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10-fs-level synchronization  
of photocathode laser with  
RF-oscillator for ultrafast electron 
and X-ray sources
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Young Uk Jeong2 & Jungwon Kim1

Ultrafast electron-based coherent radiation sources, such as free-electron lasers (FELs), ultrafast 
electron diffraction (UED) and Thomson-scattering sources, are becoming more important sources in 
today’s ultrafast science. Photocathode laser is an indispensable common subsystem in these sources 
that generates ultrafast electron pulses. To fully exploit the potentials of these sources, especially 
for pump-probe experiments, it is important to achieve high-precision synchronization between the 
photocathode laser and radio-frequency (RF) sources that manipulate electron pulses. So far, most  
of precision laser-RF synchronization has been achieved by using specially designed low-noise  
Er-fibre lasers at telecommunication wavelength. Here we show a modular method that achieves  
long-term (>1 day) stable 10-fs-level synchronization between a commercial 79.33-MHz Ti:sapphire 
laser oscillator and an S-band (2.856-GHz) RF oscillator. This is an important first step toward a 
photocathode laser-based femtosecond RF timing and synchronization system that is suitable for 
various small- to mid-scale ultrafast X-ray and electron sources.

Direct visualization of ultrafast phenomena with atomic spatial resolution and femtosecond temporal reso-
lution is one of the key challenges pursued in today’s science. To achieve this goal, there have recently been 
intense research and development efforts for generating femtosecond X-ray pulses and electron pulses from 
FELs, UED and Thomson-scattering sources. The operation of these ultrafast X-ray/electron sources is based on 
well-coordinated interplay between ultrafast optical lasers and RF-driven electron accelerators. Ultrafast optical 
lasers, such as femtosecond Ti:sapphire mode-locked lasers, are used to generate electron pulses by photoelectric 
effect (as a photocathode laser) and to excite ultrafast phenomena in pump-probe experiments (as a pump laser). 
On the other hand, electron pulse shaping, manipulation, and acceleration are achieved by RF-based subsystems 
such as RF-photoguns and RF-driven accelerating cavities. Therefore, to fully exploit the potentials of these ultra-
fast electron/X-ray machines, especially for ultimate temporal resolutions in pump-probe experiments, precise 
synchronization between ultrafast optical lasers (solid-state mode-locked lasers in particular) and RF signals is 
first required.

In recent years, precise laser-RF synchronization with (sub-)femtosecond residual timing jitter and drift has 
been achieved by several different methods1,2. Most of previous demonstrations have been based on low-noise 
mode-locked Er-fibre lasers operating at telecommunication wavelength (~1550 nm). The use of low-noise 
mode-locked Er-fibre laser as the optical master oscillator (OMO) is an excellent way to achieve an effectively 
synchronized network for large-scale FEL facilities by distributing the OMO output to multiple remote locations 
by optical fibre links1,3. For small- to mid-scale FELs, UED or Thomson-scattering sources, however, operating 
a separate OMO with fibre distribution links for laser-RF synchronization is often costly and unnecessary. Since 
such facilities use a mode-locked solid-state (such as Nd:YAG4, Nd:YLF5, Yb:YAG6 and Ti:sapphire7–15) laser as 

1School of Mechanical and Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), 
Daejeon 34141, South Korea. 2Center for Quantum-Beam-based Radiation Research, Korea Atomic Energy Research 
Institute (KAERI), Daejeon 34057, South Korea. 3Department of Physics, Hannam University, Daejeon 34430, 
South Korea. 4University of Electronic Science and Technology of China, Chengdu 610054, China. 5Department 
of Electronics and Information Engineering, Korea University, Sejong 30019, South Korea. Correspondence and 
requests for materials should be addressed to J.K. (email: jungwon.kim@kaist.ac.kr)

Received: 01 August 2016

Accepted: 30 November 2016

Published: 09 January 2017

OPEN

mailto:jungwon.kim@kaist.ac.kr


www.nature.com/scientificreports/

2Scientific RepoRts | 7:39966 | DOI: 10.1038/srep39966

both a photocathode laser for electron pulse generation and a pump laser for pump-probe experiments, direct 
synchronization of the mode-locked solid-state laser to RF oscillator is highly desirable. Even in large-scale facil-
ities, achieving precise synchronization between mode-locked solid-state laser and RF oscillator is an important 
and useful technique as well, for example, for synchronization of seed lasers in seeded X-ray FELs3.

Among many different solid-state laser systems used for photocathode lasers, Ti:sapphire lasers are one of the 
most widely used laser systems8–15. There have been several prior works for tens-fs-precision synchronization 
between a Ti:sapphire laser oscillator and an RF oscillator in the past few years. Double-balanced microwave 
mixer-based synchronization methods have been extensively used7–12, which shows typical performance of ~80 fs  
residual jitter (10 Hz–100 kHz integration range) and ~90 fs drift over 15 minutes9. More recently, a much bet-
ter result of < 20 fs residual jitter (10 Hz–10 MHz integration range) was also demonstrated using mixer-based 
method12. Another recent work using a Mach-Zehnder modulator (MZM)-based RF synchronization addressed 
the long-term stability issue and showed an impressive performance of 4-fs long-term drift over 18 hours13,14. 
Note that the accurate short-term residual timing jitter spectrum was not measured in this work, and it is esti-
mated that sub-20-fs-level synchronization is possible15.

Here, as a first step toward photocathode laser-based RF timing and synchronization for small- to mid-scale 
ultrafast X-ray and electron sources, we propose a modular synchronization method between a Ti:sapphire laser 
oscillator and an RF oscillator. The full time-domain and frequency-domain characterization results show 3.9-fs 
(rms) short-term residual timing jitter (integrated from 10 Hz to 100 kHz offset frequency) and 12.5-fs (rms) 
long-term residual timing drift over 24 hours, when synchronizing a commercial 79.33-MHz Ti:sapphire photo-
cathode laser with an S-band (2.856-GHz in this work) RF oscillator.

Results
Characterization of timing jitter of a photocathode Ti:sapphire laser. Despite low quantum-lim-
ited timing jitter enabled by short pulsewidth and high pulse energy16, mode-locked Ti:sapphire lasers suffer from 
large timing jitter in the lower offset frequency range (e.g., < 10 kHz) due to technical noise sources such as acous-
tic noise and power supply noise in pump lasers. This large technical-noise-originated timing jitter often limits 
the achievable synchronization performances of Ti:sapphire mode-locked lasers. Thus, in order to design an 
optimized synchronization phase-locked loop (PLL), we measured the timing jitter power spectral density (PSD) 
of the Ti:sapphire photocathode laser used in this work (Coherent Vitara-T with 79.33-MHz repetition-rate). 
Figure 1 shows the measurement results. Curve a represents the measured timing jitter PSD of the Ti:sapphire 
laser. Note that the PSD for < 10 kHz offset frequency is measured by a commercial signal source analyzer (SSA), 
whereas the PSD for > 10 kHz offset frequency is measured by the balanced optical cross-correlator (BOC)-based 
method17 for higher measurement resolution (see Methods for more information). For comparison, we also show 
the timing jitter PSD of a typical stretched-pulse mode-locked Er-fibre laser18 (curve b). Despite similar jitter level 
in the > 10-kHz offset frequency range with 2.9-fs integrated timing jitter, the timing jitter PSD of the Ti:sapphire 
laser is more than 20 dB higher than that of the typical Er-fibre laser in the < 10-kHz offset frequency range. This 
measurement result suggests that, for high-quality laser-RF synchronization, effective suppression of large timing 
jitter in the 100 Hz–10 kHz range is required. This is difficult to achieve for many commercial Ti:sapphire lasers 
with a limited PZT bandwidth and tuning range. As will be shown later, we therefore employed a noise eater and 
an extra-cavity PZT controller with extended bandwidth to further suppress jitter in this acoustic frequency 
range.

Laser–RF synchronization methods. Figure 2a shows the overall schematic of the laser-RF synchroni-
zation system. The central sub-system for precise laser-RF synchronization in this work is the optoelectronic 
PLL with an 2.856-GHz RF oscillator (Keysight N5181B) as the master oscillator, a 79.33-MHz Ti:sapphire 

Figure 1. (a) Timing jitter PSD measurement result of the Ti:sapphire photocathode laser used in this work. (b) 
Timing jitter PSD measurement result of a typical stretched-pulse Er-fibre laser for comparison. (c) Integrated 
timing jitter (integration of curve a). (d) Integrated timing jitter (integration of curve b).
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photocathode laser oscillator as the slave oscillator, and an 800-nm fibre-loop optical-microwave phase detector 
(FLOM-PD)2 (Fig. 2b) as the phase detector.

By using a differential-biased fibre Sagnac-loop interferometer, the FLOM-PD enables timing detection 
between the optical pulse trains and the microwave zero-crossings with both sub-fs short-term resolution and 
few-fs long-term stability2. As a result, FLOM-PDs working at 1550-nm telecommunication wavelength have 
been widely used in photonic microwave/RF generation19, RF phase transfer over fibre links20,21, time synchroni-
zation fibre links22, and laser stabilisation23. More recently, a 800-nm-version FLOM-PD was demonstrated and 
successfully employed in a single-electron UED system for fs-precision timing diagnostics between a 6.2-GHz 
microwave signal and a 5-MHz Ti:sapphire laser24. In this work, 8 mW of input optical power and + 18 dBm 
of input RF power to the FLOM-PD result in laser-RF phase detection sensitivity of 1.7 V/rad at 2.856 GHz 
(0.03 mV/fs). The detection background noise floor is − 148 dBc/Hz, which corresponds to 3.1 fs (55.6-μ rad at 
2.856 GHz carrier) detection resolution for 1-MHz bandwidth. The phase error signal generated from the in-loop 
FLOM-PD is applied to two (slow and fast) PZT actuators in the Ti:sapphire laser, so that the Ti:sapphire laser is 
locked to the RF oscillator.

As is shown in Fig. 1, technical noise in the Ti:sapphire lasers in the 100 Hz–10 kHz limits the achievable 
synchronization performance. To address this problem, we employed two additional methods. First, as shown 
in ref. 25, we inserted a noise eater circuit in the control cable to the Ti:sapphire laser. As shown in curves a and 
b of Fig. 3, the noise eater could effectively suppress the timing jitter in the 1 kHz–10 kHz range. Second, we 
implemented an extra-cavity delay control (Fig. 2c) for more extended actuator range and broader PLL band-
width. To achieve both large tuning range and large bandwidth, four PZT-mounted mirrors are used. As a result, 
using a PZT with 8.8-μ m displacement, we could extend the total displacement range up to 8.8 μ m ×  8 =  70.4 μm 
with 8.5-kHz resonant frequency. This displacement is equivalent to > 230 fs peak-to-peak delay, which is suf-
ficient to suppress the timing jitter in the 100 Hz–1 kHz range as shown by curve c of Fig. 3. By employing the 
external-cavity delay control and noise eater, the residual phase noise in the acoustic frequency range is signifi-
cantly suppressed, which enables the residual rms jitter reduction from 20.3 fs to 2.9 fs.

Finally, to mitigate the amplitude-to-phase (AM-to-PM) conversion in FLOM-PD26 and also to enhance the 
laser power stability of the overall system, we added an extra-cavity RIN controller (Fig. 2d) using an acousto-optic 
modulator (AOM). By using the RIN controller, the laser output stability is improved from 0.18%rms fluctuation 
to 0.11%rms over 10,000 s, when measured with 2 samples/s and 1-Hz low-pass filter bandwidth.

To evaluate the overall laser-RF synchronization performance in the out-of-loop manner, we implemented 
an out-of-loop FLOM-PD and measured the residual timing jitter PSD and the timing drift by using spectrum 
analysers and data acquisition systems (see Methods for more information).

Measurement results. Figure 4 summarizes the short-term phase noise measurement results. Curves a 
and b are the absolute phase noise (scaled to 2.856 GHz carrier frequency) of the Ti:sapphire laser and the RF 
oscillator, respectively. By locking the Ti:sapphire laser to the RF oscillator with ~20 kHz PLL bandwidth, we can 
achieve the best absolute phase noise in optical pulse trains by combining the phase noise of the RF oscillator 
(inside the locking bandwidth) and the mode-locked laser (outside of the locking bandwidth). Curve c shows the 

Figure 2. (a) Overall schematic of the laser-RF synchronization system. RIN, relative intensity noise. THG, 
third-harmonic generation. (b) Schematic of the fibre-loop optical-microwave phase detector (FLOM-PD).  
(c) Schematic of the extra-cavity delay control method. PBS, polarization beam splitter. QWP, quarter wave 
plate. (d) Schematic of extra-cavity RIN controller. AOM, acousto optic modulator. PD, photodiode.
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measured laser-RF synchronization performance, i.e., the residual phase noise between the laser and the RF oscil-
lator, measured by the out-of-loop FLOM-PD. The integrated residual rms timing jitter is 3.9 fs (12.2 fs) when 
integrated from 10 Hz to 100 kHz (1 MHz) offset frequency. In terms of residual phase error at 2.856 GHz carrier 
frequency, the performance corresponds to 0.070 mrad (0.22 mrad) over 100 kHz (1 MHz) bandwidth. Note that 
the rms timing jitter is 14.1 fs when integrating from 1 Hz to 1 MHz Fourier frequency. When measured by the 
FLOM-PD, the phase noise outside the locking bandwidth follows the absolute phase noise of RF oscillator, and 
the integrated residual jitter is mostly limited by the high-frequency (> 100 kHz) phase noise of the RF oscillator 
itself (see curve f). Provided a better RF source with lower phase noise in the high offset frequency, the synchro-
nization performance can be improved as well.

Note that, by the PLL flywheel effect, the absolute timing jitter of optical pulse train is not limited by the phase 
noise of the RF oscillators and follows the free-running laser jitter outside the locking bandwidth. Curve d is the 
absolute phase noise spectrum of the RF oscillator-locked Ti:sapphire laser, measured by direct photodetection 
and signal source analyser. As expected, inside the locking bandwidth (~18 kHz), the absolute phase noise of the 
Ti:sapphire laser follows that of the RF oscillator (curve b). Note that, however, due to the limited measurement 
resolution of direct photodetection method at ~− 140 dBc/Hz, we could not properly measure the phase noise 
spectrum for > 20 kHz Fourier frequency. As the measured resonant peak around PLL locking bandwidth is very 
weak in curve d, the absolute rms timing jitter of the locked optical pulse train can be properly estimated by 
combining the absolute phase noise spectra of the locked (curve d) and free-running (curve a) Ti:sapphire lasers 
in the 10 Hz–20 kHz and 20 kHz–1 MHz offset frequency ranges, respectively. As a result, the absolute jitter of the 
optical pulse train is reduced from 6.14 ps to ~14.5 fs when integrated from 10 Hz to 1 MHz (curve g).

Figure 3. Residual phase noise (a) without noise eater and extra-cavity delay control; (b) with noise eater but 
without extra-cavity delay control; (c) with noise eater and extra-cavity delay control. Curves (d,e and f) are 
integrated timing jitter for curves (a,b and c), respectively.

Figure 4. Phase noise measurement results. (a) Absolute phase noise of the Ti:sapphire laser (scaled to 
2.856-GHz). (b) Absolute phase noise of the RF oscillator. (c) Residual phase noise between the laser and 
the RF oscillator measured by the out-of-loop FLOM-PD. (d) Absolute phase noise of the locked Ti:sapphire 
laser (measured by photodiode and signal source analyser). Note that the data for > 20 kHz is limited by the 
measurement noise floor. (e) Background noise floor of the FLOM-PD. (f) Integrated residual timing jitter of 
synchronization (integration of curve (c)). (g) Integrated absolute timing jitter of RF-locked optical pulse train 
(combining curve (d) in the 10 Hz–20 kHz and curve (a) in the 20 kHz–1 MHz).
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Figure 5 shows the long-term timing stability measurement results. The output from the out-of-loop 
FLOM-PD is low-pass-filtered with 1-Hz bandwidth and sampled at 2 samples/s. The measured rms timing drift 
is maintained at 12.5 fs (0.22 mrad at 2.856 GHz) over 24 hours (Fig. 5a), which corresponds to the relative fre-
quency instability of 9.8 ×  10−19 at 21,600 s in terms of overlapping Allan deviation (Fig. 5c). When further taking 
low-pass filtering to the measured drift data with 0.01 Hz bandwidth (yellow curve in Fig. 5a), the slower drift 
corresponds to 5.8 fs (rms) over 24 hours. This is also confirmed by the phase noise PSD (Fig. 5b) computed from 
the drift data, which shows that vast majority of the drift is concentrated in the 0.01–1 Hz offset frequency range. 
Despite the extra-cavity RIN control, RIN in this frequency range (0.01–1 Hz) is not well suppressed, and the 
amplitude-to-phase conversion in the FLOM-PD is the main reason for the timing drift in the 100-s time scale. 
Provided better RIN suppression, the drift can be further suppressed.

Discussion
In this paper, we demonstrate modular methods that achieve long-term-stable 10-fs-level synchronization 
between a commercial Ti:sapphire photocathode laser and a 2.856-GHz RF oscillator. This method may find 
many applications in ultrafast electron and X-ray sources, since precise laser-RF synchronization is a common 
requirement for such facilities. Also note that the synchronization techniques and noise analysis methods shown 
in this paper can be directly applied to other types of mode-locked solid-state lasers as well, for example, photo-
cathode lasers with different gain media (such as Nd:YAG, Nd:YLF, and Yb:YAG) or seed lasers for seeded XFELs.

Note that the demonstrated system is successfully installed and operating at the UED/THz-FEL Facility27,28 
of the Center for Quantum-Beam-based Radiation Research, Korea Atomic Energy Research Institute (KAERI). 
Currently, additional timing jitter/drift measurement and control is under way in the KAERI Facility. The tasks 
include the measurement and control of timing jitter and drift in regenerative amplifier29,30 and in free-space 
transfer31,32 from the regenerative amplifier to the RF photogun. The final laser-electron timing metrology meth-
ods at the UED target by using a deflecting RF cavity33 and spectral decoding of electron-beam-generated THz 
pulses on chirped laser pulses34 are also under way.

As a final note, the timing jitter number can be sometimes misleading to properly assess the laser-RF synchro-
nization performance. First, the jitter number is a function of integration bandwidth, and many previous works 
show jitter results with < 100 kHz integration bandwidth7,9,10. Second, the jitter number inversely scales with the 
used RF frequency. For example, with the same residual phase noise performance in synchronization, the inte-
grated jitter number will be reduced from 12.2 fs to 3.5 fs if the used RF frequency is increased from 2.856 GHz to 
10 GHz. Therefore, the residual phase noise level and integration bandwidth should be carefully examined when 
comparing results from different systems.

Methods
Timing jitter measurement of the Ti:sapphire laser. To measure the absolute timing jitter of the used 
free-running Ti:sapphire laser in the low (< 20 kHz) offset frequency, the laser output is detected with a 2-GHz 
Si p-i-n photodiode and bandpass-filtered at 1.43 GHz (18th harmonic of 79.33 MHz). The phase noise of the fil-
tered signal is measured by a signal source analyser (Rodhe & Schwarz, FSUP26). To measure the jitter in the high 

Figure 5. Long-term timing and phase drift measurement results. (a) Timing drift measurement data over 
24 hours with 1-Hz bandwidth (black) and 0.01-Hz bandwidth (yellow). (b) Residual phase noise PSD from 
0.1 mHz to 1 Hz. (c) Relative frequency instability in terms of overlapping Allan deviation.
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(> 10 kHz) offset frequency for free-running Ti:sapphire laser, we built a two-colour balanced optical cross-corre-
lator35. The Ti:sapphire laser is locked in repetition-rate with a lower-jitter 1550-nm solid-state laser with 800 Hz 
locking bandwidth, and the jitter spectrum outside the locking bandwidth is analysed.

800-nm FLOM-PD implementation. The FLOM-PD is implemented by the standard procedures shown 
in refs 2 and 24 using single-mode polarization-maintaining fibre and fibre-coupled devices working at 800 nm. It 
is sealed by Derlin case to minimize the impact of laboratory temperature changes. To maintain the temperature 
inside the case, the FLOM-PD is built on the water-cooled breadboard.

Residual phase noise, timing jitter and timing drift measurement methods. The output of the 
out-of-loop FLOM-PD is used to measure the residual phase noise, timing jitter and drift. An FFT spectrum 
analyser (Standford Research Systems, SR785) and an RF spectrum analyser (Keysight, E4411B) are used to meas-
ure the residual phase noise spectra in the 10 Hz–100 kHz and the 100 kHz–1 MHz offset frequency, respectively. 
For measuring residual timing drift, the output of the out-of-loop FLOM-PD is lowpass filtered at 1 Hz (Standford 
Research Systems, SR560) and sampled at 2 samples/s using the data acquisition board (National Instrument, 
USB-6211).
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