International Journal of

Distributed

Research Article Sensor Networks

International Journal of Distributed
Sensor Networks

2016, Vol. 12(9)

© The Author(s) 2016

DOI: 10.1177/1550147716665514
ijdsn.sagepub.com

®SAGE

Quality of experience provisioned
mobile streaming protocol for the
hyper-connected Internet of Things
devices over the heterogeneous
wireless access networks

Min Ho Park'+%, Jun Kyun Choi' and JungYul Choi®

Abstract

5G-based hyper-connected Internet of Things environment is emerging, where various connectivities such as BlueTooth,
WiFi, and 3/4/5G are provided. Since they have different communication characteristics, it is difficult to provide the user
quality of experience when the handoff takes place according to the movement of the mobile devices between wireless
access networks. For solving this problem, we propose a seamless video streaming protocol to satisfy the user quality of
experience regardless of handoff. The proposed protocol can dynamically adjust streaming bit rate according to the net-
work condition and also maintain fixed quantity of buffered audio—video data for the stable quality of experience level.
The proposed protocol is designed independently of OS versions and CPU performance of terminals, which makes it
easy to be implanted in various types of Internet of Things devices. Real-world experimental results show that seamless
video streaming service can be guaranteed by carefully predicting the network dynamics over the heterogeneous wire-
less access networks. The protocol is now commercially deployed for over 5 million Long-Term Evolution subscribers of
a South Korea telco, LG U +.
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Massive connectivity requirement for 5G networks
should have the capacity to connect IoT devices up to
100 million/km?>"!

Introduction

Rapid increase in mobile and Internet of Things (IoT)
devices and increased traffic accelerate the adoption of
5G networks. 5G network technology is being devel-
oped and standardized with the following three fea-
tures: (1) high data rate, (2) low latency, and (3)
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massive connectivity.!' '* Requirement for the high
data rates should ensure peak transmission rates at
20 Gbps and guarantee user-experienced data rate at
100 Mbps.'! Requirement for the low latency is to
reduce one-way transmission delay in the air section to
1 ms. It makes it possible to support mission critical
services such as autonomous car and tele-medicine.'"*'?
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With the development of IoT technology, a number
of sensors and consumer electronics in homes have the
connectivity to the Internet.'®!” Depending on the
applications, IoT devices require different network
access capability. Many IoT devices such as TVs,
refrigerators, drones, and phones have multimedia
transmission and reception functions. Devices with a
large screen such as a TV and a smart-mirror have to
be provided high bit rates to provide a high-quality
image with a high resolution. Refrigerators or washing
machines may require low bit rate for relatively low
resolution. On the other hand, drones, vehicles, and
wearable devices should be provided with adaptive bit
rates by reflecting the network state due to the user’s
mobility. 5G networks are expected to be present in the
overlay form over 3G or 4G networks and also
expected to co-exist with a variety of unlicensed band
wireless access networks, such as WiFi and BlueTooth.
Accordingly, the IoT-based multimedia devices should
adopt video streaming protocols that reflect the device
capabilities and network characteristics.

Although various video streaming mechanisms have
been proposed to provide quality of experience (QoE)
in wireless network environment,”®>* they failed to
solve the poor bandwidth problem at the cell edge area.
In order to solve the bandwidth fluctuation problem,
scalable video codec (SVC) has been proposed to
encode video data in a scalable manner.>* While scaling
encoded streams deliver to the destination, one or mul-
tiple stream layers are extracted and dropped by the
intermediate node to adjust streaming rate according to
the network bandwidth. In spite of the technical bene-
fit, deployment of SVC is not welcomed in the industry.
The main obstacle of the deployment is difficulty
of nodes’ replacement located in a middle of the
networks. To solve the deployment problem, adaptive
streaming protocols which adjust streaming bit
rate considering the network conditions have been
proposed.'!+1%25:263031 Different from the SVC mechan-
ism, adaptive streaming only requires modification of
server and client. The server encodes a video stream into
multiple bit streams in advance and the client requests a
bit rate suitable for the network condition. However, the
mechanism could not sensitively respond to the dramatic
network fluctuation due to the handoff event over het-
erogeneous network. It can cause buffer underflow event
and consequently degradation of QoE.

Based on the observation of the previously proposed
mechanisms, this article aims to propose an adaptive
streaming protocol to provide user QoE regardless of
the network fluctuation. This article first analyzes the
behavior of legacy video streaming protocols and finds
out the weakness of the protocols when the network
bandwidth is drastically fluctuated due to the handoff
events between different networks. Based on the obser-
vation, we design and implement a novel mobile video

streaming protocol which overcomes the weakness of
the legacy streaming protocols. The proposed protocol
dynamically adjusts streaming bit rate against the net-
work fluctuation and tries to maintain fixed quantity of
buffered audio—video (AV) data for the stable QoE
level. This protocol has also been designed for the IoT
devices which have various types of OS version and
low computing power.

The rest of this article is organized as follows. In sec-
tion “Observation of the legacy streaming protocols
over the heterogeneous wireless networks,” we observe
and analyze the behavior of legacy streaming protocols.
The weaknesses of the protocols over the heteroge-
neous networks environment are also addressed under
the real-world condition. Section “Proposed network
adaptation and buffer management protocol” proposes
a new adaptive streaming algorithm, which overcomes
the weak points of the previous protocols. Section
“Design principles of the proposed protocol” describes
design principles of the proposed protocol. Section
“Implementation of the proposed protocol” describes
implementation details of the proposed protocol. Next,
we measure the behavior of the proposed protocol and
present performance results by the extensive real-world
experiments. Conclusion and direction of the future
work are made in section “Conclusion.”

Observation of the legacy streaming
protocols over the heterogeneous wireless
networks

In this section, we observe the behavior of the legacy
streaming protocols when network is dramatically fluc-
tuated due to the handoff event between different net-
works. We consider two streaming protocols. The first
one is a fixed bit rate streaming protocol, where stream-
ing bit rate is fixed by 700 kbps and the audio—video
(AV) data are streamed by constant bit rate manner.
The second one is an HTTP adaptive streaming, which
dynamically adjusts the streaming bit rate in accor-
dance with network condition. Source media file is
encoded as six different bit rates (200, 300, 500, 700,
1000, and 1500 kbps). The target duration for each
chunked file is set to 5 s. The initial bit rate for the first
download chunk is set to 200 kbps.

Figure 1 illustrates the experimental topology. The
server side platform is located in Anyang city and the
client side is located in Daejeon city of South Korea.
Each side is connected to high-speed multimedia back-
bone and access network. The maximum streaming bit
rate is limited to 9 Mbps at the server side. In order to
emulate terminal movement and handoff event as a
network fluctuation condition, we utilize a shield room,
where Long-Term Evolution (LTE) signal is shielded
and only 3G signals are available as shown in Figure 2.
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Figure |. Experimental topology.

Figure 2. LTE and 3G handoff emulation environment using
shield room.

Outside of the shield room, bandwidth is provided over
the 20 Mbps average. On the other hand, average
1 Mbps bandwidth is provided in the shield room.

Fixed bit rate streaming protocol

Figure 3 illustrates the behavior of the fixed streaming
protocol when handoff event occurs between LTE and
3G networks. The solid line plots calculated the net-
work bandwidth and dashed line plots the streaming
bit rate. When a terminal is attached to the LTE net-
work, which provides wide bandwidth, AV buffer is
maintained with enough buffered data. However, when
the terminal moves to the shadowing area of LTE and
attaches to the 3G network, the providing bandwidth is
drastically degraded and fluctuated under the video
encoding bit rate. In this environment, it is difficult to
maintain AV buffer enough and so buffer underflow
event can occur, resulting in poor QoE.
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Figure 3. Behavior of fixed streaming protocol.

Figure 4 displays the cached AV data in the terminal
from the 23rd to 77th events of Figure 3. Guard buffer
size 0 implies that buffer underflow event occurs. Buffer
underflow event occurs 19 times during this experiment.
It implies that the user may suffer from service disconti-
nuity 19 times and it degrades user QoE seriously.

Adaptive bit rate streaming protocol

The adaptive streaming is an enhanced version of the
legacy streaming protocol such as Real Time Streaming
Protocol (RTSP) and Hypertext Transfer Protocol
(HTTP) progressive download. It typically pre-encodes
source streams into the multiple bit rate streaming files
and the files are divided into the fixed size chunk files.
A client adaptively requests the chunk file in the differ-
ent bit stream according to network condition. Figure 5
illustrates the behavior of the adaptive streaming proto-
col when the handoff event occurs between LTE and
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Figure 4. Cached buffer size of fixed streaming protocol.
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Figure 5. Behavior of adaptive streaming protocol.

3G networks. In this figure, before the 31st download
event at the x-axis, the terminal attached to the LTE
networks and the terminal may download the chunk file
encoded as maximum bit rate, 1.5 Mbps. Between the
event numbers 32 and 71, the terminal moves to the cell
edge area (shadowing area) and handoff to the 3G net-
work. After the event number 72, the terminal returns
to the LTE network.

From this figure, we can observe that the algorithm
keeps track of the network bandwidth change, but it
follows the network fluctuation one step later. Since
the decision criteria of the next download bit rate
depend on the past network status, this algorithm
could not respond to the changing network condition
immediately.

Figure 6 represents the chunk downloading time and
the size of cached AV data from the 32nd to 77th events
of the Figure 5. The guard buffer length reaches zero 20
times and the chunk downloading time gets large at
every point. A user then gets QoE degradation such as
display broken or still phenomenon. This can be ana-
lyzed as follows. When the network bandwidth is

I chunk download time
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Figure 6. Cached buffer size and chunk downloading time of
adaptive streaming protocol.

sufficient to stream the highest encoded data, the termi-
nal requests the highest bit rate chunk file. If the net-
work status is drastically degraded by the handoff
event between different networks, the chunk download-
ing time increases. At the 55th and 56th events, 5-s
chunk file is downloaded during 10 and 20 s, succes-
sively. The large downloading time consumes AV
cached data and causes buffer underflow event. This is
basically caused by wrong forecasting of the future net-
work status based on the past information.

Proposed network adaptation and buffer
management protocol

One of the problems of the adaptive streaming protocol
is mis-forecasting of future network status based on the
past information. It causes large chunk downloading
time and it consequently leads to buffer underflow
event. We propose a new adaptive streaming protocol
for overcoming the weakness of the existing streaming
protocols. The proposed protocol consists of the net-
work adaptation block and the buffer management
block. Network adaptation block conservatively
increases streaming bit rate when network status gets
better and sharply decreases when it gets worse. The
protocol dynamically adjusts minimum threshold
(min_th), maximum threshold (max_th), and maximum
bit rate (max_rate) depending on the average of the
past bandwidth information. The min_th and max_th
are the criterion parameter of the buffered data. If the
buffered data are larger than max_th, we could esti-
mate that the network status is favorable. If the buf-
fered data are located between max_th and min_th, we
could estimate that the network status is changeable. If
the buffered data are smaller than min_th, it indicates
that the network status is bad. If the data are larger
than max_th or smaller than min_th, it performs with
highest or lowest streaming bit rate, respectively.
Otherwise, it conservatively increases the streaming bit
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Table |. Pseudo code of the algorithm.

Given values:

recent_event, MIN_LOW, MAX_LOW, MIN_HIGH, MAX_HIGH, bit rate changing overhead (BCO)

I:  Start chunk file download with current index

2:  While (chunk file download complete)

3 if (download time > target duration of chunk file || buffered AV data < min_th)
4 if (remaining_chunk_data >= lowest encoded bit rate)

5: download chunk = lowest encoded bit rate

6: Go to (line 1)

7 End if

8 End if

9: End While

10: Calculate average BW of the recent_event BW value

I1: if (average_BW of recent_event value> highest encoded bit rate * BCO)

12: max_rate = highest encoded bit rate
13: min_th = MIN_LOW
14: max_th = MAX_LOW

I15: Endif
16: Else
17: max_rate = round (number of layer/2)

18: min_th = MIN_HIGH
19: max_th = MAX_HIGH

20: End else

21:  If (guard_buffer > max_th)

22: next_download_chunk = highest encoded bit rate

23: Endif

24: else if (MIN_TH < buffered_data < MAX_TH)

25: next_download_chunk = current_download_layer + + ;
26: Endif

27: Else

28: next_download_chunk =lowest encoded bit rate

29: End else

rate when network status gets better. The max_rate
limits the highest streaming bit rate depending on the
average of the past bandwidth information, thereby
minimizing the impact of the dramatic bandwidth
degradation. The average bandwidth information is the
hysteresis of the past bandwidth information calculated
by the cumulative chunk download bandwidth. These
three parameters are updated by every chunk file recep-
tion. The number of past chunk download events,
which is used to calculate the average bandwidth, is set
to recent event (recent_event). If the value of recent_e-
vent is set to too large, the algorithm could not sensi-
tively detect recent network status. If the value is set to
too small, the algorithm too sensitively reacts to the
network status.

Buffer management block tries to its effort to equal-
ize chunk file downloading time and maintains fixed
quantity of buffered data. When the block detects that
the chunk downloading time exceeds the target dura-
tion or buffered data being less than min_th, the block
compares the size of left data to download chunk file
and the whole data size of the lowest encoded chunk
file. After that, the block requests a smaller one between
the two of them. When it calculates the size of lowest
encoded chunk file, the protocol considers Bandwidth
Changing Overhead (BCO) which is HTTP session

release and establishment overhead and compensation
value for the AV quality degradation. This value is
given constant between 1.2 and 1.5. The protocol can
guarantee chunk downloading time as two times of tar-
get duration when the network bandwidth is provided
at least lowest encoding bit rate. Table 1 shows the
pseudo code of the algorithm.

Design principles of the proposed protocol

This section presents four key design principles of the
proposed protocol. Design principles and the things to
be considered for the overall platform architecture, con-
siderations for application developer and rapid deploy-
ment are discussed.

Development transparency

Development transparency is one of the most important
design principles of the protocol. Application develo-
pers do not know additional application programming
interfaces (APIs) possible to develop. Application
developers without having the domain knowledge of
the protocol should be able to develop the service. For
this reason, we hide the detail interfaces of protocols
such as behavior of streaming protocol or DRM
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public woid OnCreate() {

// INI interface loading
Systen. loadLibrary

// protocol library loading
//DRM library loading

£ 9

// protocol initialization
native_init();

/ / protocol start
native_start();

. public class MOSQUITOService extends Sexrvice {

{("plus_protocol jni");
System. loadLibrary ("plus_protocol");

Systen. loadLibrary("plus_drn");

private wvoid star‘tPrOtocoln {

// protocol parameter setting (server type :
native_setParamString("server_type", inputData.getServerType());
// protocol parameter setting (server ip address :
native_setParamString("server_ ip", inputData.getServerIP(});

ex) HLS or MPEG- DASH or MS-SS)

ex) http://192.168.219.100)

Figure 7. Source codes for protocol initialization and parameter setting.

interaction. By only updating and loading the protocol
library, streaming and digital rights management (DRM)
agents could be extended such as MPEG-DASH or
PlayReady DRM. As shown in Figure 7, an application
developer only loads the library and calls the initialization
and sets the protocol parameters by just adding 10 lines.
The protocol runs inside the device as shown in Figure 8§
and the application developer would not be involved in
the protocol procedure any more. It makes the protocol
transparent to the application developer.

Independency of OS kinds and versions

It should not modify a kernel or a platform for the devel-
opment of the proposed protocol and there shall be no
dependency on the OS version or type. However, real-time
AV decoding and rendering functions require low-level
primitive APIs and the APIs have high dependency of
operating system and OEM software of the target device.
If we modify the low-level APIs to develop some func-
tions, we have to customize in a vast number of cases. It
will disrupt the deployment of the protocol also. For this
reason, we design a proxy server for mobile devices and
utilize a built-in media player of the terminal as shown in
Figure 8. The built-in player interacts only with the local
proxy server, which is loaded by code of Figure 7. This
approach abstracts the heterogeneity of operating systems
and OEM software of the mobile devices.

Independency of CPU performance

Since video decoding and rendering consume a lot of
computing resources, it will cause many constraints on
the performance of the terminal. IoT devices having low

computing power could be affected by limited processing
capability. Thus, the protocol utilizes the hardware deco-
der and a renderer mounted in the SoC at the [oT device
instead of utilizing CPU. We utilize the default android
media player, which exploits Hardware (HW) decoder
embedded on the terminal. As a result of this, the pro-
posed protocol does not have dependency of CPU
performance.

Deployment simplicity

For rapid deployment of the protocol, modification
and development of the protocol are restricted to the
terminal side. The protocols are developed in the user-
level space but not kernel-level space. Any change in
the intermediate nodes such as routers and switches is
exempted. Therefore, we can adopt legacy adaptive
streaming protocols as a media delivery protocol such
as HTTP live streaming, MPEG-DASH, and Microsoft
Smooth Streaming. These protocols are HTTP-based
media delivery protocols. HTTP-based delivery enables
effortless streaming services by avoiding network
address traversal (NAT) and firewall traversal issues
and provides a simple means to seamlessly change con-
tent rate on-the-fly in reaction to the changes in the
available bandwidth without requiring the negotiation
with the streaming server. We encrypt the media con-
tents with common encryption algorithm (CENC) in
order to store a piece of copy for every content not an
every copy version of DRM kinds. Also, we adopt de
facto standards for the DRM system such as Google
Widevine and Microsoft PlayReady DRM as shown in
Figure 8.
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Figure 8. Design principles and SW architecture of the proposed protocol over the Google Android platform.

Implementation of the proposed protocol

We have developed the proposed protocol over the up-
to-date Google Android mobile phone, which is
equipped with LTE, WiFi, and 3G network interfaces.
Since the Android platform basically supports RTSP
for the multimedia delivery, we implemented the pro-
posed protocol as well as local RTSP server, which
communicate with built-in player through the RTSP
standard interface. Through this interface, application
developers can utilize the proposed protocol by using
the legacy Android API transparently. Since the built-
in player interworks with local RTSP server through
the standard socket interface, platform dependency is
eliminated.

The implementation of the proposed protocol in the
terminal side is mainly composed of network adapta-
tion block based on HTTP adaptive streaming proto-
col, buffer and download time monitor, buffer
manager, DRM agent, MPEG2-TS demuxer, realtime
transport protocol (RTP) packetizer, and local RTSP
server as illustrated in Figure 8. The network adapta-
tion block basically interworks with the HTTP server.
The block begins by fetching the index file based on a
URL identifying the stream. For the selected stream,
the block downloads each available chunk file in
sequence. The block calculates the current and average
network bandwidth for every chunk file and updates
the parameters as explained in the previous section.
The block extracts the MPEG2-TS file from the chunk
file also. Buffer management block observes the chunk
downloading time. If the downloading time exceeds the
target duration time, the block compares the data size
between the remaining chunk file size and the whole
lowest bit rate chunk file size. Then it selects a smaller
one. At the comparing time, BCO is multiplied by the

size of lowest bit rate file to reflect session change over-
head. The block manages buffer status and dynamically
updates buffer managing parameters upon the band-
width fluctuation. The whole buffer size is set to 12
times of the chunk file. DRM agent obtains entitlement
management message (EMM) key from the DRM key
issuer server and decrypts the encrypted AV data.
MPEG2-TS parser extracts AV element stream from
the multiplexed TS packet. RTP packetizer packetizes
AV element stream into RTP network adaptation layer
(NAL) units and RTSP server streams out packetized
RTP packets to the local RTSP player, which is the
embedded Android media player. Thus, a service devel-
oper only handles API of the Android software devel-
opment kit (SDK) related to RTSP-based media player
without any concern about the proposed protocol.

The server side platform consists of four main gen-
eric components as shown in Figure 9. The first one is
media trans-coder that gets real-time live streams or
pre-encoded AV files from program provider (PP). The
trans-coder encodes a media stream into multiple media
streams with variable bit rates. We generate six different
bit rates: 1.5, 1.2, 1, 0.7, 0.5, and 0.3 Mbps. Trans-cod-
ing should be set to a standardized format supported by
the client device, such as H.264 video and HE-AAC
audio. The second one is the MPEG2 Transport
System (TS) multiplexer. It multiplexes encoded audio
and video element streams into 188 bytes fixed size
MPEG2-TS Transport Stream. The third one is a
scrambler that receives plain AV data from the demuxer
and encrypts the data. The fourth one is a HTTP deliv-
ery server. Since the proposed protocol basically adopts
HTTP as a media delivery platform, control of stream-
ing session entirely depends on the client process. The
server is a web server or a web caching system that
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Figure 9. Main components of server side platform.

delivers the media files and index files to the client over
HTTP. No new modules are required to deliver the con-
tent and typically very little configuration is needed on
the generic HTTP server.

The segmenter is a process that reads the encrypted
Transport Stream from the scrambler and divides it into
a series of small media files of equal duration called
chunk file. Here, the equal duration is called the target
duration. Even though each chunk file is in a separate
file, video files are made from a continuous stream, which
can be reconstructed seamlessly. The segmenter also cre-
ates an index file containing references to the individual
media file. Each time the segmenter completes a new
media file and the index file is updated. The index is used
to track the availability and location of the media files.
Index files are saved as M3US8 or Media Presentation
Description (MPD) playlists. Table 2 is a very simple
example of an index file, in the form of an MPD playlist,
that a segmenter might produce for the entire stream.

Performance evaluation

In this section, we analyze and compare the perfor-
mance of the proposed protocol with network adapta-
tion block only, and with network adaptation and
buffer maintaining block. Figure 10 shows the behavior
of the proposed protocol with only network adaptation
block when the network bandwidth fluctuates severely.
The protocol reacts conservatively when the bandwidth
fluctuates compared with a legacy adaptive streaming
protocol as shown in Figure 5. The protocol fails to
respond sensitively when the network status changes
radically. The downloading time of chunk files
increases when the network bandwidth degrades as
shown in Figure 10(b). Even though the target duration
is set to 5 seconds, the downloading time takes over 25
seconds. The buffered AV data at the device may
exhaust, display may stop, and QoE degrades finally.
System resource efficiency also degrades because the
variance of the chunk downloading time and buffered
AV data changes drastically.

Figure 11 shows the behavior of the proposed proto-
col with buffer management block, which keeps a watch

on chunk file downloading time and buffer status. The
protocol parameters used in this experiment are shown
in Table 3. The unit of the first four parameters is the
playback duration of the buffered data. When the pro-
tocol detects that the chunk downloading time exceeds
the target duration time, the block compares the data
size between the remaining chunk file size and the whole
lowest bit rate chunk file size. Then it selects a smaller
one. At the comparing time, BCO (1.2) is multiplied by
the size of lowest bit rate file to reflect session change
overhead. The proposed protocol assumes these situa-
tions as network status being degraded. Through this
algorithm, the protocol keeps small variance ratio of
the chunk downloading time and AV buffered data
when the network bandwidth fluctuated as shown in
Figure 11(a). Also, there is no buffer underflow event.
Especially, we can notice that the chunk file download-
ing time would not exceed two times of the target dura-
tion, 10 s in this experiment. For this reason, we can
expect proper size of AV buffer and maximize system
resources such as memory and network redundancy.
Since we set the maximum size of AV buffer as 12 times
of the target duration, little downloading time is taken
til the 16 downloading events, and after that the point
reaches steady state. Figure 11(c) compares the mea-
sured network bit rate and the calculated average net-
work bit rate while changing recent_event values as 2, 4,
and 8. If recent_event value is set to a small value (2),
the result traces almost the same as the result of the
measured network bit rate. In this case, the protocol
sensitively reacts to the network status. When the value
of recent_event is set to large value (8), the protocol
reacts slowly because the protocol conservatively reacts
against the real network status. When recent_event is
set to an appropriate value, such as 4, it properly
responds to the hysteresis of actual network conditions
calculated by cumulative chunk download bandwidth.
Figure 11(d) and (e) are the diagrams showing that the
max_rate, min_th, and max_th values are changed
adaptively in accordance with the calculated average
bandwidth when the recent_event value is set to 4. As
can be seen in Figure 11(d), when the network state is
deteriorated, max_rate value is set to 700 kbps to limit
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Table 2. Simple example of an MPD format index file.

<Ixml version=“1.0" encoding=“UTF-8” standalone=“no”?>

<MPD xmlns:xsi="http://www.w3.0rg/200 |/ XMLSchema-instance” xmIns=“urn:mpeg:dash:schema:mpd:2011”
xsi:schemalocation=“urn:mpeg:dash:schema:mpd:201 |” profiles=“urn:mpeg:dash:profile:isoff-live:20 | | “ type="static”
mediaPresentationDuration=“PT58S” minBufferTime=“PT2S">

<Period start="PT0S” duration="PT58.35835">

<AdaptationSet segmentAlignment="“true”>

<SegmentTemplate timescale=“10000000” duration=“5845331 | |” startNumber=“1" media=“audio_und_$Bandwidth$/
$Time$.m4s” initialization="audio_und_$Bandwidth$/init. mp4”>

<SegmentTimeline>

<§ d=“25173222"></S>

<S t="25173222” d="25173334"> </S>

<S t="50346556" d="24746666"> </S>

<S t="550826556" d="25173444"> </S>

<S t="576000000” d=“8533111"></S>

</SegmentTimeline>

</SegmentTemplate>

<Representation mimeType=“audio/mp4” codecs=“mp4a.40.24” startWithSAP="1" id=“1" bandwidth="602915"> </
Representation>

</AdaptationSet>

<AdaptationSet segmentAlignment="true”>

<SegmentTemplate timescale=“10000000” duration="583582778" startNumber=“1" media="video_und_$Bandwidth$/
$Time$.m4s” initialization="video_und_$Bandwidth$/init.mp4”>

<SegmentTimeline>

<S d="25025000"> </S>

<S t=25025000” d=“25025000"> </S>

<S t=550550000" d=*25025000"> </S>

<S t="575575000" d="8007778"> </S>

</SegmentTimeline>

</SegmentTemplate>

<Representation width=“720" height="480" mimeType="video/mp4” codecs=“avc|.6400If” startWithSAP=*]" id="2"
bandwidth="661481 1"></Representation>

</AdaptationSet>

</Period>

</MPD>

MPD: Media Presentation Description.
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Figure 10. Performance evaluation of the proposed protocol with network adaptation block: (a) trajectory of network adaptation
while changing network status and (b) correlation of chunk downloading time and buffered AV data
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Figure 11. Performance evaluation of the proposed protocol with network adaptation and buffer maintaining block: (a) trajectory
of network adaptation while changing network status, (b) correlation of chunk downloading time and buffered AV data, (c) calculated
average bandwidth while changing recent_event = 2, 4, 8, (d) trajectory of max_rate value while changing network status, and (e)
trajectory of max_th and min_th value while changing network status.

maximum increase bit rate and equalize chunk down- described in Table 1. When the network status is recov-
load time. Here, 700 kbps is calculated as the rounding ered, max_rate is set highest encoded bit rate again. As
value of the number of encoded bit rate layer/2 as shown in Figure 11(e), the min_th and max_th values
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Table 3. Protocol parameters used in Figure 9 experiment.

MIN_LOW MAX_LOW MIN_HIGH

MAX_HIGH BCO recent_event

5s I5s 10s

20s 1.2 4

BCO: Bandwidth Changing Overhead.

are also dynamically set to a value as MIN _HIGH,
MAX_HIGH or MIN_LOW, MAX_LOW depending
on a network status. As a result, it can provide seamless
video watching for user QoE.

Conclusion

This article studied a video streaming protocol over
the 5G-based hyper-connected IoT environment.
Especially, we focused on QoE issue when multimedia-
based IoT devices are moved over the heterogeneous
wireless network environment. The behavior of legacy
video streaming protocols was analyzed and the weak-
ness of the protocols was found out when the network
bandwidth is drastically fluctuated due to the handoff
event between heterogeneous wireless networks. Based
on the observation, we proposed a novel mobile video
streaming protocol. The proposed protocol dynami-
cally adjusts streaming bit rate according to the net-
work fluctuation and attempts to maintain the fixed
quantity of buffered AV data for the stable QoE level.
The proposed protocol is designed to be independent
of the OS version and CPU performance of terminals
to be easily portable to various types of IoT devices.
We also provided development transparency for the
application developer without the knowledge of the
proposed protocol. For the rapid deployment, protocol
modification and development is only restricted by the
terminal side. Even in the terminal side, all the opera-
tions of the protocol were developed in the user-level
space, not kernel-level space. We have developed the
protocol over the many kinds of Android versions such
as JellyBean, Kitkat, Lollipop, and Mashmallow and
many manufacturer devices such as Samsung, Huawei,
and LG. Over the 5 years, the protocol has been run-
ning on the commercial LTE/3G/WiFi network with
about 5 million users and improved based on the field
test and users’ experiences. This utilitarian approach
has led us to not only better understand their behavior
but also optimize the proposed algorithm in real-world
conditions. Extensive experimental results proved that
the proposed protocol could provide better QoE than
legacy streaming protocols for the seamless service
when dramatic network fluctuation occurs.

We believe that our protocol design and perfor-
mance analysis are useful for researchers, application
developers, and service providers who consider provid-
ing high-quality AV streaming services over the

5G-based hyper-connected IoT environment and try to
understand the behavior of streaming protocols in real
network conditions.
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