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Abstract: Global warming and unsustainable land development are known to be major 
triggers promoting geotechnical hazards such as farmland and coastal erosion, yellow 
dust, and desertification. New forestry practices, such as encouraging forests in dry 
land areas, are simple measures that can remove more carbon from the atmosphere and 
prevent the spread of deserts. Numerous global agencies and companies are thus 
contributing to anti-desertification movements. However, tree planting alone is not an 
ideal solution given that it takes approximately 2~3 years for stabilization. It is thus 
imperative to develop innovative technology that can promote vegetation growth and 
improve soil erosion resistance. In this study, a unique soil treatment and 
anti-desertification method is developed using environmentally friendly biogenic 
biopolymers. Biopolymers can effectively strengthen soil and improve durability. In 
particular, anionic-hydrophilic biopolymers delay water evaporation, thereby retaining 
a higher soil moisture condition compared to untreated soil. For technical verification, 
series of laboratory investigations (i.e. water erosion test, seed germination and 
growth,) were performed by applying target biopolymers to soil specimens. The results 
indicate that environmentally-friendly biopolymer treatment is highly effective in 
improving both vegetation growth (3 times faster) and soil erosion resistance (less than 
2%), compared to a untreated condition. 
 
INTRODUCTION 
 

Annually, 12 million hectares of the Earth’s landmass (the same size as the state of 
Mississippi) turn into new deserts (United Nations Environment Programme. 2006). 
Currently, more than 30% of the Earth’s dry land is affected by desertification, and this 
trend, transforming land into deserts, is expanding into semiarid regions (Fig. 1). From 
the perspective of geoscience and geotechnical engineering, the critical factors 
affecting land erosion and desertification are limited precipitation and the removal of 
soil particles (especially fines < 0.002 mm) (Schlesinger et al. 1990).  
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The mechanism of soil erosion is generally known to be an interaction between the 
drag force of fluids (e.g., wind or water) and soil shear resistance (Morgan 2005). 
Although water erosion is the largest source of global soil erosion, wind erosion is the 
major geomorphological force in desertified regions (Blanco and Lal 2008). Airborne 
particles produced by wind erosion consist of high amounts of clay minerals (Gillette 
and Walker 1977), and most global aeolian dust originates from North Africa (58%), 
the Middle East (12%), and West China (11%), regions which directly coincide with 
desertified areas (Tanaka and Chiba 2006; UNEP/RIVM 2004). Nonetheless, water 
erosion is another serious problem, because the immediate intensity of soil erosion 
produced by water is reported to be higher and more critical than wind erosion in areas 
that are undergoing desertification (e.g., grasslands in semi-arid regions) (Breshears et 
al. 2003). Moreover, the total amount of erosion produced by water is reported to be 
two times larger than the amount affected by wind erosion worldwide (Lal 1995). 
Therefore, not only control of aeolian dust, but also enhancement of soil resistance to 
water erosion (i.e., undrained shear strength) should be considered in desertification 
prevention approaches. 

 

 
 

FIG. 1.  World map of soil erosion and desertification (after UNEP 2006) 
 
During the last half century the Chinese government has engaged in a large-scale 

(i.e., 2.2 billion ha) afforestation program called the “Three North’s Forest Shelterbelt”. 
However, the costly effort has yielded little success, while concurrent expansion of the 
deserts in China has occurred, with inexorable growth ratios of 1,560 km2/yr 
(1950-1975), 2,100 km2/yr (1976-1988), and 3,600 km2/yr after 1998 (Wang et al. 
2008; Wang et al. 2010). One of the biggest reasons for this failure is known to be that 
previous massive planting efforts were performed without addressing the recovery of 
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soil cohesion and moisture. An individual tree planted in cohesionless arid or semiarid 
soil can disturb the flow of air, creating turbulence and localized wind erosion on the 
ground around the tree trunk. As a result, trees roots were exposed and withered under 
the strong sunlight and limited moisture (Cao 2008). The failure of previous attempts 
provides a lesson about the importance of both inter-particle cohesion and soil moisture 
retention for soil revitalization in afforestation projects in arid and semi-arid regions. 

In geotechnical engineering aspects to recover the soil strength and erosion 
resistance by enhancing soil cohesion is therefore very important as a countermeasure 
to desertification. However, in practical terms, it is impossible to supplement the sands 
of all arid or semi-arid regions with cohesive fine soils. As an alternative, this study 
presents a new concept to enrich soil cohesion using biological materials (i.e., 
biopolymers) 

 
EXPERIMENTAL PROGRAM 

 
Biopolymers and soil 
Beta-glucan biopolymer 

Beta-1,3/1,6-glucan is a biopolymer of D-glucose monomers linked by glycosidic 
bonds (Bacic et al. 2009). Beta-glucan has various formations in nature such as 
cellulose in plants, bran of cereal grains, and cell walls of yeast, fungi, mushrooms, and 
bacteria.  

A modified liquid type β-1,3/1,6-glucan biopolymer product (PolycanTM; Glucan 
Corp., Busan, Korea) produced by Aureobasidium pullulans SM-2001 is used in this 
study  (Shin et al. 2007). The β-1,3/1,6-glucan content of PolycanTM is 8.9 g/L. Thus, 
previous study attempted the optimal β-1,3/1,6-glucan content to the mass of soil as 5 
g/kg, when 1 kg of dried soil is mixed with 600 g (i.e. 60 % water content) of liquid 
phase pure PolycanTM (Chang and Cho 2012). 

 
Xanthan gum biopolymer 

Xanthan gum is an anionic polysaccharide composed of D-glucuronic acid, 
D-mannose, pyruvylated mannose, 6-O-acetyl D-mannose, and a 1,4-linked glucan 
(Cadmus et al. 1982). The best well known characteristic of Xanthan gum is pseudo 
plasticity (viscosity degradation depending on increase of shear rate). Moreover, 
Xanthan gum shows high stability under a wide range of temperatures and pH 
(Davidson 1980). Recently, xanthan gum biopolymer is adopted to improve the 
inter-particle bonding of soils through direct hydrogen bonding formation with clayey 
particles (Chang et al. 2015). 

 
Korean residual soil 

Korean residual soil (i.e. hwangtoh) is used in this study. Hwangtoh has a mineral 
constitution (by mass) as: quartz (8.4%), kaolinite (45.8%), halloysite (22.7%), illite 
(14.8), and goethite (8.3%). The natural soil was oven dried at 110°C (ASTM 2007), 
and was then grinded (grain size < 75 μm) for testing. Korean residual soil has been 
actively adopted in several previous studies on biopolymer soil treatment (Chang and 
Cho 2012; Chang and Cho 2014; Chang et al. 2015) 
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necessary for deeper and more theoretical understandings on the functional benefits of 
biopolymer treatment to prevent soil erosion and desertification 
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