im
p
ro

ve
d
 P

a
ir

 R
a
ti

o

Initial Nodes

Add 4
Add 3
Add 2
Add 1

(a) (b)

Fig. 9. (a)Support improvement ratio after each sensor addition as we
increase the number of initial nodes (b)The ratio of pairs among 500
pairs whose support value is improved after each sensor addition as we
increase the number of initial nodes

In the first stage of our experiment, we show how much

our algorithm improves the sensor network as the number

of additional sensor nodes increases. Fig. 9(a) shows

the support/breach improvement when we add up to 4

additional sensor nodes by executing Algorithms EXACT

134

0%

10%

20%

30%

40%

50%

10 20 30 40 50 60 70 80 90 100

S
u

pp
or

t I
m

pr
ov

em
en

t R
at

io

Initial Nodes

EAXCT;1 NEW;2 NEW ;4
HOU;1 HOU;4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

10 20 30 40 50 60 70 80 90 100

Im
pr

ov
ed

 P
ai

r
R

at
io

Initial Nodes

EXACT;1 NEW;2 NEW;4
HOU;1 HOU;4

0%

10%

20%

30%

40%

50%

10 20 30 40 50 60 70 80 90 100

B
re

ac
h

 Im
pr

ov
em

en
t R

at
io

Initial Nodes

EXACT;1 NEW;2 NEW;4
GAU;1 GAU;4

(a) (b) (c)

Fig. 10. Comparisons (a) Support improvement ratio compared with HOU (b) Improved pair ratio compared with HOU (c) Breach improvement
ratio compared with GAU

or NEW. As the number of initial sensors increases, the

difference between the edge lengths of MST (S) becomes

smaller due to higher density. Thus, the support/breach

improvement degrades gradually. More precisely, the be-

havior of the graphs in Fig. 9(a) shows rapid decreasing in

the beginning but gets stabilized soon after 70 or 80 initial

nodes. Notice that a single addition results in more than

10% support improvement even among a large number

of initial nodes. Moreover, adding more sensor nodes,

we achieved remarkably better improvement; deploying

only four sensor nodes gives more than 25% support

improvement among 100 initial nodes.

As our algorithms are designed to improve the support

of the sensor network, considering arbitrary paths, it is ex-

pected that a large portion of paths would be affected and

improved. Fig. 9(b) shows such an expected improvement

for arbitrary maximal support paths. The graphs of the

improved pair ratio in Fig. 9(b) are more or less constantly

decreasing compared to those of the support improvement;

this is because as initial nodes increases more, deploying

a fixed number of sensors affects relatively narrower areas

of the whole domain Ω. Nonetheless, Fig. 9(b) shows

significant results; among 100 initial nodes, adding a

single node by Algorithm EXACT improves more than

25% of maximal support paths and adding four nodes

by Algorithm NEW improves almost 60% of maximal

support paths.

In the second stage, we compare our algorithms with

previously known methods of deploying additional sensor

nodes. For the best-case coverage, we choose the method

by Hou et al. [15], named HOU hereafter, that deploys

sensors optimally for a given maximal support path. For

the worst-case coverage, we choose the method by Gau

et al. [16], named GAU hereafter, which finds the dual

maximal support path and deploys additional sensors uni-

formly along the maximal support path from the longest

edges.

Since the previous algorithms are designed to im-

prove the given maximal support/breach path, not the

support/breach of the sensor network, the comparison

would not be proper unless we give good maximal sup-

port/breach paths as input. In this experiment, we gave a

maximal support path with the largest support distance,

determining support(S), as input of Algorithm HOU and

a maximal breach path with the largest breach distance,

determining breach(S), as input of Algorithm GAU, in

order to obtain their best possible performance.

Figs. 10(a) and 10(b) show the support improvement

and the improved pair ratio after executing EXACT(S),

NEW(S,2), NEW(S,4), HOU(S,1), and HOU(S,4). Ob-

serve that in both cases deploying two nodes by NEW

is shown to be even better than deploying four nodes by

HOU. Moreover, in the support improvement, deploying

only a single node by EXACT shows a similar performance

to deploying four nodes by HOU. Adding four nodes

by NEW exhibits the outstanding quality of deployment

of NEW in both of the support improvement and the

improved pair ratio. For breach improvement, we have

similar results. Fig. 10(c) shows that deploying two nodes

by NEW is better than deploying four nodes by GAU.

VI. DISCUSSIONS AND CONCLUSIONS

We proposed a new coverage measure, namely, the

support/breach of a wireless sensor network, considering

arbitrary maximal support/breach paths. This provides a

global way of evaluating a given network, not restricted

by a specific pair of points or a path connecting them. We

also posed the evaluation and deployment problem dealing

with this new measure, and presented efficient distributed

and centralized algorithms, supported by theoretical guar-

antees. Another contribution of our work is showing that

the minimum spanning tree is enough to find a maximal

support path between any pair of points in the domain.

Based on this new discovery, we proved the evaluation

and the deployment problems can be transformed into

the bottleneck spanning/Steiner tree problem. Bringing

known results from Computational Geometry and Opera-

tions Research, we introduced efficient algorithms in both

theoretical and practical viewpoints with formal proofs

and simulation results.

135

ACKNOWLEDGMENT

This research was supported by Ministry of Culture,

Sports and Tourism(MCST) and Korea Culture Content

Agency(KOCCA) in the Culture Technology(CT) Re-

search & Development Program 2009. Work by S.W. Bae

was supported by the Contents Convergence Software Re-

search Center funded by the GRRC Program of Gyeonggi

Province, South Korea.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Comput. Netw., vol. 38,
no. 4, pp. 393–422, 2002.

[2] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson,
M. Ruiz, and J. Lees, “Deploying a wireless sensor network on
an active volcano,” IEEE Internet Computing, vol. 10, no. 2, pp.
18–25, 2006.

[3] K. Chintalapudi, T. Fu, J. Paek, N. Kothari, S. Rangwala, J. Caf-
frey, R. Govindan, E. Johnson, and S. Masri, “Monitoring civil
structures with a wireless sensor network,” IEEE Internet Com-
puting, vol. 10, no. 2, pp. 26–34, 2006.

[4] L. Yu, N. Wang, and X. Meng, “Real-time forest fire detection with
wireless sensor networks,” Wireless Communications, Networking
and Mobile Computing, 2005. Proceedings. 2005 International
Conference on, vol. 2, pp. 1214–1217, Sept. 2005.

[5] C. Hartung, R. Han, C. Seielstad, and S. Holbrook, “Firewxnet:
a multi-tiered portable wireless system for monitoring weather
conditions in wildland fire environments,” in MobiSys ’06, 2006,
pp. 28–41.

[6] I. Onat and A. Miri, “An intrusion detection system for wireless
sensor networks,” Wireless And Mobile Computing, Networking
And Communications, 2005. (WiMob’2005), IEEE International
Conference on, vol. 3, pp. 253–259 Vol. 3, Aug. 2005.

[7] A. P. R. da Silva, M. H. T. Martins, B. P. S. Rocha, A. A. F.
Loureiro, L. B. Ruiz, and H. C. Wong, “Decentralized intrusion
detection in wireless sensor networks,” in Q2SWinet ’05, 2005, pp.
16–23.

[8] S. L. F Ye, G Zhong and L. Zhang, “Energy efcient robust sensing
coverage in large sensor networks,” UCLA, Tech. Rep., 2002.

[9] H. Gupta, S. R. Das, and Q. Gu, “Connected sensor cover: self-
organization of sensor networks for efficient query execution,” in
MobiHoc ’03, 2003, pp. 189–200.

[10] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill,
“Integrated coverage and connectivity configuration in wireless
sensor networks,” in SenSys ’03, 2003, pp. 28–39.

[11] G. Wang, G. Cao, and T. F. L. Porta, “Movement-assisted sensor
deployment,” IEEE Transactions on Mobile Computing, vol. 5,
no. 6, pp. 640–652, 2006.

[12] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. Srivastava,
“Coverage problems in wireless ad-hoc sensor networks,” INFO-
COM 2001, vol. 3, pp. 1380–1387 vol.3, 2001.

[13] S. Megerian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava,
“Worst and best-case coverage in sensor networks,” IEEE Trans-
actions on Mobile Computing, vol. 4, no. 1, pp. 84–92, 2005.

[14] Y.-T. Hou, T.-C. Lee, C.-M. Chen, and B. Jeng, “Node placement
for optimal coverage in sensor networks,” in Proceedings of the
IEEE International Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing, 2006.

[15] Y.-T. Hou, C.-M. Chen, and B. Jeng, “An optimal new-node
placement to enhance the coverage of wireless sensor networks,”
Wireless Networks, 2009.

[16] R.-H. Gau and Y.-Y. Peng, “A dual approach for the worst-case-
coverage deployment problem in ad-hoc wireless sensor networks,”
in Mobile Adhoc and Sensor Systems, 2006.

[17] A. Duttagupta, A. Bishnu, and I. Sengupta, “Optimisation problems
based on the maximal breach path measure for wireless sensor
network coverage,” in proceedings of ICDCIT, 2006, pp. 27–40.

[18] D. Du, L. Wang, and B. Xu, “The Euclidean bottleneck Steiner tree
and Steiner tree with minimum number of Steiner points,” in Proc.
of COCOON 2001, ser. LNCS, vol. 2108, 2001, pp. 509–518.

[19] J. L. Ganlet and J. S. Salowe, “Optimal and approximate bottleneck
Steiner trees,” Oper. Res. Lett., vol. 19, pp. 217–224, 1996.

[20] D. P. Huttenlocher, K. Kedem, and M. Shrir, “The upper envelope
of Voronoi surfaces and its applications,” Discrete Comput. Geom.,
vol. 9, pp. 267–291, 1993.

[21] S. W. Bae, C. Lee, and S. Choi, “On exact solutions to the
Euclidean bottleneck Steiner tree problem,” in Proc. 3rd Annu.
Workshop Algo. and Comput. (WALCOM), ser. LNCS, vol. 5431,
2009, pp. 105–116.

[22] X.-Y. Li, P.-J. Wan, and O. Frieder, “Coverage in wireless ad hoc
sensor networks,” IEEE Transactions on Computers, vol. 52, no. 6,
pp. 753–763, 2003.

[23] F. Aurenhammer and R. Klein, “Handbook of computational
geometry,” J.-R. Sack and J. Urrutia, Eds. Elsevier, 2000.

[24] J. Jaromczyk and G. Toussaint, “Relative neighborhood graphs and
their relatives,” Proceedings of the IEEE, vol. 80, no. 9, pp. 1502–
1517, Sep 1992.

[25] K. J. Supowit, “The relative neighborhood graph, with an appli-
cation to minimum spanning trees,” J. ACM, vol. 30, no. 3, pp.
428–448, 1983.

[26] F. P. Preparata and M. I. Shamos, Computational Geometry.
Springer-Verlag, 1985.

[27] B. Awerbuch, “Optimal distributed algorithms for minimum weight
spanning tree, counting, leader election, and related problems,” in
STOC ’87, 1987, pp. 230–240.

[28] C. Chiang, M. Sarrafzadeh, and C. Wong, “A powerful global
router: based on Steiner min-max trees,” in Proc. IEEE Int. Conf.
CAD, 1989, pp. 2–5.

[29] L. Wang and D.-Z. Du, “Approximations for a bottleneck Steiner
tree problem,” Algorithmica, vol. 32, pp. 554–561, 2002.

[30] L. Wang and Z. Li, “An approximation algorithm for a bottleneck
k-Steiner tree problem in the Euclidean plane,” Inform. Process.
Lett., vol. 81, pp. 151–156, 2002.

[31] M. Sarrafzadeh and C. Wong, “Bottleneck Steiner trees in the
plane,” IEEE Trans. Comput., vol. 41, no. 3, pp. 370–374, 1992.

[32] R. E. Tarjan, Data Structures and Network Algorithms. SIAM,
1983.

[33] M. Abellanas, F. Hurtado, C. Icking, R. Klein, E. Langetepe,
L. Ma, and V. Sacristan, “The farthest color Voronoi diagram
and related problems,” in Proc. 17th European Workshop Comput.
Geom., 2001, pp. 113–116.

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd ed. MIT Press, 2001.

136

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

