Modeling Long-Term Human Activeness Using Recurrent
Neural Networks for Biometric Data

Abstract

This paper explores the feasibility of modeling a person’s “activeness” using biometric data
retrieved from a fitness tracker. Currently, the notion of activeness of a user at a given
period time is defined to be a tuple of three types of biometric data: heart rate, consumed
calories, and the number of steps taken. Four recurrent neural network (RNN) architectures
are proposed to investigate the performance on predicting the activeness of the user under
various length-related hyper-parameter settings. The dataset used in this study consists of
several months of biometric time series data gathered by seven users independently. The
experimental results show that forecasting the users’ activeness is indeed feasible under
suitable lengths of input and output sequences.

1. Introduction

With the advances in technology and ever-busy schedules, people tend to lack physical
activity, and have increased level of stress. They are hence at a greater risk of suffering
from the so-called “modern diseases” such as cardiovascular disease, diabetes, metabolic
disorders, and stroke, (Capon, 2012). Attaining a healthy lifestyle, which incorporates a
balanced diet and a plenty of exercise, is considered to be key in preventing such diseases.

Recently, many health-care-related devices and services have emerged to aid users in
monitoring and improving their physical wellness (Section 2.1). With wearable devices,
such as fitness trackers, it has been possible to continuously observe the biometric data
produced by a user, and notify the user when he/she has been physically inactive for a
period of time. Many services also provide users with general tips on a healthy lifestyle,
and motivation to be physically more active during the day, for example, by letting them
know how many steps remain to reach the weekly average, or by offering them virtual
“badges” to commemorate their physical achievements which can be boasted over a social
media platform.

While some of these approaches have been considered to be effective by their users
(Findley, 2015), this paper suggests that their usefulness can be further improved if a
long-term predictive model of the user’s “activeness” is incorporated into the health-care
services. For example, an application can project the user’s activeness for some period of
time in the future, and inform him/her of the remaining days before the weight loss goal
is (or not) reached. In addition, it may take a more proactive measure, depending on the
user’s context, and preemptively recommend possible exercises that he/she could perform
when the activeness is predicted to be below a threshold.

Many research efforts have been made to accurately model and predict users’ heart rates
(Cheng et al., 2008; Austin et al., 2013; Sumida et al., 2013; Lipton et al., 2016) and energy
expenditures (Keytel et al., 2005; Pande et al., 2013; Bouarfa et al., 2014), often as a means
to recognize their simple activities (e.g. walk, run, lying down, etc.) (Sumida et al., 2013) or
to identify any medically significant event such as heart failure (Austin et al., 2013; Zheng
et al., 2014; Lipton et al., 2016).



As the task of activity recognition or detection of heart failure often involves classifying
a relatively short span of time, most existing works utilize machine learning algorithms such
as feed-forward neural networks (FFNNs), support vector machines (SVMs), and random
forests (RFs) that are known to be effective in learning short-term temporal dependencies
among time series data. Furthermore, these works often employ wearable sensors that are
specifically designed for a certain type of biometric data, and focus on building an accurate
model for the type of data and the task at hand.

In this paper, we slightly shift the perspective, and aim to investigate the feasibility
of modeling a user’s long-term activeness which could, to some extent, represent his/her
lifestyle pattern. Currently, our notion of activeness for a given period of time is tracked as
a tuple of heart rate, consumed calories, and the number of steps taken by the user.

Instead of utilizing separate wearable sensors for each type of data, a fitness tracker
is used to continuously record the three types of biometric data of the user for several
months. Along with the three classification models (FFNN, SVM, and RF), we experi-
ment with recurrent neural network (RNN) architectures which are considered to be well
suited for learning long-term dependencies among temporal data. While there are many
studies of RNN architectures being applied to various sequential modeling tasks—e.g. the
stock market (Yaya et al., 2013), energy consumption (Marvugliaa and Messineo, 2012),
genetic expression (Noman et al., 2013), speech (Eyben et al., 2013), and language model-
ing (Mikolov et al., 2010)—few works exists in the domain of wellness modeling. Therefore,
this paper explores how the performance of activeness prediction is varied by changing (1)
a set of length-related parameters of the training process, and (2) RNN architectures. Ex-
perimental results show that the model can learn and predict the user-specific activeness
patterns effectively.

The rest of the paper is organized as follows. Section 2 explores the background for this
study, while Section 3 describes how the time series datasets are gathered. We illustrate
the proposed approach in Section 4, and the experimental results, in Section 5. Finally, the
paper is concluded in Section 6 with some directions for future works.

2. Background

This section briefly introduces some of the commercial devices and services that are proposed
to measure and improve a user’s “wellness” (Section 2.1), along with some academic research
that aim to model biometric data for various tasks (Section 2.2). Moreover, existing works
that involve time series modeling using RNN architectures are presented in Section 2.3.

2.1 Devices and services for wellness improvement

According to the Centers for Disease Control and Prevention, USA, 70.7% of American
adults over the age of 20 are overweight, and 37.9% of the same group are obese as of 2013-
2014 (Centers for Disease Control and Prevention, 2016). As a need for a “fitness revolution”
is greater than ever before, fitness devices and services are flooding the marketplace.

Since 2006, the footwear company Nike has introduced the “Nike+ Sports Kit” that
records the distance and pace of a walk/run, and transmits the data to the user’s smart
device. A series of all-around activity trackers have been independently manufactured
by Fitbit and Jawbone. These fitness trackers measure the number of steps taken and



log the heart rates of the wearer. Based on these measurements (and other biometric
information), the consumed calories and the traveled distance are calculated. This study
utilizes Jawbone’s “UP3” model and Fitbit’s “Charge HR” model to continuously record
users’ heart rate, steps, and calories.

Several fitness centers and health-care providers have devised wellness “scores” or “in-
dices” that aim to quantify the physical fitness of an individual. For example, Life Time
Fitness proposes the “myHealthScore” (Life Time Fitness) that is determined by six in-
dicators: blood pressure, triglycerides, total cholesterol to high-density lipoprotein ratio,
glucose, body fat, and tobacco use.

Dacadoo introduces the “Health Score” (Dacadoo) which ranges from 1 to 1000, and is
calculated from biometric values (gender, age, weight, waist circumference, blood pressure,
etc.), emotional values (acquired from self-assessment questionnaires), and lifestyle values
(exercise, nutrition, steps, sleep, etc.). Linking with the aforementioned fitness trackers,
the Health Score continuously changes throughout the day as the user performs activities
such as walking, running, sleeping, etc.

The “Wellness Score” (8 Weeks to Wellness) offered by 8 Weeks to Wellness ranges from
1 to 100, and is calculated using various biomarkers including: body mass index, posture
number, core strength and flexibility, body fat percentage, and heart rate.

While these measures claim to represent an individual’s state of wellness/health, how
the corresponding factors are combined to produce a single value is not known publicly. Fur-
thermore, there is not yet a general consensus even among doctors and medical researchers
about what constitutes wellness and how they should be measured. For example, several
key dimensions can exist to define wellness—physical, psychological/emotional, social, in-
tellectual, spiritual, occupational, environmental, cultural, economic, and climate—and for
each dimension, different researchers may view certain factors more important than other
factors, and thus propose different scoring functions (Miller and Foster, 2010).

In addition, the holistic perspective of calculating a single wellness score is not fully
grounded on medical examination; after all, the involved factors vary in both characteristics
and units.

For these reasons, we specify that this study targets to model a person’s physical “ac-
tiveness”, which is kept as a series of tuples of heart rate, consumed calories, and the number
of steps, and avoid using the more general term, “wellness”.

2.2 Modeling biometric data

While the term “biometric data” in the context of security, generally refers to measurable
physical characteristics that help in authenticating an individual (e.g. fingerprint, retina,
vein, etc.), this study refers to its more general meaning—the measurable biological quan-
tities of an individual that, unlike the former kind, may change over time. This paper
targets three types of biometric data—heart rate, consumed calories, and the number of
steps—that reflect how physically active a person is for a given period of time.

The task of modeling human heart rates and energy expenditures (EE) has been widely
studied across many disciplines such as sports science, medicine, electrical engineering,
and computer science. Keytel et al. (2005) developed a prediction equation for EE from
the heart rate by monitoring 115 regularly exercising individuals aged 18 to 45 years old.



The participants performed exercises on a treadmill, and their heart rate and respiratory
exchange ratio data were collected. A mixed model analysis identified gender, heart rate,
weight, maximal oxygen uptake, and age as important factors in estimating EE.

Cheng et al. (2008) proposed a non-linear state-space control system that modeled the
heart rate of a person walking on a treadmill, and later utilized the model to build a
computer-controlled treadmill system for regulating the heart rate during exercise.

Sumida et al. (2013) introduced an approach that predicted the heart rate of a walking
user, utilizing the accelerometer and GPS data obtained from the user’s smartphone. The
authors used the raw data from the smartphones to calculate the oxygen uptake, which was
then fed as a form of input data to an artificial FFNN.

Similarly, Pande et al. (2013) estimated EE for ambulatory activities using accelerometer
and barometer sensors in a smartphone. Their model, which also used an artificial FFNN,
outperformed calorimetry equations and EE values obtained from fitness trackers.

Bouarfa et al. (2014) targeted a slightly more general setting of estimating EE under
“free-living” conditions using a single ear-worn accelerometer. The regression analysis was
used to predict EE values while linear discriminant and nearest neighbor classifiers were
employed to classify a window of accelerometer values into one of ten activities such as lying
down, standing, computer work, vacuuming, etc. The regression model correlated well with
the medical golden standard, the doubly labeled water test.

In addition to the general task of modeling heart rate and EE, some works specifically
focus on medical problems such as heart failure detection. For example, Austin et al.
(2013) compared the classification performance of several machine learning algorithms such
as logistic regression, bagging, RF, and SVM, when applied to classifying patients with
heart failure (HF) into one of two mutually exclusive subtypes: HF with preserved ejection
fraction and HF with reduced ejection fraction. However, in their study, a set of detailed
clinical data of patients was used as opposed to the time-series data.

More relevantly, Zheng et al. (2014) proposed a multi-channel deep convolutional neural
network (MC-DCNN) for a time-series classification. Their model was applied to a set of
electrocardiograph data which had been recorded from 15 patients suffering from severe
congestive heart failure. The task was to classify a 2D time-series into one of four types
of heartbeats. In their experiments, the proposed MC-DCNN performed better than the
nearest neighbor approaches and FFNNs.

Our work is similar to the above studies in that we aim to model a person’s heart rate,
EE (consumed calories), and number of steps. However, while the above works generally
consider time-series data with lengths from a few seconds to a dozen minutes, this work aims
to discover a long-term temporal pattern by considering much longer periods of temporal
data, ranging from a dozen minutes to days.

Our intuition is that, just as patients suffering from heart disease share a set of distinctive
patterns in their electrocardiograph data, a cluster of people, for example, “morning peo-
ple”, may share similar trends in their biometric values when observed for a long period of
time. Of course, the specific (short-term) details can depend on individuals and their daily
schedules. Surprisingly, our experimental results (Section 5) show that an individually-
tailored recurrent neural network model—with no additional information other than the
biometric data—can predict such details quite closely.



2.3 Recurrent neural networks

Recurrent neural networks (RNN) represent a class of artificial neural networks where some
connections between nodes form a directed cycle (Fig. 1). In essence, RNNs carry out
the same task for every element of an input sequence, producing an output that is both
dependent on the current input and the results from previous computations. Such recurrent
connections enable RNNs to capture information about what has been calculated so far,
thus exhibiting a dynamic temporal behavior.

Figure 1: General structure of RNNs.

The recurrent behavior of RNNs has made them an effective solution for various tasks
involving sequential data modeling such as for the stock market (Yaya et al., 2013), energy
consumption (Marvugliaa and Messineo, 2012), genetic expression (Noman et al., 2013),
speech (Eyben et al., 2013), and language modeling (Mikolov et al., 2010).

In the medical domain, RNNs are often used to model physiological signals such as
electrocardiograms (Silipo and Marchesi, 1998; Fukuda et al., 2001; ["Jbeyli, 2009). Recently,
Lipton et al. (2016) applied long short-term memory (LSTM) (Hochreiter and Schmidhuber,
1997) RNNSs to the task of multilabel classification of multivariate clinical time series data.
While the task was to predict the probability distribution of 128 labels (e.g. diabetes,
asthma, scoliosis, neoplasm, etc.), the authors improved the performance of the model via
auxiliary output training which utilized the remaining 301 diagnostic labels.

To the best of our knowledge, modeling a person’s long-term “activeness” using RNN
architectures has not been studied previously. This work also utilizes the LSTM cells
to model the biometric data effectively, exploring the different layouts of networks and
parameter settings.

We briefly mention that LSTM cells are a variation on the architecture of the vanilla
RNNs, and designed to overcome the vanishing/exploding gradient problem often faced by
the neural network family (Bengio et al., 1994). Greff et al. (2015) conducted a detailed
empirical evaluation on the LSTM family.

3. Data Description

Our experiments utilize three types of biometric time series data, namely, heart rate, steps,
and consumed calories. Seven graduate students between the ages of 23 to 33 years old
participated their biometric data. It is noted that as the participants were all graduate
students, the gathered data could be biased towards the group as less active as opposed to
a more active group of “athletes” or “outdoor service employees”.

However, a simple survey was conducted and revealed that the participants’ lifestyle
patterns were quite different to one another. For example, three participants described
themselves as regularly exercising, while differing in the type and duration of the workouts.
Also, the participants’ bedtimes and wake-up times were not congruent as well. An extreme



case was a participant who operated on a three-day cycle, where he stays up for two days
and sleeps for the next entire day. Therefore, we designed experiments to observe if such
lifestyles patterns of participants could be effectively learned by our models.

A Jawbone’s UP3 fitness tracker was worn by each participant, and used to gather the
three types of the biometric data. The device is equipped with a tri-axis accelerometer
that detects physical movements, and a bio-impedance sensor that measures heart rate,
respiration, and galvanic skin response. While the exact internal logic for the tracker is not
known publicly, we believe that the consumed calories are calculated via its own energy
expenditure equation that considers the wearer’s age, body mass index, number of steps,
and heart rate.

Recently, some criticisms have been made on the accuracy of the estimated calories
(Feltman, 2014), pointing out that various fitness trackers compute different amount of
burned calories when worn by the same user simultaneously. Nevertheless, we believe that
the exact value of consumed calories was not so critical to the experiments as the main
objective was to observe the long-term trend.

We also note that the tracker computes the heart rate in the form of beats per minute
(BPM), but does not yet provide an application programming interface (API) for accessing
every value of the recorded time series data (contrary to what was stated in the specifica-
tion). Thus, we reverse-engineered the web application, and retrieved the individual’s heart
rates. As the heart rate data in BPM were recorded at an irregular interval (ranging from
a few seconds to a few minutes), a linear interpolation was conducted to prepare the data
in one-minute-intervals.

As for the consumed calories and number of steps, when an activity of an arbitrary
duration was performed, the total sum of each type of data was recorded for that activity.
Therefore, for each time stamp in the duration of the activity, we assigned the mean value
of each type of data.

After interpolating each type of the time series data, the values underwent a min-max
normalization in order to be scaled from 0 to 1. The minimum and maximum values for
each type of data were selected by consulting relevant medical documents.

The statistics of the gathered data are presented in Table 1. In order to compare the
lifestyle patterns of different users, we prepared the time series data to begin at the same
time stamp. The number of samples represents the number of minutes in the recorded
duration.

Table 1: Statistics of the Gathered Time Series Data for the Seven Users

User Start Time End Time Duration (Months) | # of Samples
AK 2016-05-04 14:21:00 6.85 296,062
HJ 2015-11-29 02:32:00 1.60 69,273
JM 2015-11-19 19:05:00 1.29 55,866
KJ | 2015-10-12 00:00:00 | 2016-05-02 23:57:00 6.80 293,758
YJ 2016-05-03 18:00:00 6.83 294,841
YS 2016-01-14 10:11:00 3.15 135,972
M 2016-04-15 06:53:00 6.21 268,254




4. Method

In this work, we are interested predicting the activeness of a person based solely on his/her
previous data. As mentioned in Section 2.3, such task of temporal sequence modeling can be
effectively conducted using RNN architectures. This study explores four RNN architectures
described in Section 4.2.

4.1 Task settings

Before looking at the architectures, it is necessary to identify the hyper-parameters for
training and evaluating an RNN model for activeness prediction, as they directly impact
the performance of the model. Figure 2 illustrates the hyper-parameters for (a) training
and (b) testing a network (prediction).

———————————— Training length -----—-------—»

<—Input_,—*<«Output,_, — _,, <+ Input_,—><+Output_, —
<+—Input,_,—> <+«—Output,_, — <+—Input,_,— +«—Output,_, —

(@) Training (b) Prediction
Figure 2: Length-related hyper-parameters for (a) training and (b) testing.

e Training length specifies the total length of the recorded time series data that are
used to train the model.

e Input length corresponds to the number of time steps that the network takes as an
input. When modeling a single type of biometric data, a memory cell receives a one-
dimensional vector at a time step ¢, and updates its cell state using the current input
vector x; and the previous cell state ¢;_1. Therefore, the input length n determines
how many time steps are processed internally by the memory cell before producing
an output vector o; at t = n. In a typical case of language modeling, the input length
is often set to the average (or maximum) sentence length. However, in our scenario
of modeling activeness, it is not so apparent as to how long should the time steps be
for each user. Hence, this study explores the variations on this parameter.

e Output length refers to the length of the time series data that the model is required
to predict for a given input data.

e Prediction length represents the total length of the time series data that we want
to predict.

We note that other network-based hyper-parameters such as regularization methods,
size of hidden layers, and choices in loss and activation functions can also affect the net-
work’s performance. This study, however, focuses on exploring the impact of aforementioned
length-related parameters on the activeness prediction.

4.2 Network architectures

As there are an infinite number of ways in structuring a neural network model, building
an effective network architecture requires much practice and patience. In this study, we
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Figure 3: Four proposed RNN architectures.

experiment with the following four RNN architectures—univariate many-to-one (Uni-MO),
univariate many-to-many (Uni-MM), multivariate many-to-one (Multi-MO), and multivari-
ate many-to-many (Multi-MM)—depicted in Figure 3.

Architectures (a) and (c) are each formulated in the many-to-one fashion where the
output is computed only at the last time step of an input data. Notice that these two
structures offer more flexibility in choosing the output length than many-to-many approach
in the sense that the output length can be different to the input length. In many-to-many
approach, an output vector is computed at each time step, and is in the same dimension as
the input vector. A univariate architecture models each type of biometric data separately,
while a multivariate architecture considers the three types of data together in the same
model.

5. Experiments
5.1 Choosing an RNN architecture

While separately conducting all experiments on each of the four RNN architectures would
be ideal, due to time and resource constraints, we select the best performing one to be the
specimen for the subsequent experiments. We individually train each RNN architecture
using the first one month of the time series data, and generate the time series data for the
next week.

The effectiveness of each architecture is evaluated by grid searching the network-based
hyper-parameters such as the number of hidden units, dropout rate, and choice of activation
function. We found that LSTM cells with 64 hidden units were best for the univariate
architectures in general, while the memory cells with 192 hidden units were effective for



the multivariate ones. Each architecture was trained to minimize the mean squared error
(MSE) using a recently proposed optimization method called Adam (Kingma and Ba, 2014).
We also note that a dropout rate of 0.2 was used in every layer; and rectified linear unit was
chosen to be the non-linear activation function for the fully-connected (dense) layers.

The top-5 results were a multivariate many-to-one (Multi-MO) architecture with 192
hidden units (M SE = 0.00140), followed by three univariate many-to-one (Uni-MO) archi-
tectures with 64 (0.00152), 128 (0.00156), and 256 (0.00177) hidden units, and a univariate
many-to-many (Uni-MM) architecture with 128 hidden units (0.00202).

However, as we did not exhaustively search the network-based hyper-parameter settings,
we cannot yet to claim the superiority of one architecture over another. Nevertheless,
following the results, we selected the Multi-MO model with 192 hidden units to be the
specimen model for all subsequent experiments.

5.2 Effect of varying length parameters

Four experiments were conducted to evaluate the effect of the four length-related param-
eters on the performance of activeness prediction. We specify that when one parameter
was varied, the other three parameters were fixed as follows: training length = 1 month,
input length = 15 mins, output length = 15 mins, and prediction length = 7 days.

Table 2 shows the average MSEs for each experiment where Min, 1Q, Median, 3Q, and
Max represent the minimum, first quartile, median, third quartile, and maximum MSE
values respectively. We can observe that the prediction error is generally reduced when
more training data are used to predict a shorter period of time using shorter input and
output time steps. Interestingly, we note that the minimum MSE for the experiment of
one-day prediction is particularly high; and this was due to one person who had been ill
during the day, i.e., the day that was selected to evaluate the model was quite dissimilar
from the person’s “typical” day.

Table 2: Average MSEs when Varying the Length Parameters

Experiment Variation Min 1Q Median 3Q Max
1 Day 0.00774 | 0.01242 | 0.01365 | 0.01410 | 0.01638
1 Week 0.00160 | 0.00176 | 0.00252 | 0.00303 | 0.00606
1 Month | 0.00086 | 0.00111 | 0.00140 | 0.00158 | 0.00203
Prediction length 1 Day 0.00043 | 0.00081 | 0.00106 | 0.00176 | 0.00524
(# of users: 5) 2 Weeks | 0.00026 | 0.00084 | 0.00134 | 0.00224 | 0.04365
1 Month | 0.00045 | 0.00106 | 0.00152 | 0.00224 | 0.05310
Input length 30 Mins | 0.00044 | 0.00078 | 0.00131 | 0.00226 | 0.00523
& output length 1 Hour 0.00043 | 0.00151 | 0.00220 | 0.00300 | 0.01734
(# of users: 7) 6 Hour 0.00086 | 0.00199 | 0.00297 | 0.00420 | 0.01728
20 Mins | 0.00030 | 0.00057 | 0.00088 | 0.00139 | 0.00223
30 Mins | 0.00027 | 0.00085 | 0.00134 | 0.00200 | 0.01145
1 Hour 0.00038 | 0.00106 | 0.00161 | 0.00293 | 0.01199
20 Mins | 0.00024 | 0.00058 | 0.00110 | 0.00136 | 0.00460
30 Mins | 0.00034 | 0.00104 | 0.00168 | 0.00235 | 0.00758
1 Hour 0.00038 | 0.00148 | 0.00220 | 0.00341 | 0.01455

Training length
(# of users: 7)

Input length
(# of users: 7)

Output length
(# of users: 7)




From an application standpoint, it would beneficial to find the parameter setting that
would provide (approximately) the longest possible length of prediction with an acceptable
mean error rates. This would, of course, be dependent upon individual users, and require
efficient hyper-parameter tuning methods (Bergstra and Bengio, 2012; Young et al., 2015).

5.3 Closed-loop predictions

So far, the RNN model predicted an output sequence when the true input sequence—i.e.,
the sequence of a user’s actual activeness data—was provided. This section illustrates how
the predicted results are affected when the previously predicted sequences are fed back into
the model to conduct a closed-loop prediction.

Figure 4 illustrates the closed-loop predictions of heart rates, which are drawn in red,
for the next (a) 24 hours and (b) 3 hours. Note that the blue lines represent the predicted
values while the green lines show the actual activeness values of the user. During the closed-
loop predictions, we observe that the network exhibits a typical limit cycling behavior of
dynamical systems where its oscillating trajectory is converging toward a fixed point.
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Figure 4: Closed-loop predictions of heart rates for the next (a) 24 hours and (b) 3 hours.

As the output length in this model is 15 minutes, we can see that the model approximates
the real data by sequences of 15-minute data. So far, the longest length of an output vector
considered in this experiment is 6 hours. It is interesting to note that the MSE rates do not
increase linearly with the length of output vector, and more in-depth experiments should
be conducted to closely examine the trade-off between the output length and MSE.

6. Conclusion

In this work, we explored the feasibility of modeling a user’s activeness using biometric data
retrieved from fitness trackers. We proposed four RNN architectures, and later selected
one (Multi-MM) to further investigate the performance under various length parameter
settings. We are currently developing a health-care application that aims to increase a
user’s activeness through proactively recommending (and learning) activities that the user
likes to perform, and have prominent effects on his/her activeness.
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