Investigation of Advanced Spent Fuel Verification System in an Encapsulation Plant Scintillator based Spent Fuel Gross and Partial Defect Detection System KAIST

Haneol Lee and Man-Sung Yim^{*}

1. Motivation and Purpose of the Research

- **Objective of Safeguards (IAEA, INFCIRC/153)**^[1]
- Timely detection of diversion of significant quantities of nuclear material and deterrence of such diversion by the risk of early detection.
- Verifying spent fuel is needed to prevent the diversion of spent fuel
- It includes gross defect detection, partial defect detection.
- If an entire spent fuel assembly or several fuel rods are replaced by dummy material, it becomes gross or partial defect respectively.
- It is a frequent pathway for diverting nuclear material to manufacture a nuclear explosive device.
- Since there are a number of spent fuel assemblies, diverting small amounts of nuclear material from a single spent fuel assembly can result in the accumulation of a significant quantity of nuclear material.
- Since conventional verifying methods have some limitations, simple and fast spent fuel verification is needed

lee1012@kaist.ac.kr, msyim@kaist.ac.kr*

3. Results: Potential applications

3-1 Gross defect detection

Fig. 3. Conceptual design of gross defect detector

Test case analysis for feasibility demonstration.

Nuclear Energy Environment and Nuclear Security Laboratory

The gross defect of a spent fuel assembly can

be detected during encapsulating process

Spent fuel assemblies with significant

improved because the difference in the

generated current between 39.33 and 40.54

difference in cooling time can be

distinguished.

GWd/tU is too small.

- Cannot inspect every spent fuel assembly because of the limited inspection time .
- Cannot inspect spent fuel assembly out of specific area (i.e. spent fuel pool).

Purpose of the research

- Develop a spent fuel defect detection system applied out of spent fuel cooling pool.
- Develop "simple and fast" spent fuel defect detection system for detecting the gross and partial defect of a spent fuel assembly.

2. Methods

2-1 Methods of electricity generation

- System consists of scintillator and photovoltaic cell
- Radiation from spent fuel is converted into visible photons via a scintillator.
- Photovoltaic cell generates electricity using the scintillated photons directly.
- The generated electricity becomes a signature or signal for a spent fuel rod/assembly.

2-2 Comparison between the method and scintillator detector

- Spent fuel type: Westinghouse 16x16 PWR fuel assembly^[3] with 3.5w/o enrichment
- 4 Burnup cases: 34.49, 39.33, 40.54, 47.34 GWd/tU^[4]
- 8 Cooling times: 10, 15, 20, 25, 30, 40, 50, 60 year

Fig. 4. Generated electric current using test case burnup/cooling time

3-2 Partial defect detection

Table 1. Comparison of scintillator based electricity generation and scintillator detector.

	Scintillator based defect detector	Scintillator detector							
Similarity	 Scintillator converts radiation into electricity. Visible photons are converted into electrons producing a signal for detecting radiation. 								
Difference	 Signals do not need to be amplified because target application is spent fuel environment. No external high voltage source is needed since the generated electricity itself becomes a signal. The system only consists of a scintillator and photovoltaic cell, which reduces its price compared to the scintillator detector. 	 The main purpose is to detect radiation whose activity is much smaller than spent fuel radiation. It contains a photomultiplier tube (PMT) and an external high voltage source to amplify the signal generated by scintillated photons. 							

Fig. 6. Reference spent fuel assembly and three test case spent fuel assemblies with different partial defects

Test case analysis for feasibility demonstration

- Reference spent fuel assembly: Westinghouse 16x16 PWR^[3]
- Three different test case spent fuel assemblies with different defects
- Case 1: 12 rods missing, Case 2: 3 rods missing, Case 3: 1 rod missing

- 15 reference detecting positions

Table 3. Relative electricity generation of three defect cases compared to the reference

(red: location of detect, yellow: location near defect, blue: location far from defect)

Location		Current (nA)				Voltage (mV)			Power (nW)			
LUCALIUII	Ref	Case 1	Case 2	Case 3	Ref	Case 1	Case 2	Case 3	Ref	Case 1	Case 2	Case 3
1	1	0.6097	0.7627	0.9418	1	0.6105	0.7633	0.9419	1	0.3722	0.5821	0.8871
2	1	0.5458	0.7824	0.8794	1	0.5467	0.7830	0.8798	1	0.2984	0.6126	0.7737
3	1	0.5496	0.9089	0.9619	1	0.5506	0.9092	0.9621	1	0.3026	0.8263	0.9254
4	1	0.6234	0.9527	0.9819	1	0.6243	0.9529	0.9820	1	0.3892	0.9078	0.9642
5	1	0.5754	0.7959	0.9608	1	0.5498	0.7965	0.9610	1	0.3316	0.6339	0.9233
6	1	0.5768	0.9388	0.9743	1	0.5778	0.9391	0.9744	1	0.3332	0.8816	0.9493
7	1	0.5323	0.8786	0.9710	1	0.5332	0.8789	0.9711	1	0.2838	0.7722	0.9430
8	1	0.6010	0.9367	0.9809	1	0.6020	0.9370	0.9810	1	0.3618	0.8777	0.9623
9	1	0.6779	0.9605	0.9855	1	0.6787	0.9606	0.9855	1	0.4601	0.9227	0.9712
10	1	0.5833	0.9343	0.9730	1	0.5842	0.9345	0.9731	1	0.3407	0.8731	0.9468
11	1	0.5972	0.9365	0.9764	1	0.5982	0.9367	0.9765	1	0.3572	0.8772	0.9535
12	1	0.6705	0.9468	0.9794	1	0.6714	0.9470	0.9795	1	0.4502	0.8966	0.9592
13	1	0.7274	0.8481	0.9757	1	0.7280	0.8485	0.9758	1	0.5296	0.7196	0.9521
14	1	0.8808	0.9872	0.9936	1	0.8812	0.9873	0.9937	1	0.7762	0.9747	0.9873
15	1	0.9680	0.9972	1.0009	1	0.9681	0.9831	1.0009	1	0.9371	0.9944	1.0018

Fig. 1. Computational model description: (a) Conceptual system design geometry, (b) Spent fuel radiation analysis, (c) Scintillated photon analysis, (d) Generated current, (e) Generated voltage, (f) Generated power

2-4 Computational model validation

4. Conclusions

Scintillator based gross and partial defect detector

- Feasibility of both systems was demonstrated.
- Results of scintillator based gross defect detector indicated there is enough difference in electricity generation if the burnup/cooling time is different.
- Scintillator based partial defect detector had enough resolution to detect the existence of one fuel rod diversion and roughly estimates the position of a partial defect.
- The system has potential to more quickly detect defects in a spent fuel assembly.
- The system suggested the possibility of adequate inspection without an inspector.

References 5.

[1] IAEA, THE STRUCTURE AND CONTENT OF AGREEMENTS BETWEEN THE AGENCY AND STATES REQUIRED IN CONNECTION WITH THE TREATY ON THE NON-PROLIFERATION OF NUCLEAR WEATONS, INFCIRC/153, corrected, IAEA, 1972.

[2] Haneol Lee and Man-Sung Yim, Examination of spent fuel radiation energy conversion for electricity generation, Nuclear Engineering and Design, Vol. 300, pp. 384-392, 2016.

[3] M. L. Boone et al., DEVELOPMENT OF AN ADVANCED 16X16 WESTINGHOUSE TYPE PWR FUEL ASSEMBLY FOR SLOVENIA, 5th International Conference on Nuclear Option in Countries with Small and Medium Electricity Grids, 2004.

[4] "Country Details.", IAEA-PRIS, https://www.iaea.org/PRIS/CountryStatistics/CountryDetails.aspx?current=KR, 03 Oct. 2016.