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Summary 
 

In this paper we present a hybrid hierarchical (pyramid-based) estimation algorithm for robustly estimating 
dominant motion under illumination variation. This algorithm can be briefly summarized as the selective 
application of the three dynamic image models for accommodating local brightness changes between two 
subsequent image frames according to the pyramid level in conjunction with the coarse-to-fine strategy. For 
this, we first devise two simple and differential dynamic image models from the generalized dynamic image 
model (GDIM model) previously proposed. The GDIM model has the local parameters of the illumination 
gain and offset factors, while the devised two differential models contain either only the local illumination 
gain factor (MDIM model) or contains no illumination factor (NDIM model). Especially, since the NDIM 
model shows the strong superiority during the initial parameter updating process, starting from the initial zero 
motion estimate, at the coarse pyramid level, the accurate motion estimate by the NDIM model at the coarse 
level drives the subsequent motion estimation by the remaining models at the finer pyramid level to be 
performed successfully. In order to illustrate the validness of the hybrid hierarchical estimation framework, 
some results through simulation and experiments are provided. 

 

1. Introduction 

Robust estimation of the dominant image motion in 
an image sequence is very important in various computer 
vision applications, such as image registration, motion 
segmentation, and structure from motion. 

Since most motion estimation algorithms depend on 
the intensity constancy assumption (ICA) [1], they 
become useful only under constant or slowly varying 
illumination condition. However, such an assumption is 
easily violated in real scene environments. According to 
the work [2, 3], an intensity value at an image pixel 
corresponding to a small surface patch in real scene is 
influenced by the following four photometric factors: 
light intensity, surface reflection property, response 
characteristic of image sensor, and geometric 
configuration between illumination lighting direction, 
surface normal, and image sensor orientation. So, change 
of any one among them may invoke significant 
discrepancy between two subsequent intensity values.  

In recent years, several methods for motion estimation 
under illumination changes have been actively developed. 
Negahdaripour [4, 5] proposed an image motion 
constraint equation based on the generalized dynamic 
image model (GDIM), which expresses the local linear 
image variation between two subsequent intensity values 
I1(x) at time 1 and I2(x+δx) at time 2 by the first-order 

linear equation with illumination gain and offset factors, 
α(x) and β(x), respectively, 
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where δx indicates a small image displacement between two 
image frames. Assuming the local constancy of the unknown 
fields of both the optical flow and the image variation fields 
within a local neighborhood, he solved the unknown fields 
using the least-squares method. Szeliski and Coughlan [6] 
suggested the introduction of a global image variation model 
with constant illumination gain and offset factors to account 
for global photometric variation in image registration 
problem. In a recent work [7], the low-order polynomial 
function has been applied to each of the global illumination 
gain and offset factors so as to cover the more complicated 
global illumination variation. Also, there have been some 
results that solved the il lumination variation problem 
regarding it as a linear parametric combination of some 
illumination basis images [8, 9]. On the other hand, Black 
[10] used the filtered input images, which are obtained 
through the local normalization of an input intensity image 
using the global sample mean of it, in his open code for 
robust motion estimation. His method may be valid under 
constant or globally varying illumination, but it becomes 
invalid under locally complicated illumination variation. 
Also, he didn't present any theoretical ground for the 
introduction of the filtered image and any systematic 
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experimental results. 
We here focus on the problem of robust estimation 

of large dominant image motion under local illumination 
variations. Of course, this task can be implemented by 
applying the previous GDIM dynamic image model to 
the classical direct model-based hierarchical estimation 
technique. However, this approach discloses the critical 
limit in the initial parameter estimation process, which 
will be discussed in detail later. Therefore, we suggest a 
hybrid hierarchical estimation strategy for accomplishing 
accurate motion estimation fast and effectively. For this, 
we first devise two simple and differential dynamic 
image models for accommodating local illumination 
variation from the GDIM model through some simple 
mathematical manipulations. Then, based on each of 
three dynamic image models, three algorithms for 
dominant motion estimation are implemented, and they 
are compared through some tests. As a result, we arrive 
at the presented hybrid hierarchical estimation 
framework, which can be briefly described as follows: 
the three dynamic image models including the GDIM 
model and the two devised models are employed 
selectively according to the pyramid level. Especially, 
since the second devised model is superior to the 
remaining models in performing the initial parameter 
updating process at the coarse level, employment of the 
NDIM dynamic image model for motion estimation at 
the coarse pyramid level is the essence of the proposed 
strategy. Finally, experimental results on synthetic and 
real images are provided to prove the validness and 
effectiveness of the presented algorithm. 
 
2. Two differential dynamic image models 

Let mi(x) and )(2 xis  be the local sample mean 

and local sample variance of intensity functions,  
respectively, within a small neighborhood W centered at 
current image pixel x at time i. With the assumption of 
both α(x) and β(x) in the GDIM model being constant 
within W, substituting the definition of mi(x) and )(2 xis  

into equation (1) gives the following two relations: 
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Next, subtraction of mi(x) in equation (2) from Ii(x)  in 
equation (1) leads to the following local mean difference 
dynamic image model (MDIM) for the local mean 
difference image function of Imi(x) ≡ Ii(x) − mi(x): 
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Finally, division of Imi(x) in equation (4) with si(x) in 
equation (3) provides the following local normalized 
dynamic image model (NDIM) for the local normalized 
image function of Imsi(x) ≡ (Ii(x)−mi(x)) / si(x): 
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Fig. 1 shows a set of differential images including the 

intensity image, the local mean difference image, the local 
normalized image, and finally the Black’s filtered image for 
a road scene, which are scaled into the gray range of 0 ~ 255 
for visualization. Here, we can see that the latent features 
well not seen in the road scene are clearly revealed in the 
local normalized image. This characteristic may increase the 
amount of the salient image features necessary for accurate 
motion estimation. 
 

   
(a) I(x)                (b) Im(x) 

   
(c) Ims(x)       (d) Black’s filtered image 

Fig. 1  A set of differential images for a road scene 
 

3. Formulation for dominant motion estimation 

We here provide some formulations for robust 
estimation of dominant image motion under illumination 
variations, based on each dynamic image model. For 
dominant image motion estimation, direct motion model-
based approach is basically implemented.  

First, the first-order Taylor series expansion of the GDIM 
model (equation (1)) with α(x) and β(x) gives the following 
motion constraint equation 
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where ∇ denotes a spatial gradient operator, and we 
approximate the small displacement δx as a 2D global 
dominant translation motion model containing two motion 
parameters, i.e., δx ≅ a = (u, v)T, for simple and clear 
analysis. The unknowns of the global motion parameter a 
and the local parameters α(x) and β(x) at all pixels can be 
estimated by solving the nonlinear minimization problem of 
the following global energy function defined over an entire 
image, 

( ) ( )∑ −−+∇==
x

aa σβαρβα ;  ,, 122 IIIrE
T

GDIM
     (7) 

where ρ indicates a robust loss function of a residual r(x) 
and a scale factor σ to reduce the bad effect of the outlier 
components on the resulting motion estimate [12, 13]. To 
solve the nonlinear minimization problem effectively, after 
calculating the analytic solution of α(x) and β(x) within the 
local neighborhood W and substituting it into the global 
energy function, we compute the global estimate a 
successively by applying the iterative reweighted least 
squares (IRLS) technique [4] to the adjusted global energy 
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function. This is similar to the techniques used in [13, 
14]. Then, α(x) and β(x) is naturally determined by the 
analytic solution using the current global motion estimate.  

Next, for the MDIM model (equation (4)) with α(x), 
the corresponding motion constraint equation is 
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and the global energy function is defined as follows: 
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The unknowns of a and α(x) in this model can be solved 
similarly to the former algorithm. Finally, in the case of 
the NDIM model (equation (5)) with only the unknown 
motion parameter  a, the motion constraint equation is 
determined as 
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and its global energy function is defined as 
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This can be solved in the same way as in the classical 
algorithm [4]. 

To assess the performance of each dynamic image 
model-based motion estimation algorithm using the 
formulations described above, they have been applied to 
a pair of random dot patterns in Fig.2 (a), containing 
both dominant translation motion of (u,v) = (-1,-1) and 
synthetic illumination variation. As a result, only the 
NDIM (model based) algorithm recovered the dominant 
motion well, while the GDIM and MDIM algorithms 
failed to recover it. Especially, in the case of the GDIM 
and MDIM model, the initial parameter updating step 
from the initial estimate of zero motion becomes 
unstable easily according to the input image content, 
namely, by the amount of the salient image features of 
the dominant image region relative to that of the outlier 
motion components, the distribution of the frequency 
components of the image, and etc. For the better 
understanding of this phenomenon, we constructed the 
global energy function map on the (u, v) plane, as shown 
in Fig. 2(b) ~ 2(f), where the descent direction of the 
energy map at the origin, i.e., at (u, v)= (0,0) informs us 
which direction in the u-v plane the initial estimate of 
zero motion will be updated toward. When the initial 
estimate a0 is set to zero motion, the NDIM energy map 
by equation (11) shows the descent direction of nT = (-
0.60,-0.79) toward the true motion (-1,-1) and the global 
minimum near the true motion. In the GDIM and MDIM 
maps, the erroneous descent direction of nT = (0.23,0.97) 
and (0.69,0.72), respectively, heading in the opposite 
direction of the true motion is observed. However, when 
using an initial estimate a0 approximate to the true 
motion, for example, when using a0 = (-0.2,-0.2), both 
GDIM and MDIM maps also show the accurate descent 

direction of nT = (-0.65,-0.75) and (-0.53,-0.84) at the origin, 
respectively. Note that the actual value for a velocity point in 
the u-v plane is the sum of its velocity in the map and the 
used initial estimate, i.e., (u,v)actual = (u,v)in the map + a0 . 
Actually, the two algorithms succeed in recovering the 
dominant motion when using the initial estimate. This 
superiority of the NDIM algorithm in the initial updating 
process may be originated from the followings: The 
conspicuous disclosing of the latent image features in the 
local normalized image and the relatively low dimension of 
the unknown parameter space in the NDIM model. 
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(f) 

Fig. 2 The global energy function maps for a pair of 
noise patterns 
 
4. Hybrid hierarchical estimation strategy 

A coarse-to-fine strategy [15] is required for 
recovering large image motion. Through a series of 
spatial filtering and sub-sampling of a pair of input 
images, image pyramids are constructed. At the coarse 
level, most of image noise components are significantly 
smoothed, but, at the full resolution level, the noise 
components are relatively predominant.  

As demonstrated in the previous section, the NDIM 
model strongly drives the iterative parameter updating 
process successfully while, in the case of the GDIM and 
MDIM models, it is easy to fall into a local minimum 
state (causing the erroneous estimate). This superiority of 
the NDIM model relative to the remainder may be due to 
the following: First, since the requirement of the 
additional estimation for the local illumination variation 
factors in the GDIM and MDIM models increases 
significantly the dimension of the unknown parameter 
space, it can make the behavior of the initial update 
process even more unstable. Second, the conspicuously 
disclosing of the latent image features in the local 
normalized image can increase the amount of the 
matching features between two consecutive image 
frames.  
Therefore, at the coarse level, where noise components 
are considerably smoothed, the application of the NDIM 
dynamic image model is recommended for acquiring a 
reliable motion estimate, which can harden a more 
accurate motion estimation in the subsequent iterative 
parameter updating process at the finer pyramid level. 
On the other hand, at the fine level, since the nois e 
components appear strongly, especially the application of 
the NDIM model in the finest level can degrade the 
accuracy of the motion estimate a little relative to the 
case of the remaining models. Fortunately, once a 
reliable estimate has been given as a initial estimate, the 
GDIM or the MDIM model also can perform the good 
motion estimation more insensitively to noise 
components. Therefore, at the fine levels, we recommend 
the employment of the GDIM or the MDIM model. This 
is the essential of the proposed hybrid hierarchical 
estimation framework. Fig. 3 shows the diagram for an 
example of hybrid hierarchical estimation algorithm with 
three-level pyramids. 
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Fig. 3 Diagram of a hybrid hierarchical motion estimation 
framework with three level pyramids. 
 
5. Experimental results 

To begin with, in order to prove the feasibility of the 
three model-based algorithms for robust dominant motion 
estimation under local illumination variations, we have 
applied them to the synthetic images similar to the noise 
patterns shown in Fig. 2(a). However, these images contain 
both the dominant area with motion of (u,v) = (-1,-1) and the 
outlier area with motion of (u,v) = (+1,+1), as depicted in 
Fig. 4(a), they were generated synthetically as the 
percentage of the outlier area being increased from 0% to 
100%. The initial estimate in the GDIM and MDIM 
algorithm was set to (-0.2, -0.2) and in the NDIM algorithm 
zero motion estimate was used. Fig. 4(b), 4(c), and 4(d) 
show the estimation results, where we can see that the 
GDIM, MDIM, and NDIM algorithms all recover the 
dominant motion successfully. In the case of the GDIM 
algorithm, the relatively large number of iterations due to the 
oscillation near the true value is observed, and the NDIM 
algorithm converges fast relatively to the remaining 
algorithms. 

Next, the three algorithms and our hybrid algorithm, 
implemented in the same manner as depicted in the diagram 
of Fig. 3, have been tested on a real scene shown in Fig. 5(a), 
containing the dominant background image motion of (u, v) 
= (4,4) and the outlying motion of (-3,-3) corresponding to a 
synthetically added moving square box. 

 

Outlier Area 

Dominant Area 

(u,v)= (-1,-1)

(u,v)= (+1,+1)

u

v

Outlier Area 

Dominant Area 

(u,v)= (-1,-1)

(u,v)= (+1,+1)

u

v

 
(a) 



 4

0 2 0 4 0 6 0 8 0 1 0 0

-1

- 0 . 5

0

0.5

1

Outlier (%)

∆ - GDIM

❏- MDIM   

O - NDIM
u

0 2 0 4 0 6 0 8 0 1 0 0

-1

- 0 . 5

0

0.5

1

Outlier (%)

∆ - GDIM

❏- MDIM   

O - NDIM
u

 
(b) 

0 2 0 4 0 6 0 8 0 1 0 0

-1

- 0 . 5

0

0.5

1

Outlier (%)

v

0 2 0 4 0 6 0 8 0 1 0 0

-1

- 0 . 5

0

0.5

1

Outlier (%)

v

 
(c) 

0 2 0 4 0 6 0 8 0 1 0 0
0

1 0

2 0

3 0

4 0
Iteration No.

Outlier (%)
0 2 0 4 0 6 0 8 0 1 0 0

0

1 0

2 0

3 0

4 0
Iteration No.

Outlier (%)
 

(d) 
Fig. 4 The simulation results for robust dominant motion 
estimation on the synthetic noise patterens as changing 
the percentage of the outlier component in the images 

 
At each pyramid level, the iterative updating process was 
stopped when the motion estimate was converged or 
when |uk+1 − uk| ≤ 1.e-3 and |vk+1 − vk| ≤ 1.e-3, where k 
denotes the iteration number. The sequentially computed 
motion estimates by each algorithm are displayed on the 
u-v plane, as shown in Fig. 5(b), ~ 5(e), respectively. The 
resulting figures indicate that, as can see in Table 1, the 
hybrid algorithm recovers the final good estimate of aT = 
(4.011, 3.922) fast than the others. In the case of the 
GDIM and MDIM algorithm, the initial motion estimate 
of (0.1, 0.1) was assigned.    
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(c) by the MDIM 
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(d) by the NDIM 
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(e) by the Hybrid  

Fig. 5 The estimation results on a pair of real images; ∆ - at 
level 2, q - at level 1, O - at level 0 
 
6. Conclusions 

We have presented a hybrid hierarchical estimation 
method for robust estimation of dominant image motion 
under local illumination variation, where the dynamic image 
models are employed selectively according to the pyramid 
level. Especially, since the superiority of the NDIM model in 
the initial updating process at the coarse level nearly proves 
the subsequent accurate motion estimation by the GDIM and 
MDIM model at the fine level, we could accomplish fast and 
accurate recovery of dominant image motion even under 
local illumination variation and the presence of the outlier 
motion. This hybrid hierarchical estimation strategy can be 
effectively extended to various vision problems, such as 
image matching, optical flow, and etc. 
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Table 1  The motion estimate and iteration number obtained by each algorithm at each pyramid level  

Algorithm Pyramid 
Level. Hybrid GDIM MDIM NDIM 

2 (1.066,0.934) 
#6 

(1.022,0.831) 
#31 

(1.095,0.769) 
#9 

(1.066,0.934) 
#6 

1 (2.064,1.908) 
#3 

(2.064,1.797) 
#5 

(2.091,1.809) 
#7 

(2.088,1.761) 
#3 

0 (4.011,3.922) 
#7 

(4.021,3.899) 
#10 

(4.025,3.896) 
#10 

(4.008,3.883) 
#10 
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