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ABSTRACT

We present a practical self-calibration algorithm that only
requires a linear projective reconstruction. Recently, many
self-calibration algorithms that use only the information in
the image have been proposed. But most algorithms require
bundle adjustments in the projective reconstruction or in
the nonlinear minimization. We overcome the sensitivity of
the self-calibration dgorithms due to the image noises by
adding another constraint on the position of the principal
point. We also propose a linear initialization method based
on the property of the absolute quadric. Experimental
results using real and synthetic images demonstrate the
feasibility of the proposed algorithm.

Keywords: Sdf-calibration, 3D reconstruction, absolute
quadric

1. INTRODUCTION

The metric reconstruction of a given scene from image
streams is an important step in computer vision.
Traditional methods first calibrate a camera using a
calibration object, and then acquire a metric structure of a
given scene using the correspondence between images.
These approaches need the calibration object in any given
scene, thus their application areas are limited.

Recently self-calibration (or auto-calibration) algorithms
have been actively researched to relax the requirement of
the calibration box in the scene. Self-calibration algorithms
calibrate the camera using only the information on the
images. Earlier algorithms for self-calibration deal with
situations where the intrinsic parameters of cameras remain
constant in the sequences. Most of these methods use the
property of the absolute conic that remains invariant under
all Euclidean transformations.

Faugeras et al. [1] proposed a self-calibration agorithm
which uses the Kruppa equation. It enforces that the planes
through two camera centers which are tangent to the
absolute conic should aso be tangent to both of its images.
Hartley [2] proposed another method based on the
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minimization of the difference between the internal camera
parameters for the different views. Polleyfeys et a. [3]

proposed a stratified approach that first recovers the affine
geometry using the modulus constraint and then recovers
the Euclidean geometry through the absolute conic. Heyden
and Astrom[4], Triggs [5] and Pollefeys & Van Gool [6]

use explicit constraints that relate the absolute conic to its
images. These formulations are especialy interesting since
they can easily be extended to deal with the varying internal
camera parameters.

Recently self-calibration algorithms that can dea with
the varying intrinsic parameters of the camera were
proposed. Heyden and Asrom [7] proposed a
sdlf-calibration algorithm that uses explicit constraints from
the assumption d the camera intrinsic parameters. They
proved that self-calibration is possible under varying
cameras when the assumptions that the aspect ratio was
known and no skew establishes about the camera. They
solved the problem using the bundle adjustment that
requires simultaneous minimization on the all reconstructed
points and cameras. Moreover, the initialization problem
was not properly presented. Bougnoux [8] proposed a
practical self-calibration algorithm that used the constraints
derived from Heyden and Asrom[7]. He proposed the
linear initialization step in the nonlinear minimization. He
used the bundle adjustment in the projective reconstruction
step. Similarly, Pollefeys et a. [9] proposed a versatile
self-calibration method that can deal with a number of
types of constraints about the camera. They showed a
specidized version for the case where the foca length
varies, possibly also the principal point.

We propose a practical self-calibration algorithm that
only requires a linear projective reconstruction. We
overcome the sensitivity of the algorithm partially due to
the linear projective reconstruction by adding a new
constraint on the principa point. We aso propose a new
linear initialization method based on the property of the
absolute quadric.

2. THE SELF-CALIBRATION ALGORITHM

In this section, we review the self-calibration agorithm that
appears in [8]. The process of projection of a point in 3D



to the image plane can be represented as the following
sequential steps:
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where T represents the transformation of coordinate
systems from world to the camera-centered system, Py is
the perspective projection and A consists of the intrinsic
parameters of camera

We use the following assumptions about the intrinsic
parameters of camera
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It is well known that we can reconstruct a scene up to
the projective transformations using only corresponding

points on the images [10, 11]. This can be represented as:
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where m) is the jth point in the i-thimage, P, isa
projective projection matrix of thei-th imageand M [ is
a projective gructure of scene point corresponding to the
image point mj . The projective structure M j"”’j is
related to the metric structure by a projective
transformation matrix Q . In Eg. (3), any nonsingular
matrix Q satisfies the above relation, so there can be
many projective reconstructions. There exists aunique Q
matrix that transforms the projective structure to a metric
structure of a given scene. Finding this Q matrix is
calibration process. We can obtain the Euclidean projection
matrix and the metric structure of a scene using this unique
Q matrix.
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In generd, under the pinhole camera model, we can set
the projective projection matrix of the first camera as
P = [I 3 03]. We have the Euclidean projection matrix

proj —

of the first camera P =[A, 0,] if we set the world
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coordinate at the optical center of the first camera. By
substituting these projection matricesin Eq. (4), we obtain:
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Here, Q is defined up to a scale and it can be
represented as
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Now Q matrix contains six unknowns. Next we review
the constraint for obtaining Q matrix.
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then we have the following constraint for the Euclidean
projection matrix, P,.[12].
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These equations give two constraints for the unknown

Q matrix for each camera and we can obtain the solution
using a least 4 images. The resulting problem can be
formulated as the nonlinear estimation that minimizes Eq.
(8) for each camera.

3. ANEW LINEAR METHOD FOR THE
INITIALIZATION

The nonlinear estimation problem needs some initia values
of unknown parameters. The initial values of u,,v, ae
set as the image center of the first image. Bougnoux [8]
proposed the followinginitialization method for f using the
Kruppa equation.
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where F is the Fundamental matrix, A and A¢ are the

matrices that contain the intrinsic parameters of the first

and the second cameraand e¢ is the epipole of the second

camera. If we remove the scle using F = F, et= ne¢ we

have the Kruppa eguation:
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Bougnoux [8] proposed the following closed-form
solution for theinitial value of f using Eq. (10).
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where p =(u,,V,l)", p¢=(ugivg.1)" . He also presented a
method to determine the initial values (ql,qz,q3 " using
the property of orthogonality of the rotation matrix.

In this paper we propose a new method for the initial
values based on the invariancy of the absolute quadric. Our
method can recover the initial valueslinearly.
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If weapply P, @P,,Q toEq.(12) we have
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Eq. (13) can be represented as:
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From the left-hand side of Eqg. (14), we obtain
Wyp- U/ = Wopm VT Wy =Wy, Wig =Wy, and
W,; =W, . If we impose these equations on the right-hand
side, this vyiedds 4(n-1) linear equations in
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f, ,ai,az,ag,"al If we remove ||a| in the given

equations, we have 3(n-1) linear equationsin f?,a,,a,,a, .

We assume that the intrinsic parameters are constant to get
initial parameters. We aso assume the principal point of
the first camera as the image center. Under these
assumptions we have four unknowns f,,q,,q,,0, that
can be obtained if we use more than three images through a
|east-squares estimation.

4. ADDING ANOTHER CONSTRAINT IN THE
MINIMIZATION

We add another constraint to improve the behavior of the
agorithm in the nonlinear minimization. We observed that
the agorithm often gives some erroneous results when we
only use the two constraints of Eq. (8). (This will be later
explained in Section 5.)

The accuracy of the algorithm depends on the accuracy
of the projective reconstruction. We used the simple linear
method of Hartley [13] for the projective reconstruction,
which gives a comparable result to that of nonlinear
minimization under the Gaussian noise distribution. In
spite of the small residual in the projective reconstruction
the algorithm often gives a false result as noise level
increases while the residual of the nonlinear minimization
decreased. This is due to the inability of the two
constraints to constrain the solution space in the
meaningful range when the noise perturbs the projective
projection matrices. Each constraint is a 4" order
polynomial so the algorithm is very sensitive to the noise.

We partially overcome this problem by adding another
constraint on the minimization. This is based on the
experimental observations of the behavior of the algorithm
that uses the constraints of Eg. (8). Among the six
unknowns the principal point was most sensitive in the
nonlinear minimization. Therefore it is necessary to

constrain the position of the principal point in a restricted
area to obtain a meaningful solution. We add the following
constraint on the principal point.
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where U,,V, is the image center of the first camera and
U, ,V, isthe estimated principal point in the minimization
process.

We do not fix the value of the principal point of the first
camera as the known value of the image center of the first
image. This gives also a bad behavior in the minimization
process.

The overall structure of the self-calibration algorithmsis
asfollows:

(@ Findtheprojection matrix P, by projective

reconstruction between images, eg., 1-2, 1-3, ...

(b) TdMEnsform the projective reconstruction of (a) to

have an equal basisin P?

() Obtain someinitia vaues of the unknowns using

the linear method.

(d) Obtain a4X4 homography Q through the nonlinear

minimization.

(6) Recover the Euclidean projection by P, @R, ,Q

(f)  Recover the Euclidean structure by

M Jguc @glM Troj
The step (b) is necessary because Eq. (3) establishes under
an equal basisin P?®. We use the method proposed by
Csurka & Horaud [14] to transform the projective
reconstruction to have an equal basisin P2,

5. EXPERIMENTAL RESULTS
5. 1EXPERIMENTAL RESULTSUSING SYNTHETIC
IMAGES

At first we present experimental results using the synthetic
images. For three different types of 3D structures, we
generated the image sequences using the predefined vaues
of intrinsic and extrinsic parameters. We investigated the
performance of the agorithm using images with a Gaussian
noise. All the results are from error statistics after 100 trials
at each noise level. Fig. 1 and Fig. 2 compare the estimated
initial value by the proposed method with that of
Bougnoux [8]. In Fig. 1, D.C. represents the Degenerated
Case when the square root term in Eq. (11) has a negative
vaue or the denominator becomes zero. In the simulation,
the proposed initialization method gves no degenerated
cases. Also the proposed method gives better initial values
when the noise level is smaller than 0.8.
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Fig. 1. The variation of initial value of (a) f and (b) q

obtained from the method by Bougnoux [8] and the

proposed method with respect to the noise variance.

We could not always obtain the meaningful solution in
the simulation when the noise level is greater than some
values using the original two constraints in Eq. (8). But in
these cases the residua in the projective reconstruction
remains small and the residual of minimization function
decreased too. This is due to the sensitivity of the
constraints, which is a 4" order polynomial, to the noise.
Fig. 2 represents the result using the origina two
congtraints. We evaluated the accuracy of the estimated
solution by comparing the values of f and q with those of
true ones. True value of g can be obtained using Eq. (4) by
the transformation matrix between the true projective and
metric structures. We represent the error of the estimated q
vector by the angular difference with the true one. Fig. 2
shows the estimated mean vaue, the minimum and
maximum value at a fixed noise level. We found from the
analysis of experimental results that the estimated principal
point varies much when compared to other values. Fig. 3

represents the result when we added a new constraint of Eq.

(15). We could obtain consistent results in the simulation
and the proposed algorithm gives a better performance.
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Fig. 2. The estimated values of (a) f (b) g when used the
original constraints of Eq. (8).
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Fig. 3. The estimated values of (a) f (b) q when used
additional constraint of Eq. (15).
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Next we present the performance of the new linear
initialization method using the additional constraint in the
self-cdibration algorithm. We used a synthetic image
sequence of a 15x15x15cm® hexahedron with 27 points on
each three planes. Images were taken from six different
viewing positions as described in Table 2. We consider a
situation where the intrinsic paramete's of cameras vary as
shown in Table 1. Fig. 4 shows the mean of the relative
error of the internal parameters over 30 trials for the sixth
camera. The error in the estimates of the intrinsic
parameters increases monotonically as the image noise
increases.

The mean of the relative error of the external parameters
is depicted in Fig. 5. We obtained the rotation and the
translation parameters through the decomposition of the
estimated Euclidean projection matrix. As in the internal
parameters, a similar linear tendency to image noise can be
observed.

Fig. 6 represents the accuracy of the method in terms of
3D structure recovery. From the scaled Euclidean structure
we estimated the relative error of the angle formed by three
adjacent points and the ratio of length between two points.



The accuracy degrades monotonically as the image noise
increases.

We can observe that the proposed algorithm can
effectively cope with the given situation in spite of the
varying internal parameters of camera.

Table 1 The values of intrinsic parameters used in the
varying cameraimage sequences.

CiLf{cCc2| C3| C4| C5| C6
a, |700 | 700 [ 730 | 760 | 790 | 820
a, |700 | 700 | 730 | 760 | 790 | 820
u, |256 | 256 | 256 | 256 | 256 | 256
vV, [256 | 256 | 256 | 256 | 256 | 256

Table 2 The extrinsic parameters used in the generation of
synthetic image sequences

Rotation Trandlation
b,09,.9.) [ded | (t.t.t,) [em]
Cl-C2 (79- 57107 (2.5,5.0, 2.5)
ci-c3 | (- 28-10"-159 (5.0, - 5.0,5.0)
Cl-C4 (37-15"207) (7.5,5.0, 7.5)
c1-c5 | (-5°-20"- 107 (9.0, - 5.0,9.0)
c1-c6 | (-10°-302-157) | (7.0 - 8.010.0)
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Fig. 4 The relative mean error of the estimated intrinsic
parameters of the sixth camera
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Fig. 5 The relative mean error of the estimated extrinsic
parameter (a) rotation between camera 1 and 6 (b) direction
of the translation
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Fig. 6 The relative mean error of the angle among three
points and ratio of length (a) angle among three points (b)
ratio of length.

5.2 EXPERIMENTAL RESULTSUSING REAL
IMAGES

In this section, we present the experimental results using
red images. Fig. 7 shows an image sequence of a calibration
box used in the experiments. In the experiments we used
the cross points on the calibration box to define the
correspondence. We compare the quality of estimated
structure using the angle between each plane and the ratio
of length between points. We obtain the normal vector of
the plane after fitting a plane using the estimated Euclidean
structure on each plane.

The agorithm using the origina two constraints gives
angles between each plane as 82.747, 81.97% and 81.95".
The mean and standard deviation of the ratios of length
between horizontal points is 0.4790+0.0266 and
between vertical pointsis 0.4702+0.0200. The ratio of
horizontal and vertical length is 1.0187. The proposed
agorithm gives angles between each plane as
87.157, 88.63" and 88.11~. The mean and standard
deviation of the ratios of length between horizontal points



is 0.2656+0.0043 and between vertical points is
0.2668+ 0.0062 . Theratio of horizontal and vertical length
is 0.9956. The true angle between each plane is 907 and
true value of the ratio of horizontal and vertical length is 1.
The proposed agorithm gives much improved results. Fig.
8 shows the estimated Euclidean structure by the proposed
dgorithm.

Fig. 9 represents an outdoor image sequence captured by
ahand-held camcorder. The algorithm using the original two
constraints gives the mean and standard deviation of the
ratios of length between horizontal points as
0.1321+0.615 and between vertica points as
0.0615+ 00016 . The ratio of the length between the
horizontal and vertical lines is 2.14. The proposed
dgorithm gives 0.0421+0.0012 and 0.0179+ 0.00046 .
The ratio of length between the horizontal and vertica lines
is 2.35. The rea vaue of ratio of the length by
measurement is 2.48.

The proposed agorithm gives a better quality of
Euclidean reconstruction in both experiments.

Fig. 7 A real image sequence of a calibration box.
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Fig. 8 A scaed Euclidean structure obtained by the
proposed self-calibration algorithm (a) a perspective view;
(b) adifferent view of (a).

Fig. 9 Aninput image sequence of an outdoor building.
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Fig. 10 The reconstrcuted Euclidean structure by the
proposed algorithm (&) a perspective vew; (b) another
view of (a).
6. CONCLUSIONS

We have presented a practical self-calibration algorithm
under varying cameras that only requires a linear projective
reconstruction. We a so proposed a new linear initialization
method for the self-cdlibration based on the property of the
absolute quadric. We improved the performance of
sdlf-calibration by adding a new constraint about the
position of the principal point. By using this constraint it
is possible to use only the linear projective information for
practical self-calibration.
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