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ABSTRACT⎯A new class-based histogram equalization 
method is proposed for robust speech recognition. The 
proposed method aims at not only compensating the acoustic 
mismatch between training and test environments, but also at 
reducing the discrepancy between the phonetic distributions of 
training and test speech data. The algorithm utilizes multiple 
class-specific reference and test cumulative distribution 
functions, classifies the noisy test features into their 
corresponding classes, and equalizes the features by using their 
corresponding class-specific reference and test distributions. 
Experiments on the Aurora 2 database proved the effectiveness 
of the proposed method by reducing relative errors by 18.74%, 
17.52%, and 23.45% over the conventional histogram 
equalization method and by 59.43%, 66.00%, and 50.50% 
over mel-cepstral-based features for test sets A, B, and C, 
respectively. 

Keywords⎯Acoustic feature compensation, class-based 
histogram equalization, robust speech recognition. 

I. Introduction 
The performance of speech recognition systems degrades 

severely when employed in acoustically mismatched 
environments, compared to when they are used in training 
environments. The main cause of this acoustic mismatch is 
corruption by additive noise and channel distortion. In this 
issue of robust speech recognition, the feature space-based 
approach has been widely employed due to such advantages as 
easy implementation, low computational complexity, and 
effective performance improvements. Acoustic environments 
corrupted by additive noise and channel distortion act as a 
nonlinear transform in the feature spaces of the cepstrum or 
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log-spectrum [1]. Thus, classical linear feature space-based 
methods such as cepstral mean subtraction or cepstral mean 
and variance normalization have substantial limitations even 
though they yield significant performance improvements under 
noisy environments [2], [3]. 

As an alternative approach to coping with the drawbacks of 
linear transform-based methods, the histogram equalization 
(HEQ) technique has been employed for compensating the 
acoustic mismatch. While HEQ was originally used in image 
processing applications, recent researches have shown that it is 
also effective in preventing performance degradation in speech 
recognition systems under noisy environments [4]-[7]. The 
basic assumptions of HEQ in the compensation of the acoustic 
mismatch can be summarized as follows. First, the phonetic or 
acoustic class distributions in the feature vector should be 
identical for the training and test data. Then, the acoustic 
mismatch causes a nonlinear transformation of the test 
distributions. Finally, matching the training and test 
distributions provides the inverse transformation to reconstruct 
a clean speech representation. Therefore, the validity of HEQ 
can be weakened if the phonetic or acoustic class distributions 
of the training and test data are not identical. In this case, the 
inverse transformation tends to impair the class separability of 
features by confusedly mapping to the regions of other 
phonetic or acoustic classes. However, in many speech 
recognition applications, test speech utterances can be too short 
to make their phonetic or acoustic class distributions identical 
or similar to those of the training data. In this condition, the first 
assumption of HEQ becomes invalid. As a result, it is difficult 
to take full advantage of HEQ for compensating the acoustic 
mismatch in noisy environments. Here, we call the discrepancy 
between the two distributions a phonetic mismatch. 

In this letter, we propose a new, class-based HEQ (CHEQ) 
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technique to reduce this limitation of the conventional HEQ. 
Instead of utilizing the global reference and test cumulative 
distribution functions (CDFs) as in the conventional HEQ, the 
proposed method employs multiple class-specific CDFs not 
only to compensate for the acoustic mismatch but also to 
reduce the phonetic mismatch between training and test data. 
The experimental results show that the proposed CHEQ is 
superior to the conventional HEQ for improving speech 
recognition accuracy in noisy environments. 

II. Conventional Histogram Equalization 

The basic idea of HEQ is to convert the probability density 
function (PDF) of the original variable into its reference PDF. 
For a given random test variable y, whose PDF is given as 
pY(y), the inverse transform function x = F(y) mapping pY(y) 
into reference PDF pX(x) can be given as in [5] as 

       ))(()( 1 yCCyFx YX
−== ,             (1) 

where )(1 xCX
−  is the inverse of reference CDF CX(x), and 

CY(y) is the test CDF of the random variable y. 
One of the critical issues in HEQ is the reliable estimation of 

reference and test CDFs. In speech recognition applications, the 
amount of training data is usually large enough that the reference 
CDFs can be reliably estimated by cumulative histograms. 
However, when short utterances are used as test data, the length of 
each utterance may be insufficient for a reliable estimation. 
Accordingly, test CDF estimation becomes much more important 
in these test environments. When the amount of estimation 
samples is small, the order-statistic-based CDF estimation is 
known to be more accurate than the cumulative histogram-based 
method, and its brief description is as follows [5]. 

Let us define a sequence consisting of N frames of a 
particular feature component as 
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where yk(n) is the k-th feature component at the n-th frame. 
The order statistics of (2) can be represented as  
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where [rk] denotes the original frame index of feature 
component y([rk]) in which its rank is rk when the elements of 
sequence Vk are sorted in ascending order. 

The order-statistic-based estimate of test CDFs is given as 
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where K denotes the dimension of the feature components. 

An estimate of xk(n) by transforming yk(n) with the HEQ is 
obtained as 
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III. Class-Based Histogram Equalization 

The proposed approach to reducing both acoustic and phonetic 
mismatches consists of utilizing multiple class-specific CDFs at 
both the reference and test sides. By dividing the global 
distributions into sets of multiple class distributions, classifying 
feature components into their classes and then transforming them 
using their corresponding class CDFs, a phonetic mismatch can 
be effectively reduced because of the increased similarity 
between the reference and test distributions of the same class. In 
this approach, however, reliably assigning class information to 
each feature component is a prerequisite condition for providing 
the validity of CHEQ. In most HEQ methods, the equalization is 
applied to each feature component. In this respect, phonetic 
classification can be performed on a feature component basis. 
However, utilizing a feature vector instead of only a specific 
feature component is more useful in phonetic classification and is 
adopted in the proposed method. Nevertheless, it may still be a 
critical problem to accurately classify feature vectors into their 
corresponding phonetic classes in noisy environments. In this 
sense, a histogram equalized feature vector is used in the 
classification instead of the original noisy feature vector. The 
detailed idea of the proposed CHEQ is described as follows and 
is depicted in Fig. 1. 
 

 

Fig. 1. Block diagram of the class-based HEQ method. 
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Let us define feature vector Wn consisting of K-dimensional 
components at time frame n as 

T
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where T stands for transpose. 
Then, the phonetic class index î  assigned to the noisy 

feature vector Wn is obtained as 

Ii,   z,W di ini
≤≤= 1)ˆ(minargˆ  ,           (7) 

where ),( ⋅⋅d  denotes the Mahalanobis distance measure, zi 
stands for the centroid of the i-th class computed by the k-
means algorithm, I is the number of classes, and nŴ  is the 
histogram equalized version of Wn by the conventional HEQ 
given as 
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In the proposed CHEQ scheme, the phonetic mismatch can 
be effectively reduced by increasing the number of phonetic 
classes sufficiently. Additionally, the accuracy of phonetic 
classification increases as more phonetic classes are used. 
However, the larger the number of phonetic classes, the smaller 
the amount of classified data for each class, which results in 
poor test CDF estimation. Hence, the number of phonetic 
classes cannot be chosen arbitrarily. Modeling each phonetic 
class by using the union of multiple small classes can be more 
accurate than using a single large class in the phonetic 
classification. In this sense, the class-tying technique is 
employed in the CDF estimation such that tied-class index ĵ  
is obtained by 
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where Zj represents the centroid of the j-th tied-class computed 
from those of all untied-classes defined in (7), and J is the 
number of tied-classes. 

Then, the proposed CHEQ formulation is defined as 
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where )(),ˆ( yC kjY  and )(ˆ yr kj  denote the test CDF and the 
rank at the thˆ−j tied-class and k-th feature component, 
respectively. jN ˆ is the number of frames classified as the 

thˆ−j tied-class, and )(1
),ˆ( xC kjX

−  represents the inverse of 
reference CDF )(),ˆ( xC kjX  obtained by the cumulative 
histogram computed from all training data of the k-th feature 
components classified as the thˆ−j tied-class. 

IV. Experimental Results 

In the performance evaluation, the TI-DIGITS-based Aurora 
2 database is used. Only clean speech data are used in the 
training of all experiments. Test sets A and B, each containing 
four kinds of additive noises, and test set C, contaminated by 
two kinds of additive noises and different channel distortion, 
are chosen for evaluation. The feature extraction procedure is 
conducted based on the ETSI Aurora formula as follows. 
Speech signals are blocked into a sequence of frames, each 
25 ms in length with a 10 ms interval. Speech frames are pre-
emphasized using a factor of 0.97, and a Hamming window is 
then applied. From a set of 23 mel-scaled filter-bank log 
energies, a 39-dimensional mel-frequency cepstral coefficient 
(MFCC)-based feature vector consisting of twelve MFCCs, the 
log energy, and their first and second derivatives is extracted. 
Prior to the derivative computation, 22-order cepstral liftering 
is applied to the static MFCCs [8], [9]. Each digit-based hidden 
Markov model consists of sixteen states, and each state has 
three mixtures. The number of histogram bins in the reference 
CDFs was chosen as 64 in both the conventional HEQ and 
CHEQ because a further increase did not show any meaningful 
performance improvements. The equalization was conducted 
on all of the 39 components of the MFCC feature vector for the 
training and test data with utterance-by-utterance estimation of 
the test CDFs.  

Figure 2 shows the recognition results with respect to various 
numbers of classes when untied and tied-class CHEQs are 
used. The results are represented in terms of the averaged word 
error rate (WER) for the three test sets.  

For each number of tied-classes, there is a corresponding 
number of untied classes, which is empirically chosen from the 
experiments. In this figure, we observe that both CHEQ methods 
provide significant improvements over the conventional 
 

 

Fig. 2. WERs of untied/tied-class CHEQ methods with respect to 
various numbers of classes on Aurora 2 Task (averaged 
between 0 and 20 dB SNRs for test sets A, B, and C). 
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HEQ only when the number of classes exceeds two. Also note 
that the use of the class-tying technique produces further 
improvements with an error rate reduction (ERR) of 4.65% 
over the untied-CHEQ. 

Table 1 shows the recognition results for test sets A, B, and C 
obtained by the MFCC, conventional HEQ, and CHEQ, 
respectively. The tied-class parameters, I and J, are empirically 
chosen as 60 and 6, respectively, from the results shown in Fig. 
2. For sets A and B, the CHEQ shows outstanding 
improvements over the MFCC with average ERRs of 59.43% 
and 66.00%, respectively, and substantial improvements over 
the conventional HEQ with 18.74% and 17.52%, respectively. 
The results for set C also indicate that the CHEQ achieves 
significant improvements over the MFCC and conventional 
HEQ with average ERRs of 50.50% and 23.45%, respectively. 
From these results, we note that the proposed method shows 
consistent effectiveness for compensating the acoustic 
mismatch caused by both additive noises only, and additive 
noises and channel distortion together. 
 

Table 1. WERs and ERRs for Aurora 2 Task (averaged between 0
and 20 dB SNRs). 

WER (%) ERR (%) over 
Noises 

MFCC HEQ CHEQ MFCC HEQ 

Subway 30.14 18.68 15.44 48.79 17.38

Babble 49.76 18.60 16.69 66.47 10.28

Car 40.13 18.51 13.45 66.48 27.31

Exhibition 35.47 21.85 17.51 50.63 19.84

A 

Average 38.88 19.41 15.77 59.43 18.74

Restaurant 48.49 18.02 16.58 65.80 7.98 

Street 38.48 18.21 14.68 61.86 19.41

Airport 46.67 17.58 14.47 69.00 17.72

Station 44.08 19.45 14.70 66.65 24.41

B 

Average 44.43 18.32 15.11 66.00 17.52

Subway 32.77 22.42 17.41 46.88 22.34

Street 33.87 20.68 15.58 54.00 24.64C 

Average 33.32 21.55 16.50 50.50 23.45

 

 
V. Conclusion 

For compensating the acoustic mismatch, the conventional 
HEQ has a fundamental limitation when the phonetic class 
distributions of the training and test data differ from each other. 
The proposed class-based HEQ not only compensates for the 
acoustic mismatch but also reduces the phonetic mismatch by 

utilizing multiple class-specific reference and test CDFs. 
Experimental results showed the effectiveness of the class-

based HEQ over the conventional HEQ for compensating an 
acoustic mismatch. 
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