
Runtime Assurance Based On Formal Speci�cations�

I. Leey, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104

March 23, 1999

Abstract

We describe the Monitoring and Checking (MaC) framework which assures the correctness
of the current execution at run-time. Monitoring is performed based on a formal speci�cation of
system requirements. MaC bridges the gap between formal speci�cation and veri�cation, which
ensures the correctness of a design rather than an implementation, and testing, which partially
validates an implementation. An important aspect of the framework is a clear separation be-
tween implementation-dependent description of monitored objects and high-level requirements
speci�cation. Another salient feature is automatic instrumentation of executable code. The
paper presents an overview of the framework and two languages to specify monitoring scripts
and requirements, and brie
y explain our on-going prototype implementation.

1 Introduction

Much research in the past two decades concentrated on methods for analysis and validation of
distributed and real-time systems. Important results have been achieved, in particular, in the area of
formal veri�cation [4]. Formal methods of system analysis allow developers to specify their systems
using mathematical formalisms and prove properties of these speci�cations. These formal proofs
increase con�dence in correctness of the system's behavior. Complete formal veri�cation,however,
has not yet become a prevalent method of analysis. The reasons for this are twofold. First,
the complete veri�cation of real-life systems remains infeasible. The growth of software size and
complexity seems to exceed advances in veri�cation technology. Second, veri�cation results apply
not to system implementations, but to formal models of these systems. That is, even if a design has
been formally veri�ed, it still does not ensure the correctness of a particular implementation of the
design. This is because an implementation often is much more detailed, and also may not strictly
follow the formal design. So, there are possibilities for introduction of errors into an implementation
of the design that has been veri�ed. One way that people have traditionally tried to overcome this
gap between design and implementation has been to test an implementation on a pre-determined
set of input sequences. This approach, however, fails to provide guarantees about the correctness
of the implementation on all possible input sequences. Consequently, when a system is running, it

�This research was supported in part by NSF CCR-9619910, ARO DAAG55-98-1-0393, ARO DAAG55-98-1-0466,
and ONR N00014-97-1-0505 (MURI)

yCorresponding Author. Insup Lee, email: lee@cis.upenn.edu; fax: +1(215) 573-3573

1

is hard to guarantee whether or not the current execution of the system is correct using the two
traditional methods. Therefore, the approach of continuously monitoring a running system has can
be used to �ll the gap between these two approaches.

In this paper, we describe a framework of monitoring and checking a running system with the
aim of ensuring that it is running correctly with respect to a formal requirements speci�cation.
The use of formal methods is the salient aspect of our approach. We concentrate on the following
two issues: (1) how to map high-level abstract events that are used in requirement speci�cation to
low-level activities of a running system, and (2) how to instrument the code to extract and detect
necessary low-level activities. We assume that both requirement speci�cations and the system
implementation are available to us.

The major phases of the framework are as follows: (1) system requirements are formalized; at the
same time, a monitoring script is constructed, which is used to instrument the code and establish
a mapping from low-level information into high-level events; (2) at run-time, events generated
by the instrumented system are monitored for compliance with the requirements speci�cation.
The run-time monitoring and checking (MaC) architecture consists of three components: �lter,

event recognizer, and run-time checker. The �lter extracts low-level information (such as values of
program variables and time when variables change their values) from the instrumented code. The
�lter sends this information to the event recognizer, which converts it into high-level events and
conditions and passes them to the run-time checker.

Each event delivered to the checker has a timestamp, which re
ects the actual time of the
occurrence of the event. This enables us to monitor real-time properties of the system. Timestamps
are assigned to events by the event recognizer based on the clock readings provided by the �lter. The
run-time checker checks the correctness of the system execution thus far according to a requirements
speci�cation of the system, based on the information it receives from the event recognizer, and on
the past history. The checker can combine monitoring of behavioral correctness of the system
control
ow with program checking [2] for numerical computations. This integrated approach is
a unique feature of the proposed framework. The current prototype implementation of the MaC
framework supports the monitoring of a system written in Java. Instrumentation is performed
automatically, directly in Java bytecode.

Related work. Computer systems are often monitored for performance measurement, evaluation
and enhancement as well as to help debugging and testing [17]. Lately, there has been increasing
attention from the research community to the problem of designing monitors that can be used to
assure the correctness of a system at runtime. The \behavioral abstraction" approach to monitoring
was pioneered by Bates and Wileden [1]. Although their approach lacked formal foundation, it
provided an impetus for future developments. Several other approaches pursue goals that are similar
to ours. The work of [5] addresses monitoring of a distributed bus-based system, based on a Petri
Net speci�cation. Since only the bus activity is monitored, there is no need for instrumentation
of the system. The authors of [16] also consider only input/output behavior of the system. In
our opinion, instrumentation of key points in the system allows us to detect violations faster and
more reliably, without sacri�cing too much performance. The test automation approach of [14]
is also targeted towards monitoring of black-box systems without resorting to instrumentation.
Additionally, we aim at using the MaC framework beyond testing, during real system executions.
Sankar and Mandel have developed a methodology to continuously monitor an executing Ada
program for speci�cation consistency [15]. The user manually annotates an Ada program with
constructs from ANNA, a formal speci�cation language. Mok and Liu [12] proposed an approach

2

for monitoring the violation of timing constraints written in the speci�cation language based on
Real-time Logic as early as possible with low-overhead. The framework proposed in this paper
does not limit itself to any particular kind of monitored properties. In [10], an elaborate language
for speci�cation of monitored events based on relational algebra is proposed. Similarly to our
approach, the authors try to minimize e�ects of instrumentation on run-time performance, and to
reduce the instrumentation cost through automated instrumentation. Their goal, however, goes
beyond run-time monitoring. For our purposes, a simpler and easier to interpret event description
language of MaC appears to be more appropriate.

The paper is organized as follows. Section 2 presents an overview of the framework. Section 3
informally presents the language for monitoring scripts and requirements speci�cations. Section 4
brie
y overviews a prototype implementation of the MaC framework as well as the current future
plans. More complete and formal treatment of the MaC framework is given in [9].

2 Overview of the MaC Framework

The MaC framework aims at run-time assurance monitoring of real-time systems. The structure of
the framework is shown in Figure 1. The framework includes two main phases: (1) before the system
is run, its implementation and requirement speci�cation are used to generate run-time monitoring
components; (2) during system execution, information about the running system is collected and
matched against the requirements.

implementation
instrumented

low-level
activities

events
filter

compiler
MEDLPEDL

compiler

recognizer checker
run-timeevent

(JAVA)
implementation

system

monitoring
script

requirement
specification

(MEDL)(PEDL)

Figure 1: Overview of the MaC framework

A major task during the �rst phase (indicated by clear boxes in Figure 1) is to provide a mapping
between high-level events used in the requirement speci�cation and low-level state information
extracted during execution. They are related explicitly by means of a monitoring script. The
monitoring script describes how events at the requirements level are de�ned in terms of monitored
states of an implementation. For example, in a gate controller of a railroad crossing system, the
requirements may be expressed in terms of the event train in crossing. The implementation, on
the other hand, stores the train's position with respect to the crossing in a variable train position.
The monitoring script in this case can de�ne the event as condition train position < 800. The
language of monitoring script (described in Section 3) has limited expressive power in order to
ensure fast recognition of events.

3

The monitoring script is used to generate a �lter and an event recognizer automatically. The
�lter instruments the implementation to extract the necessary state information at run-time. The
event recognizer receives state information from the �lter and determines the occurrences of event
according to the event de�nition in the script. Also, a run-time checker is generated from the
formal requirements. The requirement speci�cation uses events de�ned in the monitoring script.

During the run-time phase (shaded boxes in Figure 1), the instrumented implementation is
executed while being monitored and checked against the requirements speci�cation. The �lter
sends relevant state information to the event recognizer, which determines the occurrence of events.
These events are then relayed to the run-time checker to check adherence to the requirements.

Filter. A �lter is a set of program fragments that are inserted into the implementation to instru-
ment the system. The essential functionality of a �lter is to keep track of changes to monitored
objects and send pertinent state information to the event recognizer. Instrumentation is performed
directly on the executable code (bytecode, in the case of Java). Instrumentation is automatic,
which is made possible by the low-level description in the monitoring script.

Event Recognizer. The event recognizer is the part of the monitor that detects an event from
values of monitored variables received from the �lter. Events are cognized according to a monitor-
ing script (written in PEDL) and recognized events are sent to the run-time checker. Each event is
supplied with a timestamp that can be used in checking real-time properties. Events may addition-
ally have associated numerical values to facilitate program checking by the monitor. Although it is
conceivable to combine the event recognizer with the �lter, we chose to separate them to provide

exibility in an implementation of the framework.

Run-time Checker. The run-time checker determines whether or not the current execution
history satis�es the given requirements (written MEDL). The execution history is captured from
a sequence of events sent by the event recognizer. The checker can handle behavioral as well as
numerical requirements. The latter can be analyzed using the technique of program checking. It
may seem that the detection of a requirement violation at run-time is too late for recovery. This,
however, is not necessarily true. A monitored property may represent a potentially dangerous
condition that needs an attention from a human operator, which is the function that the run-time
checker provides.

3 The MaC Language

In this section, we give a brief overview of the languages used to describe what to observe in the
program and the requirements the program must satisfy. The scripts written in these languages are
then used to automatically generate the event recognizer and the run-time checker, respectively.

The language for monitoring scripts is called PEDL (Primitive Event De�nition Language,
Section 3.4). PEDL scripts are used to de�ne what information is sent from the �lter to the event
recognizer, and how they are transformed into requirements-level events by the event recognizer.
Requirement speci�cations are written in MEDL (Meta Event De�nition Language, Section 3.5).
The primary reason for having two separate languages in the monitoring framework is to separate
implementation-speci�c details of monitoring from requirements speci�cation. This separation
ensures that the framework is scalable to di�erent implementation languages and speci�cation

4

formalisms, while providing a clean interface to the designer of monitors. For example, if we wish
to retarget our system from programs written in Java to C++, then all we would need to modify
is the syntax of PEDL, leaving MEDL unchanged.

Before presenting the two languages, PEDL and MEDL, we discuss some key issues in the
logical semantics of these languages. In Section 3.1, we illustrate the distinction between events

and conditions. In Section 3.2, we discuss how the language may handle the presence of variables
that are not de�ned. We then formalize our intuitions into a logic in Section 3.3. This logic provides
the formal foundations for PEDL (in Section 3.4) and MEDL (in Section 3.5).

3.1 Events and Conditions

As described in Section 2, whenever an \interesting" state change occurs in the running system, the
�lter sends a noti�cation to the monitor. Based on updates from the �lter, the monitor matches
the trace of the current execution against the requirements. In order to do this, we distinguish
between two kinds of state information underlying the noti�cations.

Events occur instantaneously during the system execution, whereas conditions are information
that hold for a duration of time. For example, an event denoting return from method RaiseGate

occurs at the instant the control returns from the method, while a condition (position == 2)

holds as long as the variable position does not change its value from 2. Distinction between events
and conditions is very important in terms of what the monitor can infer about the execution based
on the information it gets from the �lter. For an event, the monitor can conclude that an event
does not occur at any moment except when it receives an update from the �lter. By contrast, once
the monitor receives a message from the �lter that variable position has been assigned the value
2, we can conclude that position retains this value until the next update.

Since events occur instantaneously, we can assign to each event the time of its occurrence.
Timestamps of events allow us to reason about timing properties of monitored systems. Conditions,
on the other hand, have durations, intervals of time when the condition is satis�ed. There is a close
connection between events and conditions: the start and end of a condition's interval are events,
and the interval between any two events can be treated as a condition. This relationship is made
precise later when we present the logic.

3.2 Presence of Unde�ned Variables

Reconsider the condition (position == 2) that was used previously. When the variable position
has some integer value, it is very clear what this condition means. However, before the variable
position is initialized at the start of the execution, it is not clear whether this condition should
be considered to be true or false. This problem is not just con�ned to the start. During any
execution, variables routinely become unde�ned when they are out of scope, and if we want to
reason about such variables then we need a consistent way of intepreting logical formulae having
unde�ned variables. The problems associated with de�ning the semantics of logics in the presence
of partial functions1 are well-understood [6, 3, 13]. There have been some approaches to de�ning
logics with partial functions where the formulae are interpreted over boolean values, i.e., true and
false. However, these approaches work only when the logic has no primitive relations, like \<" and
\�", which have some \natural" interpretation. Another traditional approach towards handling
unde�ned expressions, has been to move to a three-valued logic, where the third value is taken to

1Variables can be thought of as partial functions over time

5

represent unde�ned. We choose to take this later approach, and so interpret the truth of conditions
over a three-valued logic.

We now formalize the issues presented above, in a two-sorted logic that de�nes the operations
on events and conditions. In this logic, we shall interpret conditions over three values and not over
booleans. PEDL and MEDL are subsets of this logic with added means of de�nition of primitive
events and conditions.

3.3 Logic for Events & Conditions

Syntax. We assume a countable set C = fc1; c2; : : :g of primitive conditions. For example, in the
monitoring script language (Section 3.4), these primitive conditions will be Java boolean expres-
sions built from the values of the monitored variables. In the requirements description language
(Section 3.5) these will be conditions that were recognized by the event recognizer and sent to the
run-time checker.

We also assume a countable set E = fe1; e2; : : :g of primitive events. When an event occurs
(to be de�ned formally later), it can have an attribute value, which is an element of a set Sei .
For example, StartM(RaiseGate) is a primitive event in the monitoring script language, which is
present at the start of method RaiseGate and whose attribute value is the tuple of values of all the
parameters with which this method is called. The primitive events in the requirements description
language are those that are reported by the event recognizer.

The logic has two sorts: conditions and events. The syntax of conditions (C) and events (E) is
as follows:

hCi ::= c j de�ned(hCi) j [hEi , hEi) j ! hCi j hCi && hCi j hCi jj hCi j hCi) hCi

hEi ::= e j start(hCi) j end(hCi) j hEi && hEi j hEi jj hEi j hEi when hCi

Semantics. The models for this logic are sequences of worlds, similar to those used for linear tem-
poral logic. Each world has a description of the truth values of primitive conditions and occurrences
of promitive events. More formally, a model M is a tuple (S; �; LC ; LE), where S = fs0; s1; : : :g, �
is a mapping from S to the time domain (which could be integers, rationals, or reals), LC is a total
function from S�C to ftrue; false;�g, and LE is a partial function from S�E to De. Intuitively,
LC assigns to each state the truth values of all the primitive conditions; since we shall interpret
conditions over a 3-valued logic, the truth value of primitive conditions can be true, false or �
(unde�ned). Similarly, in each state s, LE(s; e) is de�ned for each event e that occurs at s and gives
the value of the primitive event e. The mapping � de�nes the time at each state, and it satis�es
the requirement that �(si) < �(sj) for all i < j, i.e., the time at a later state is greater.

In order to de�ne what we mean by a condition c being true in modelM at time t (M; t j= c), we
need to de�ne what we mean by its denotation (Dt

M (c)). This is de�ned in Figure 3.3. Using this
we de�ne the meaning of M; t j= c, and of an event e occurring in a model M at time t (M; t j= e).
The formal de�nition is given in Figure 3.3. 2

As stated before, we shall interpret conditions over three values, true, false, and � (unde�ned).
The denotation of a primitive condition, c at time t is given by c's truth value in the last state before
time t. The predicate de�ned(c) is true whenever the condition c has a well-de�ned value, namely,
true or false. The denotation of negation (!c), disjunction (c1jjc2) and conjunction (c1&&c2) are

2Notice, that the de�nition of Dt

M refers to the de�nition of j=, and vice versa. However, the de�nitions are
well-de�ned.

6

[ck primitive] Dt
M (ck) = LC(si; ck), where �(si) � t and for all sj (j > i) �(sj) > t

[de�ned] Dt
M (de�ned(c)) =

(
true if Dt

M (c) 6= �
false otherwise

[pair] Dt
M ([e1; e2)) =

8><
>:

true if there exists t0 � t such that M; t0 j= e1 and for all
t0 � t0 � t; M; t0 6j= e2

false otherwise

[negation] Dt
M (!c) =

8><
>:

true if Dt
M (c) = false

� if Dt
M (c) = �

false if Dt
M (c) = true

[disjunction] Dt
M (c1jjc2) =

8><
>:

true if Dt
M (c1) or D

t
M (c2) is true

false if Dt
M (c1) = Dt

M (c2) = false

� otherwise

[conjunction] Dt
M (c1&&c2) = Dt

M (!(!c1jj!c2))
[implication] Dt

M (c1) c2) = Dt
M (!c1jjc2)

Figure 2: Denotation for conditions

M; t j= c i� Dt

M
(c) = true

M; t j= ek (ek primitive) i� there exists state si such that �(si) = t and LE(si; ek) is de�ned.
M; t j= start(c) i� 9si such that �(si) = t and M; �(si) j= c and M; �(si�1) 6j= c.

i.e., start(c) occurs when condition c changes from false to true.
M; t j= end(c) i� 9si such that �(si) = t and M; �(si) 6j= c and M; �(si�1) j= c.

i.e., end(c) occurs when condition c changes from true to false.
M; t j= e1jje2 i� M; t j= e1 or M; t j= e2.
M; t j= e1 && e2 i� M; t j= e1 and M; t j= e2.
M; t j= e when c i� M; t j= e and M; t j= c.

i.e., event e occurs when condition c is true.

Figure 3: Semantics of events and conditions.

7

interpreted classically whenever c, c1 and c2 take values true or false; the only non-standard cases
are when these take the value �. In these cases, we interpret them as follows. Negation of an
unde�ned condition is �. Conjunction of an unde�ned condition with false is false, and with true
is �. Disjunction is de�ned dually; disjunction of unde�ned condition and true is true, while
disjunction of unde�ned condition and false is �. Implication (c1) c2) is taken to !c1jjc2.

For primitive events, once again, the truth value is given by the labels on the states. Conjunction
(e1&&e2) and disjunction (e1jje2) de�ned classically; so e1&&e2 is present only when both e1 and
e2 are present, whereas e1jje2 is present when either e1 or e2 is present.

There are some natural events associated with conditions, namely, the instant when the condi-
tion becomes true (start(c)), and the instant when the condition becomes false (end(c)). Notice,
that the event corresponding to the instant when the condition becomes � can be described as
end(de�ned(c)). Also, any pair of events de�ne an interval of time, so forms a condition [e1; e2)
that is true from event e1 until event e2. Finally, the event (e when c) is present if e occurs at a
time when condition c is true.

Notice that every condition can be identi�ed with the events corresponding to when it becomes
true, when it becomes false and when it becomes �. This is the reason why the languages in the
MaC framework, are called \event de�nition languages".

3.4 Primitive Event De�nition Language (PEDL)

PEDL is the language for writing monitoring scripts. The design of PEDL is based on the following
two principles. First, we encapsulate all implementation-speci�c details of the monitoring process
in PEDL scripts. Second, we want the process of event recognition to be as simple as possible.
Therefore, we limit the constructs of PEDL to allow one to reason only about the current state in
the execution trace. The name, PEDL, re
ects the fact that the main purpose of PEDL scripts is
to de�ne primitive events of requirement speci�cations.

Monitored Entities. PEDL scripts can refer to any object of the target system. This means
that declarations of monitored entities are by necessity speci�c to the implementation language of
the system. In the current prototype which is based on Java, values of �elds of an object, as well as
of local variables of a method, and method calls can be monitored. Examples of monitored entities'
declarations are given in Section 3.6.

De�ning Conditions. Primitive conditions in PEDL, are constructed from boolean-valued ex-
pressions over the monitored variables. An example of such condition is

Cond TooFast = Train.calculatePosition().trainSpeed > 100 .
In addition to these, we have primitive condition InM(f). This condition is true as long as the
execution is currently within method f. Complex conditions are built from primitive conditions
using boolean connectives.

De�ning Events. The primitive events in PEDL correspond to updates of monitored variables,
and calls and returns of monitored methods. Each event has an associated timestamp and may
have a tuple of values.

The event update(x) is triggered when variable x is assigned a value. The value associated
with this event is the new value of x. Events StartM(f) and EndM(f) are triggered when control

8

enters to and return from method f, respectively. The value associated with StartM is a tuple
containing the values of all arguments. The value of an event EndM is a tuple that has the return
value of the method, along with the values of all the formal parameters at the time control returns
from the method. Besides these three, we have one other primitive event which is IoM(f). This is
also triggered when control returns from a method f, but has as its value a tuple that contains the
return value of the method, and the values of the arguments at the time of method invocation. This
event allows one to look at the input-output behavior of a method, and is needed if one wants to
program check some numerical computation. Notice that event IoM(f) is the only event to violate
our second design principle, namely that the operation of the event recognizer is to be based only
on the current state.

All the operations on events de�ned in the logic can be used to construct more complex events
from these primitive events. In PEDL, we also have two attributes time and value, de�ned for
events. As mentioned in Section 3.3, events have associated with them attribute values, and the
time of their occurrence, and these can be accessed using the attributes time and value. time(e)
gives the time of the last occurrence of event e, while value(e) gives the value associated with e,
provided e occurs. time(e) refers to the time on the clock of the monitored system (which may
be di�erent from the clock of the monitor) when this event occurs. If the monitored system has
several clocks, we assume, for this paper, that the clocks are perfectly synchronized to simplify the
presentation of this paper.

3.5 Meta Event De�nition Language (MEDL)

The safety requirements that need to be monitored are written in a language called MEDL. Like
PEDL, MEDL is also based on the logic for events and conditions, described in Section 3.3. Prim-
itive events and conditions in MEDL scripts are imported from PEDL monitoring scripts; hence
the language has the adjective \meta".

Auxiliary Variables. The logic described is Section 3.3 has a limited expressive power. For
example, one cannot count the number of occurrences of an event, or talk about the ith occurrence
of an event. For this purpose, MEDL allows the user to de�ne auxiliary variables, whose values
may then be used to de�ne events and conditions. Auxiliary variables must be of one of the basic
types in Java. Updates of auxiliary variables are triggered by events. For example,

RaisingGate -> t := time (RaisingGate)

records the time of occurrence of event RaisingGate in the auxiliary variable t. Expression
e1 -> count e1 := count e1 + 1

counts occurrences of event e1. A special auxiliary variable currentTime can be used to refer to
the current time of the system. It is set to be the timestamp of the last message received from the
�lter.

De�ning events and conditions. The primitive events and conditions in MEDL are those that
are de�ned in PEDL. Besides these, primitive conditions can also be de�ned by boolean expressions
using the auxiliary variables. More complex events and conditions are then built up using the
various connectives described in Section 3.3. These events and conditions are then used to de�ne
safety properties and alarms.

9

class GateController {

public static final int GATE_UP = 0;

public static final int GATE_DOWN = 1;

public static final int IN_TRANSIT = 2;

int gatePosition;

public void open() { ... }

public void close() { ... }

...

};

Figure 4: Implementation of the gate controller

Safety Properties and Alarms. The correctness of the system is described in terms safety
properties and alarms. Safety properties are conditions that must always be true during the ex-
ecution. Alarms, on the other hand, are events that must never be raised. Note that all safety
properties [11] can be described in this way. Also observe that alarms and safety properties are
complementary ways of expressing the same thing. The reason we have both of them is because
some properties are easier to think of in terms of conditions, while others are easier to think of in
terms of alarms.

3.6 Example

We illustrate the use of PEDL and MEDL using a simple but representative example. The example
is inspired by the railroad crossing problem, which is routinely used as an illustration of real-time
formalisms [7]. The system is composed of a gate that can open and close, taking some time to do
it, trains that pass through the crossing, and a controller that is responsible for closing the gate
when a train approaches the crossing and opening it after it passes. The common speci�cation
approach is to assume an upper bound on the time necessary for the gate to open or close. In
reality, however, mechanical malfunctions may result in unexpectedly slow operation of the gate.
A timely detection of such a violation lets the train engineer stop the train before it reaches the
crossing. In this example, we monitor the controller of the gate, using the requirement that the gate
is down within 30 seconds after signal CloseGate is sent, unless signal OpenGate is sent before the
time elapses. Precisely, we check that if there is a signal CloseGate, not followed by either signal
OpenGate or completion of gate closing, is present in the execution trace, then the time elapsed
since that signal is less than 30.

Figure 4 shows a fragment of the gate controller implemented as a Java class. The state of
the gate is represented as variable gatePosition, which can assume constant values GATE UP,
GATE DOWN, or IN TRANSIT. The controller controls the gate by means of methods open() and
close(). For simplicity, we assume that there is only one instance of class GateController in the
system.

We need to observe calls to methods open() and close(), and the state of the gate. The
following PEDL script introduces high-level events OpenGate, CloseGate and condition Gate Down.

export event OpenGate, CloseGate;

export condition Gate_Down;

Monitored Entities:

void GateController.open();

10

void GateController.close();

int GateController.gatePosition;

CondDef:

Cond Gate_Down = (GateController.gatePosition == GateController.GATE_DOWN);

EventDef:

Event OpenGate = StartM(GateController.open());

Event CloseGate = StartM(GateController.close());

The correctness requirement for the gate is given in the MEDL script below. The time of the last
occurrence of event CloseGate is recorded by the auxiliary variable lastClose. The requirement
uses the events and conditions imported from the monitoring script and states that if there was a
CloseGate event at the time when the gate was not down, which was not followed by either event
OpenGate or condition Gate Down becoming true, then the time allotted for gate closing has not
elapsed yet.

import event OpenGate, CloseGate;

import condition Gate_Down;

AuxVarDecl:

float lastClose;

float currentTime;

SafePropDef:

Cond GateClosing =

[CloseGate when !Gate_Down, OpenGate || start(Gate_Down))

=> lastClose + 30 > currentTime;

AuxVarDefL

CloseGate -> lastClose := time(CloseGate);

4 Conclusions

This paper describes the Monitoring and Checking (MaC) framework which is developed to assure
the correctness of an execution at run-time. Monitoring is performed based on a formal speci�-
cation of system requirements. The MaC framework is a step towards bridging the gap between
veri�cation of system design speci�cations and validation of system implementations in a high-level
programming language. The former is desirable but yet impractical for large systems, while the
latter is necessary but informal and error-prone.

We are currently implementing a prototype of the MaC framework for systems written in Java.
Given a PEDL script and an implementation in Java bytecode, the PEDL compiler inserts �lters
into the bytecode for instrumentation. The PEDL compiler also generates event de�nitions which
are interpreted by the event recognizer. The MEDL compiler generates a run-time checker from
a MEDL speci�cation. In addition to working on this prototype system, we are exploring how to
translate requirements written in a logic such as RTL [8] or Linear Logic to MEDL. Finally, we are
also investigating how to extend the MaC framework to support the steering of a monitored system
to a safe state.

References

[1] P. Bates and J. Wileden. High-level debugging: The behavioral abstraction approach. J. Syst.
Software, 3(255-264), 1983.

11

[2] M. Blum and S. Kannan. Designing programs that check their work. In JACM V.42 No. 1,
pages 269 {291, January 1995.

[3] J. Cheng and C. Jones. On the usability of logics which handle partial functions. In C. Morgan
and J. Woodstock, editors, Proceedings of Third Re�nement Workshop. Springer-Verlag, 1991.

[4] E. M. Clarke and J. M. Wing. Formal methods: State of the art and future directions. ACM
Computing Surveys, 28(4):626{643, Dec. 1996.

[5] M. Diaz, G. Juanole, and J.-P. Courtiat. Observer - a concept for formal on-line validation of
distributed systems. IEEE Transactions on Software Engineering, 20(12):900{913, Dec. 1994.

[6] W. F. Farmer. A partial functions version of church's simple theory of types. Journal of

Symbolic Logic, pages 1269 { 1291, September 1990.

[7] C. Heitmeyer and D. Mandrioli, Eds. Formal Methods for Real-Time Systems. Number 5 in
Trends in Software. John Wiley & Sons, 1996.

[8] F. Jahanian and A. Mok. Safety analysis of timing properties in real-time systems. IEEE

Transactions on Software Engineering, SE-12(9):890{904, September 1986.

[9] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, and O. Sokolsky. A frame-
work for run-time correctness assurance of real-time systems. Technical Report MS-CIS-98-37,
University of Pennsylvania, 1998.

[10] Y. Liao and D. Cohen. A speci�cational approach to high level program monitoring and
measuring. IEEE Transactions on Software Engineering, 18(11):969{979, Nov. 1992.

[11] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer-
Verlag, 1992.

[12] A. K. Mok and G. Liu. E�cient run-time monitoring of timing constraints. In IEEE Real-Time

Technology and Applications Symposium, June 1997.

[13] D. L. Parnas. Predicate logic for software engineering. IEEE Transactions on Software Engi-

neering, 19(9):856 { 861, September 1993.

[14] J. Peleska. Test automation for safety-critical systems: Industrial application and future
developments. In FME'96: Third International Symposium of Formal Methods Europe, volume
1051 of LNCS, pages 39{59, 1996.

[15] S. Sankar and M. Mandal. Concurrent runtime monitoring of formally speci�ed programs. In
IEEE Computer, pages 32 {41, March 1993.

[16] T. Savor and R. E. Seviora. An approach to automatic detection of software failures in real-
time systems. In IEEE Real-Time Technology and Applications Symposium, pages 136 {146,
June 1997.

[17] B. A. Schroeder. On-line monitoring: A tutorial. In IEEE Computer, pages 72 { 78, June
1995.

12

