Study of S-CO₂ power cycle with air-cooled system for desert climate ## Seungjoon Baik¹, Seongmin Son¹, Jin Young Heo¹, Jeong Ik Lee^{1*} ¹Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea Corresponding Address bsj227@kaist.ac.kr, ssm9725@kaist.ac.kr, jyh9090@kaist.ac.kr, jeongiklee@kaist.ac.kr ## **Abstract** The supercritical carbon dioxide (S-CO₂) Brayton cycle has been receiving worldwide attention due to the high thermal efficiency and simple system configuration. Differ from the conventional steam Rankine cycle, the S-CO₂ Brayton cycle operates without phase change such as condensation process. Therefore air-cooled system can be considered as waste heat rejecting system. Furthermore a power plant can overcome site limitation with air-cooled system, so KAIST S-CO₂ research team suggested an air-cooled S-CO₂ power cycle for desert climate. A combined cycle gas turbine (CCGT) power plant, which utilizes waste heat of gas turbine for bottoming cycle, was re-evaluated with various S-CO₂ bottoming cycles. Compare to the reference steam Rankine cycle, the S-CO₂ power cycle showed better performance as a bottoming cycle. In this study, the comparison of various S-CO₂ cycles for waste heat recovery system and the applicability of S-CO₂ power cycle with air-cooled system for desert climate are covered. ## **KEYWORDS** Supercritical CO₂, S-CO₂ Brayton Cycle, Power generation, Desert climate, water free power plant.