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a b s t r a c t

This paper addresses the planning of continuous paths for mobile sensors to reduce the uncertainty in
some quantities of interest in the future. The mutual information between the measurement along the
continuous path and the future verification variables defines the information reward. Two expressions for
computing this mutual information are presented: the filter form extended from the state of the art and
the smoother form inspired by the conditional independence structure. The keyproperties of the approach
using the filter and smoother strategies are presented and compared. The smoother form is shown to be
preferable because it provides better computational efficiency, facilitates easy integration with existing
path synthesis tools, and, most importantly, enables correct quantification of the rate of information
accumulation. A spatial interpolation technique is used to relate themotion of the sensor to the evolution
of the measurement matrix, which leads to the formulation of the optimal path planning problem. A
gradient-ascent steering law based on the concept of information potential field is also presented as
a computationally efficient suboptimal strategy. A simplified weather forecasting example is used to
compare several planning methodologies and to illustrate the potential performance benefits of using
the proposed planning approach.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

One key problem for (mobile) sensor networks is to create plans
for maneuvering/locating sensing resources in order to extract in-
formation from the environment. In this research, the plans are
often generated to reduce uncertainty in some quantity of inter-
est (e.g., position and velocity of targets (Grocholsky, 2002; Gro-
cholsky, Keller, Kumar, & Pappas, 2006; Grocholsky, Makarenko,
& Durrant-Whyte, 2003; Gupta, Chung, Hassibi, & Murray, 2006;
Hoffmann & Tomlin, 2010; Martinez & Bullo, 2006; Ristic & Aru-
lampalam, 2003;Williams, Fisher, &Willsky, 2007), the pose of the
sensor platform itself, the forecast of weather over some region
of interest (Choi & How, 2007; Choi, How, & Hansen, 2007; Ma-
jumdar, Bishop, Etherton, & Toth, 2002; Palmer, Gelaro, Barkmei-
jer, & Buizza, 1998), physical quantities under the ocean (Fiorelli
et al., 2006; Hover, 2008), or the distribution of radioactive ma-
terials (Cortez et al., 2008)) at some point in time—called the ver-
ification time and denoted here as T . Note that, in most previous
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work (Grocholsky, 2002; Grocholsky et al., 2006, 2003; Gupta et al.,
2006; Hoffmann & Tomlin, 2010; Hover, 2008; Martinez & Bullo,
2006; Ristic & Arulampalam, 2003; Williams et al., 2007), this ver-
ification time was taken to be the final time of the generated plan
τ , so that T = τ .
This paper investigates a similar planning problem, but the goal

is modified to determine the best measurement plan to minimize
the uncertainty in some verification variables in the future. In par-
ticular, the problem formulation is extended to the more general
setting wherein the verification time can be significantly larger
than the final time of the plan; i.e., T � τ . In addition, the quan-
tities of interest, called verification variables, can be variables dis-
tributed over a subset of the entire environment, not necessarily
being the whole set of state variables. These twomodifications en-
able the solution of additional classes of planning problems, e.g.,
planning to reduce uncertainty in forecasts, and also provide ad-
ditional insights on the standard problems solved in the literature
(Choi & How, 2009). One way to address this generalized planning
problem is to simply augment a null measurement between τ and
T to some measurement path, and optimize the solution over this
augmented measurement space. This approach is considered, but
several potential issues are discussed. An alternative approach that
is inspired by thewell-knownconditional independence of thepast
and the future for a given present state (Cover & Thomas, 1991) is
then proposed and several advantages, including improved com-
putational efficiency and correct quantification of the amount of
information accumulated, are clearly demonstrated in Section 3.2.
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1.1. Quantification of mutual information

Mutual information is used herein to define the uncertainty
reduction of the quantity of interest. The mutual information
between the verification variables (in the future) and some mea-
surement sequence over the time window [0, τ ] represents the
difference between the prior and the posterior entropy of the ver-
ification variables when conditioned on this sequence of measure-
ments. Thus, mutual information explicitly quantifies the impact
of sensing on the entropy reduction of the verification variables.
For the continuous trajectory planning problems of interest in this
paper, this measurement sequence is represented by continuous
random processes instead of a finite number of random variables.
In the information theory literature, there has been a well-

established theory on computing the mutual information between
the signal and observation in the continuous-time domain. Dun-
can (1970) showed that the mutual information between the sig-
nal history and observation history (i.e., signal during [0, τ ] and
observation during [0, τ ]) can be expressed as a function of the
estimation error when the signal is Gaussian and the observation
is taken through an additive Gaussian channel. Similar quantifica-
tion is performed for non-Gaussian signals (Guo, Shamai (Shitz),
& Verdu, 2005; Kadota, Zakai, & Ziv, 1971) and a fractional Gaus-
sian channel (Duncan & Pasik-Duncan, 2007). On the other hand,
Tomita, Omatu, and Soeda (1976) showed that the optimal filter for
a linear system that maximizes the mutual information between
the observation history for [0, τ ] and the state value at τ is the
Kalman–Bucy filter; Mayer-Wolf and Zakai (1984) related this mu-
tual information to the Fisher informationmatrix. Mitter andNew-
ton (2005) presented an expression for the mutual information
between the signal path during [t, τ ], t < τ and the observation
history during [0, τ ], with a statistical mechanical interpretation
of this expression.
However, these previous results cannot be directly used to

quantify the mutual information of interest in this work because
they all consider the casewhere the verification time is equal to the
final time, T = τ (or there is a verification interval [t, T ]with T =
τ ) and the verification variables are thewhole state variables. New-
ton (2006, 2007) recently extended his prior results (Mitter &New-
ton, 2005) to quantify the mutual information between the future
signal path during [τ , T ], τ ≤ T and the pastmeasurement history
during [0, τ ]. But the results in Newton (2006, 2007) (combined
with those inMitter andNewton (2005)) can only beusedwhen the
verification interval overlaps with the measurement interval and
the verification variables are the whole state variables. Therefore,
a new expression of the mutual information is required to address
the more general planning problem in this paper. Also, although
there have been several studies on continuous-time decision mak-
ing for sensors (Grocholsky, 2002; Hover, 2008; Lee, Teo, & Lim,
2001), none of these explicitly quantified the mutual information
associated with a continuous measurement over a finite time pe-
riod. In contrast, this work presents an explicit way of computing
the mutual information for continuous-time planning problems.
The straightforward approach,which augments a nullmeasure-

ment after τ , results in themutual information being computed by
integrating matrix differential equations during the time window
[0, T ], generalizing the expression ofmutual information inMayer-
Wolf and Zakai (1984), Mitter and Newton (2005) and Tomita et al.
(1976). The alternative approach based on the conditional inde-
pendence that is presented here enables the quantification of the
mutual information between the variables at T and a measure-
ment path over [0, τ ] as the difference between the unconditioned
and conditioned mutual information between the state at τ and
the respective measurement path. The expressions of the mutual
information obtained by these two approaches will be called the
filter form and the smoother form, respectively. These two forms
Fig. 1. Continuous motion planning of a sensor for informative forecast: a mobile
sensor senses some environmental variable represented by the contours along the
path designed to achieve the best forecast for the verification region in a two-
dimensional space.

are shown to be equivalent under the standard assumptions that
the system dynamics are Markovian and that the sensing noise at
a given time is independent of the future process noise. However,
the smoother form will be shown to possess the following advan-
tages over the filter form (Section 3.2):

(1) for the smoother form, the associatedmatrix differential equa-
tions are integrated over a much shorter timewindow than for
the filter form, which reduces the computational cost;

(2) the smoother form projects the decision space from the fore-
cast horizon onto the planning horizon which facilitates the
integration of this technique into various path planning algo-
rithms;

(3) analysis of the time derivatives of the presented expressions
of mutual information (in Section 3.1) shows that only the
smoother form correctly predicts the rate of information ac-
cumulation in the generalized planning problem in this work.

1.2. Continuous trajectory planning for environmental forecasting

This paper designs continuous trajectories for mobile sensors,
specifically, in the context of environmental sensing. As illustrated
in Fig. 1, a mobile sensor continuously observes environmental
field variables (e.g., temperature, pressure, concentration of chem-
icals, diffusivity) along a continuous path during the time interval
[0, τ ]. The goal is to reduce the uncertainty in the forecast of the
environmental variables over the verification region (red squares)
at the verification time T , with T � τ . Weather forecasting is one
motivating application of this planning problem, the goal being the
design of an adaptive sensor network that supplements fixed ob-
servationnetworks (Choi &How, 2007; Choi et al., 2007;Majumdar
et al., 2002; Palmer et al., 1998).
The rest of the paper is organized as follows. Section 2 presents

two formulae for quantification of mutual information, whose
properties are analyzed and discussed in Section 3. Section 4 de-
scribes spatial interpolation techniques used to develop a tractable
representation of continuous trajectories. In Section 5, the optimal
trajectory planning problem and a gradient-ascent steering law
are presented. The paper concludes with numerical studies using a
simplified weather forecasting problem.

2. Quantification of information

2.1. Linear system model

Consider the linear (time-varying) dynamics of state variables
Xt ∈ RnX subject to additive process noiseWt ∈ RnX :

Ẋt = A(t)Xt +Wt . (1)

Wt is zero-mean Gaussian, independent of Xt , and E[WtW ′s ] =
ΣW δ(t − s),ΣW � 0, where the prime sign (′) denotes the
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transpose of a matrix. The initial condition of the state X0 is
normally distributed as X0 ∼ N (µ0, P0), P0 � 0. In the trajectory
planning problem described in Section 1.2, the state vector Xt
represents the environmental variables at a finite number of grid
points. In the context of environmental forecasting, the linear
time-varying dynamics in (1) are often used to approximate the
propagation of a perturbation through the nonlinear dynamics
(Palmer et al., 1998).
Also, consider a linear measurement model for Zt ∈ Rm with

additive sensing noise Nt ∈ Rm:
Zt = C(t)Xt + Nt . (2)
Nt is zero-mean Gaussian, independent of Xt and Ws, ∀s, and
E[NtN ′s] = ΣNδ(t − s),ΣN � 0. This linear sensing model is
a good representation of the observations of directly measurable
environmental variables (e.g., temperature, pressure) that are
distributed in the field. Later in this paper, the time argument will
be omitted if no confusion is expected.
With this environmental system model, this work determines

the impact of a measurement path in the near future on the ex-
pected uncertainty reduction of some verification variables in the
far future. A measurement path up to time t is defined as
Zt = {Zσ : σ ∈ [0, t]}. (3)
The verification variables are a subset of the state variables that can
be expressed as

Vt = MVXt ∈ RnV , (4)
whereMV ∈ {0, 1}nV×nX , nV ≤ nX with every row-sumofMV being
unity. Although this work is specifically focused on the case where
entries ofMV are zero or one, the results can be easily extended to
a generalMV ∈ RnV×nX .
Entropy is employed as a metric of uncertainty because it

represents the degree of randomness of generic random entities
(e.g., random variables (Cover & Thomas, 1991), random processes
(Kolmogorov, 1956), stochastic systems (Zames, 1979)). Then, the
uncertainty reduction of one random quantity by another random
quantity is expressed as the mutual information between them.
Therefore, the information reward by a measurement path is de-
fined as
JV (T , τ ) , I(VT ;Zτ ), 0 ≤ τ < T , (5)
where I(A1; A2) denotes the mutual information between two
random entities A1 and A2. This reward represents the entropy re-
duction of the verification variables in the far future time T by the
measurement history up to the near future time τ . Results for cases
where T = τ can be found in Mayer-Wolf and Zakai (1984), Mitter
and Newton (2005) and Tomita et al. (1976), and this work partic-
ularly focuses on the case where T > τ .

2.2. Filter form

For linear Gaussian systems, there are known expressions for
themutual information between the state variables at a given time
and a measurement history up to that time (Mayer-Wolf & Zakai,
1984; Mitter & Newton, 2005; Tomita et al., 1976). Therefore, one
way to compute the information reward is to consider the filtering
problem that estimates XT based on the measurement history up
to time T denoted asZT , Zτ ∪ ∅(τ ,T ], where ∅(τ ,T ] means that no
measurement is taken during (τ , T ]. Then, I(XT ;Zτ ) = I(XT ;ZT ),
because no information is gathered by a null measurement. This
procedure of obtaining I(XT ;Zτ ) can be extended to computing
I(VT ;Zτ ), as outlined in the following proposition.

Proposition 1 (Filter Form). For the linear system described by (1)
and (2), the information reward can be computed as

JFV (T , τ ) , I(VT ;Zτ ,∅(τ ,T ])

=
1
2
ldet(MVPX (T )M ′V )−

1
2
ldet(MVQX (T )M ′V ), (6)
where ldet denotes log det of a symmetric positive definite matrix,
and PX (T ) and QX (T ) are obtained by integrating the followingmatrix
differential equations for the covariance matrices PX (t) , E[(Xt −
E[Xt ])(Xt−E[Xt ])′] andQX (t) , E[(Xt−E[Xt |Zt ])(Xt−E[Xt |Zt ])′]:

ṖX (t) = A(t)PX (t)+ PX (t)A′(t)+ΣW (7)

Q̇X (t) = A(t)QX (t)+ QX (t)A′(t)+ΣW
− I[0,τ ](t)QX (t)C(t)′Σ−1N C(t)QX (t) (8)

with initial conditions PX (0) = QX (0) = P0 � 0, where I[0,τ ](t) is
the indicator function that is unity if t ∈ [0, τ ] and zero otherwise.
Also, Eqs. (7) and (8) are well defined for finite T with P0 � 0.

Proof. Note that I(VT ;Zτ ) = I(VT ; V̂T ), where V̂T = E[VT |Zτ ],
because V̂T is the sufficient statistic that captures all information
contained in Zτ about VT (Mitter & Newton, 2005). Since the
remaining randomness in VT for a given V̂T is the estimation error
ṼT , VT − V̂T , the mutual information I(VT ;Zτ ) = H(VT ) −
H(ṼT ), whereH(A1) denotes the entropy of some quantity A1. For
a linear system with Gaussian noise, both VT and ṼT are normally
distributed with covariances: Cov(VT ) , E[(VT − E[VT ])(VT −
E[VT ])′] = MVPX (T )M ′V , Cov(ṼT ) = MVQX (T )M ′V , respectively,
when PX (T ) and QX (T ) are obtained from (7) and (8). The entropy
of a Gaussian random vector VT (or ṼT ) is computed as H(VT ) =
1
2 [ldetCov(VT )+ nV log(2πe)] (or ṼT in place of VT ). This results in
the expression in (6). �

2.3. Smoother form

This section presents a smoother form of the information re-
ward, which is equivalent to the filter form but offers many advan-
tages over the filter one. The foundation of the smoother form is the
following information identity based on conditional independence.

Proposition 2 (Information Identity). If the state dynamics satisfy
the Markov property, i.e. the future state is conditionally independent
of the past state given the present state, and the measurement noise is
independent of future process noise, then

I(VT ;Zτ ) = I(Xτ ;Zτ )− I(Xτ ;Zτ |VT ). (9)

Proof. By the chain rule of the mutual information (Cover &
Thomas, 1991), the following holds:

I(VT , Xτ ;Zτ ) = I(VT ;Zτ )+ I(Xτ ;Zτ |VT ) (10)
= I(Xτ ;Zτ )+ I(VT ;Zτ |Xτ ). (11)

By equating the right-hand sides of (10) and (11), I(VT ;Zτ ) can be
written as

I(VT ;Zτ ) = I(Xτ ;Zτ )− I(Xτ ;Zτ |VT )+ I(VT ;Zτ |Xτ ).

Notice that I(VT ;Zτ |Xτ ) = 0, becauseZτ and VT are conditionally
independent of each other for a given Xτ (Cover & Thomas, 1991).
This leads to (9). �

Based on this proposition, I(VT ;Zτ ) can be interpreted as the
difference between the information about Xτ contained in Zτ ,
before and after VT is revealed.
For linear systemswith Gaussian noise described in Section 2.1,

I(Xτ ;Zτ ) can be easily computed by using a known expression
(Mayer-Wolf & Zakai, 1984; Mitter & Newton, 2005; Tomita et al.,
1976). The conditional mutual information I(Xτ ;Zτ |VT ) can be
quantified by posing a fixed-interval smoothing problem that
incorporates the continuous measurement history Zτ and the
discrete noise-free measurement of the verification variables at
time T .

Proposition 3 (Smoother Form). Suppose that P0|V , Cov(X0|VT )
� 0 is given. Then, for the linear system described by (1) and (2), the
information reward can be computed as
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JSV (T , τ ) , I(Xτ ;Zτ )− I(Xτ ;Zτ |VT ) (12)

= J0(τ )−
1
2
ldet(I + QX (τ )∆S(τ )), (13)

where J0(τ ) ,
1
2 ldetSX |V (τ ) −

1
2 ldetSX (τ ), ∆S(τ ) , SX |V (τ ) −

SX (τ ), and SX (τ ) , Cov(Xτ )−1, SX |V (τ ) , Cov(Xτ |VT )−1, and
QX (τ ) , Cov(Xτ |Zτ ) are determined by the following matrix
differential equations:

ṠX = −SXA− A′SX − SXΣW SX (14)

ṠX |V = −SX |V (A+ΣW SX )− (A+ΣW SX )′SX |V + SX |VΣW SX |V (15)

Q̇X = AQX + QXA′ +ΣW − QXC ′Σ−1N CQX (16)

with initial conditions SX (0) = P−10 , SX |V (0) = P
−1
0|V and QX (0) = P0.

Dependency of JSV (T , τ ) on T is through P0|V , which is assumed to be
available.
Proof. First, I(Xτ ;Zτ ) =

1
2 ldetPX (τ ) −

1
2 ldetQX (τ ), where PX (τ )

is the solution to the Lyapunov equation ṖX = APX + PXA′ + ΣW
with PX (0) = P0, and QX (t) is the solution to the Riccati equation
in (16). Regarding the conditional mutual information term, note
that

I(Xτ ;Zτ |VT ) =
1
2
(ldetP1 − ldetP2), (17)

where P1 is the covariance of X̃1 , Xτ − E[Xτ |VT ] and P2 is
the covariance of X̃2 , Xτ − E[Xτ |VT ,Zτ ]. Namely, P2 is the
error covariance of the fixed-interval smoothing with the past
measurement Zτ and the future measurement VT . Wall, Willsky,
and Sandell (1981) derived the following expression for the error
covariance for fixed-interval smoothing:
Q−1X |V (t) , Cov(Xt |VT ,Zt)

−1
= Q−1X (t)+ P−1X |V (t)− P

−1
X (t),

where PX |V (t) is the estimation error covariance accounting for the
futuremeasurement plus a priori information. PX |V (t) is computed
as a solution of a Riccati-like equation that is integrated backwards.
For this work, the only future measurement is a discrete measure-
ment at T , so PX |V (τ ) is the same as P1 and can be computed by
integrating the following Lyapunov-like equation backwards:

ṖX |V = (A+ΣWP−1X )PX |V + PX |V (A+ΣWP
−1
X )
′
−ΣW (18)

from terminal condition PX |V (T ) = Cov(XT |VT ) to time τ . Note that
Cov(XT |VT ) is all zero except the part corresponding to Cov(XT \
VT |VT ). While the original formulation required a backwards in-
tegration of (18), that step is not needed in this work as every
quantity on the right-hand side is available at any time by the past
knowledge. Thus, instead, (18) can be integrated forward with ini-
tial condition PX |V (0) = P0|V , which is assumed to be available.
Thus, P2 and the information reward JSV (T , τ ) can be computed
by the forward integration of three matrix differential equations:
a Lyapunov equation for PX , a Riccati equation for QX , and a
Lyapunov-like equation for PX |V .
In addition, equations for PX and PX |V can be written in terms of

the information matrices, SX ≡ P−1X and SX |V ≡ P−1X |V ; this removes
the need for performingmatrix inversion in (18). Using ddt

(
M−11

)
=

−M−11
( d
dtM1

)
M−11 for any non-singular square matrix M1, equa-

tions for SX and SX |V are obtained as in (14) and (15). Finally, using
the properties of the determinant function: ldetM−11 = −ldetM1
and det(M1M2) = detM1 detM2 for square matrices M1 and M2,
we have

JSV (T , τ ) =
1
2

[
ldetSX |V (τ )− ldetSX (τ )

]
−
1
2

[
ldet

(
QX (τ )[Q−1X (τ )+ SX |V (τ )− SX (τ )]

)]
,

which is identical to (13). �
Remark 1 (Computation of Conditional Initial Covariance). To apply
Proposition 3, P0|V must be available. For the linear setting as in this
work, P0|V can be computed by the covariance update formula:

P0|V = P0 − P0Φ ′(T ,0)M
′

V

[
MVPX (T )M ′V

]−1MVΦ(T ,0)P0,
whereΦ(T ,0) is the state transition matrix from time 0 to T , which
is eAT in the linear time-invariant case. Note that the inverse on
the right-hand side exists for finite T with P0 � 0. For a time-
varying case, a fixed-point smoothing using state augmentation
can be easily applied to find P0|V . When the linear system is used
to approximate the short-term behavior of a nonlinear system
whose long-term behavior is tracked by some nonlinear estima-
tion scheme, P0|V can be provided by this nonlinear estimator. For
instance, in the ensemble-based estimation framework, the en-
semble augmentation technique presented by the present authors
(Choi et al., 2007) can be used for this purpose.

Corollary 1. The filter-form information reward JFV (T , τ ) in Propo-
sition 1 and the smoother-form information JSV (T , τ ) in Proposi-
tion 3 are identical, because they are two different expressions for
I(VT ;Zτ ).

Notice that the smoother form utilizes an additional piece of
backward information SX |V , while the filter form only uses the for-
ward information captured in PX (or, equivalently SX ) and QX . One
aspect for which this additional backward information plays a key
role is the information available on the fly, which is discussed in
Section 3.1.

3. Analysis and discussions of information forms

In this section, the two forms of mutual information developed
in Section 2 are analyzed and compared, and advantages of the
smoother approach are identified.

3.1. On-the-fly information and mutual information rate

This section discusses the on-the-fly information available in
the process of computing the filter and the smoother form of mu-
tual information, and identifies important features of the smoother
form in terms of information supply and dissipation. This analysis
also facilitates building an information potential field that is used
to visualize the spatial distribution of information quantities and
to develop a gradient-ascent steering law for a mobile sensor in
Section 5.2.
Filter-form on-the-fly information (FOI)
Since the Lyapunov equation in (7) and the Riccati equation

in (8) are integrated forward from time 0, PX (t) and QX (t) are
available at arbitrary t < τ in the process of computing themutual
information in (6). With these, the mutual information between
the current (i.e., at t) state variables and the measurement thus far
(FOI) can be evaluated as

I(Xt;Zt) =
1
2
ldetPX (t)−

1
2
ldetQX (t). (19)

The expression for the time derivative of FOI was first presented in
Mayer-Wolf and Zakai (1984), and its interpretation as information
supply anddissipationwaspresented inMitter andNewton (2005).
The rate of FOI can be derived as
d
dt

I(Xt;Zt) =
d
dt

[
1
2
ldetPX (t)−

1
2
ldetQX (t)

]
=
1
2
tr
{
P−1X ṖX − Q

−1
X Q̇X

}
=
1
2
tr
{
Σ−1N CQXC

′
}

︸ ︷︷ ︸
Info Supply

−
1
2
tr
{
ΣW (Q−1X − P

−1
X )

}
︸ ︷︷ ︸

Info Dissipation

, (20)
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where tr denotes the trace of a matrix, and every matrix is
evaluated at t . The first term in (20) depends on the measurement
and represents the rate of information supply, while the second
term depends on the process noise and represents the rate of
information dissipation (Mitter & Newton, 2005). It can be shown
that the supply and the dissipation terms are non-negative:
tr
{
Σ−1N CQXC

′
}
≥ 0, tr

{
ΣW (Q−1X − P

−1
X )

}
≥ 0,

since CQXC ′ � 0,Q−1X − P
−1
X � 0, and the trace of the prod-

uct of two symmetric positive definite matrices is non-negative
(Lasserre, 1995). Thus, measurement tends to increase FOI while
the process noise tends to decrease it. Observe that FOI can be de-
creasing over time if the information dissipation dominates the in-
formation supply.

Remark 2. The approach in Grocholsky (2002) considered the
entropy of the current stateH(Xt) = − 12 ldetJX (t) +

nX
2 log(2πe),

where JX (t) , Q−1X (t), rather than the mutual information as
in (19). The resulting rate calculation is similar to (20) in that
the first terms are the same (information supply), but the second
terms (information dissipation) are quite different. Therefore, the
procedure in Grocholsky (2002) cannot be used to accurately
compute the rate of FOI.

Projected filter-form on-the-fly information (PFOI)
Similar to FOI, the mutual information between the current

verification variables and themeasurement thus far (PFOI) can also
be computed on the fly, while computing the filter-form mutual
information:

I(Vt;Zt) =
1
2
ldetPV (t)−

1
2
ldetQV (t), (21)

where PV (t) , MVPX (t)M ′V and QV (t) , MVQX (t)M
′

V .
The time derivation of PFOI can also be expressed in terms of

PX (t) and QX (t) as follows.
d
dt

I(Vt;Zt) =
1
2
tr
{
P−1V ṖV − Q

−1
V Q̇V

}
=
1
2
tr
{
Σ−1N CQXM

′

VQ
−1
V MVQXC

′
}

︸ ︷︷ ︸
Direct Supply

+β(t), (22)

where β(t) represents all the remaining terms that do not depend
on the observationmatrix C . The first term, underbraced as ‘‘Direct
Supply’’, represents the immediate influence of the measurement
on the current verification variables. The remaining term, β(t),
captures all of the correlated effect due to coupling in the dynamics
on the information supply/dissipation. Observe that sign of β(t)
is indefinite, while the direct supply term is non-negative as
CQXM ′VQ

−1
V MVQXC

′
� 0.

Smoother-form on-the-fly information (SOI)
In the smoother-form framework, the mutual information

between the future verification variables VT and the measurement
up to the current time t (SOI) can be calculated as
I(VT ;Zt) = I(Xt;Zt)− I(Xt;Zt |VT )

= J0(t)−
1
2
ldet(I + Q (t)∆S(t)). (23)

The values of matrices J0(t),Q (t), and∆S(t) are calculated in the
process of the forward integration (14)–(16).
The temporal derivative of the smoother-formmutual informa-

tion can be written as follows.

Proposition 4 (Smoother-Form Information Rate). For the temporal
derivative of the smoother-form on-the-fly information, the following
holds:

d
dt

JSV (T , t) =
1
2
tr
{
Σ−1N C(t)Π(t)C(t)

′
}
≥ 0, (24)
where Π(t) , QX (t)(SX |V (t) − SX (t))[I + QX (t)(SX |V (t) −
SX (t))]−1QX (t).
Proof. Using the expression for the time derivative of ldet of a
symmetric positive definite matrix,

d
dt

JSV (T , t) =
d
dt

[
1
2
(ldetSX |V − ldetSX )−

1
2
ldet(I + QX∆S)

]
=
1
2
tr
{
S−1X |V ṠX |V − S

−1
X ṠX

}
−
1
2
tr
{
[I + QX∆S]−1

[
Q̇X∆S + QX ∆̇S

]}
,

where ∆̇S , ṠX |V − ṠX . Using the expressions of ṠX and ṠX |V
in (14) and (15), and the cyclic property of the trace function
tr(M1M2M3) = tr(M2M3M1) = tr(M3M1M2), we have

tr
{
S−1X |V ṠX |V − S

−1
X ṠX

}
= tr

{
ΣW (SX |V − SX )

}
. (25)

In addition, utilizing expressions of ṠX and ṠX |V , the cyclic property
of the trace function, and the matrix inversion lemma (Horn &
Johnson, 1985), we have

tr
{
[I + QX∆S]−1

[
Q̇X∆S + QX ∆̇S

]}
= tr

{
ΣW∆S − (I + QX∆S)−1QXC ′Σ−1N CQX∆S

}
. (26)

From (25) and (26), ddtJ
S
V (T , t) becomes

d
dt

JSV (T , t) =
1
2
tr
{
(I + QX∆S)−1QXC ′Σ−1N CQX∆S

}
=
1
2
tr
{
Σ−1N CQX∆S(I + QX∆S)

−1QXC ′
}
.

Wigner’s theorem (Subramanian & Bhagwat, 1979) states that a
product of three symmetric positive definite matrices is positive
definite if the product is symmetric. Note thatΠ can be written as
a product of three positive definite matrices:

Π = QX∆S(I + QX∆S)−1QX

= QX (∆−1S + QX )
−1QX , (27)

because QX and∆S are positive definite. Also, using the matrix in-
version lemma (Horn & Johnson, 1985), it can be shown that Π is
symmetric:

Π = QX∆SQX − QX∆S(Q−1X +∆S)
−1∆SQX = Π ′. (28)

From (27) and (28), Π � 0. This leads to CΠC ′ � 0, and finally
tr{Σ−1N CΠC

′
} ≥ 0, because the trace of the product of two posi-

tive definite matrices is non-negative (Lasserre, 1995). �

Since the influence of the future process noise has already been
captured in SX |V , the mutual information rate for the smoother
form is non-negative regardless of the process noise, as stated in
Proposition 4. If one stops takingmeasurement at time t , the infor-
mation reward stays constant.
To summarize, the smoother-form information rate in (24)

correctly accounts for the influence of the process noise and the
coupling through dynamics occurring over (t, T ], and correctly
identifies the net impact of sensing at time t on the entropy reduc-
tion of the verification variables at T . However, the two expressions
in (20) and (22) based on the filter form only look at the informa-
tion being accumulated in the current variables (state or verifica-
tion) without accounting for their evolution and diffusion at the
future time; therefore, these expressions do not correctly quantify
the impact of the current measurement on the future verification
variables.

Remark 3 (Information Rate forMultiple Sensors).Consider the case
when there are multiple sensor platforms, and the observation
matrix of the i-th sensor is Ci, constituting the overall observation
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matrix of C = [C ′1 · · · C
′
nS ]
′. Then, the smoother-form mutual

information rate in Proposition 4 can be written as

d
dt

JSV (T , t) =
nS∑
i=1

1
2
tr
{
Σ−1Ni Ci(xi, yi)Π(t)Ci(xi, yi)

′

}
, (29)

where ΣNi is the (i, i)-th block entry of ΣN , and (xi, yi) is the
location of the i-th sensor. In other words, the total rate of change
of mutual information is the sum of the rate of change of mutual
information of individual sensor platforms.

3.2. Comparison of filter and smoother forms

Correct on-the-fly information and information rate
One benefit of the smoother form is that on-the-fly information

based on the smoother form correctly captures the amount and
the rate of information gathering by pre-incorporating the effect
of future process noise and the correlation via future dynamics,
as discussed in Section 3.1. These properties are illustrated in the
following example.

Example 1. Fig. 2 compares the time histories of three on-the-fly
quantities: the smoother-form on-the-fly information JSV (T , t) =
I(VT ;Zt), the filter-form on-the-fly information I(Xt;Zt) and
the projected filter-form on-the-fly information I(Vt;Zt). In this
example, the following system matrices are used with τ = 2 and
T = 5:

A =
[
0.1 1
−1 −0.5

]
, ΣW =

[
0.01 0
0 0.01

]
, P0 =

[
1 0.5
0.5 1

]
C =

[
0.5 0.5

]
, ΣN = 0.01, MV =

[
0 1

]
.

There are three key points to discuss about Fig. 2. First, observe how
each on-the-fly information changes over time. For JSV (T , t), it is
found that information increases in the presence of measurement
(before τ ) and stays constant in the absence of measurement (af-
ter τ ). In the history ofI(Xt;Zt), the information supply over [0, τ ]
increases the accumulated information while the information dis-
sipation over (τ , T ] decreases the accumulated information. The
history of I(Vt;Zt) is fluctuating; it can decrease with measure-
ment (around t = 0.5) and can increase without measurement (at
t = 2), because information can be supplied/dissipated from/to
the other state variables Xt \ Vt via the system dynamics.
Second, note that JSV (T , t) at t = τ agrees with I(Vt;Zt) at

t = T in Fig. 2, and this agreement numerically confirms the
equivalence of the filter and smoother forms, i.e., I(VT ;Zτ ) =
I(VT ;ZT ) with a null measurement during (τ , T ]. Third, when
comparing three quantities at some arbitrary time t , it is found
that I(Xt;Zt) overestimates I(VT ;Zt), and I(Vt;Zt)may overes-
timate or underestimate I(VT ;Zt) except when t = T . Thus, the
filter form quantities, I(Xt;Zt) and I(Vt;Zt), are not good indica-
tors of the accumulated information I(VT ;Zt); only the smoother-
form quantity JSV (T , t) accurately represents the accumulated
information.

Computational efficiency
A simplified analysis can be used to clearly demonstrate the

computational efficiency of using the smoother form in the op-
timal planning process. The optimal trajectory planning typically
requires the computation of the information reward for many dif-
ferent measurement choices, i.e., many options of Zτ . Let NC � 1
denote the total number of measurement options. The dominant
portion of the time to compute the information reward involves in-
tegrating the matrix differential equations over various time win-
dows. Of course, the actual computation time will depend on the
details of the integration scheme. For a simplified analysis, it is
enough to assume that the time complexity of integrating one of
the matrix differential equations used in this work (i.e., Eqs. (7),
(8) and (14)–(16)) is linear in the integration time interval but
Fig. 2. On-the-fly information by a partial measurement path Zt .

independent of the type of the equation. For example, if integrating
an nX × nX matrix differential equation during a unit time period
takes δnX , integration of the same equation over [0, σ ] takes ap-
proximately δnXσ .
If the filter form in (6) is used for the optimal planning process,

PX (T ) can be calculated independent of Zτ , but QX (T ) must be
calculated for each candidate measurement path. Thus, the Riccati
equation in (8) must be integrated over the time window [0, T ] for
everyZτ . Therefore, calculation of the information reward for total
of NC measurement candidates takes timeF ≈ TδnX + NCTδnX .
On the other hand, when computing the information rewards

with the smoother form for NC measurement options, the follow-
ing computations must be done: (a) integration of the Lyapunov
equation in (7) during [0, T ] to calculate the conditioned initial co-
variance P0|V , (b) integration of the Lyapunov equation in (14) and
the Lyapunov-like equation in (15) during [0, τ ] to calculate J0(τ )
and ∆S(τ ); and (c) integration of the Riccati equation in (16) over
[0, τ ] for every measurement candidate to calculate QX (τ ). Thus,
with the smoother form calculation of the information rewards
takes timeS ≈ TδnX + 2τδnX + NCτδnX .
The difference and the ratio of the two computation times are

timeF − timeS ≈ [NC (T/τ)− (NC + 2)]τδnX (30)

timeF/timeS ≈ [
1
NC
+ 1]/[

1
NC
(1+ 2τ/T )+ τ/T ]. (31)

With NC � 1, the following observations can be made: (a) from
(30), if T/τ > 1 + 2/NC ≈ 1, using the smoother form takes
less computation time; and (b) from (31), the smoother form re-
duces the computation cost of evaluating rewards by a factor of
approximately T/τ . Thus, if T is significantly bigger than τ , using
the smoother form offers significant computational benefits.

Easy integration with existing synthesis techniques
The smoother form facilitates easy integration with existing

path synthesis algorithms (established to solve the problem of
T = τ ), since it projects the decision space from the forecast time
window onto the planning time window. Previous sensor plan-
ning work (Grocholsky, 2002; Hoffmann & Tomlin, 2010) has es-
tablished synthesis techniques for the conventional problem of
min ldetQX (τ ). With the smoother form, the optimal forecasting
problem iswritten asmin ldet(I+QX (τ )∆S(τ )). Thus, the forecast-
ing problem can be treated as a similar type of optimization prob-
lem with a possibly different weighting in the objective function.
Of course, depending on∆S(τ ), the solutions of the two problems
can be very different (see Section 6). However, existing synthesis
tools for the conventional decision-making problem can be easily
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integrated into the forecasting problem, because the only change
needed is a slight modification of the objective function. This pro-
vides flexibility in the choice of a synthesis method in the planning
problem.

4. Continuous path representation

Section 2 presented a formula to quantify the information re-
ward for a continuous measurement path in a finite-dimensional
linear system framework. This section shows how to relate themo-
tion of a sensor in continuous space to a measurement trajectory
in the time domain.
The approach employs spatial interpolation techniques (e.g.

Kriging (Cressie, 1990), Gaussianprocess regression (GPR) (Willams
& Rasmussen, 1996)) that are used to describe continuous environ-
mental variables at an arbitrary location in terms of a finite number
of variables at some specified grid points. These techniques assume
that the environmental variables at location r can be represented as
a linear combination of those at a finite number of grid points ri’s:

φt(r) =
nG∑
i=1

λi(r, ri)φt(ri), (32)

where nG is the number of grid points, φt(ri) ∈ RnE represents
the environmental variables at ri at time t for i ∈ {1, 2, . . . , nG},
and nE denotes the number of environmental variables associated
with a single grid point. In determining the coefficientsλi’s, this pa-
per considers the zero-mean GPR method (Willams & Rasmussen,
1996) with squared exponential covariance functions, which
leads to

λi(r, ri) =
nG∑
j=1

αijρ(r, rj), (33)

where ρ(r, rj) , exp
[
−
1
2l2x
(x− xj)2 − 1

2l2y
(y− yj)2

]
in the two-

dimensional space, and αij is the (i, j)-th element of the matrix
[ρ(ri, rj)]−1. The parameters lx and ly represent the correlation
length scales in each direction.
Under the assumption in (32), the environmental dynamics

over the whole continuous space can be fully described by the
dynamics of the finite number of variables at grid points. The state
vector Xt ∈ RnX , where nX = nG × nE , is defined as
Xt =

[
φt(ri)′ · · ·φt(rnG)

′
]′
,

and this work considers linear dynamics for Xt as in (1). Consider
a sensor located at r at time t that receives measurement of φt(r).
Since φt(r) is a linear combination of the φt(ri)’s, the observation
equation for this sensor can be expressed as Zt = C(t)Xt + Nt ,
where
C(t) =

[
λ1(r, r1)InE · · · λnG(r, rnG)InE

]
∈ RnE×nX .

If a sensor is continuously moving, its motion is fully described
by the time history of the location vector r(t). Thus, the effect
of the sensor’s motion on the uncertainty dynamics is through
the evolution of the observation matrix C(t) due to changes
in the λi(r, ri)’s in time. Consider a sensor moving along a
specified path pτ = {r(t) : t ∈ [0, τ ]}, where r(t) is known
for all t ∈ [0, τ ]. Then, the evolution of observation matrix
Cτ , {C(t) : t ∈ [0, τ ]} can be derived by relating C(t) and r(t).
The information reward associated with this path, denoted as
JV (T , τ ; pτ ), can be computed by evaluating QX (τ ;Cτ ), which is
the final value of the Riccati equation corresponding to observation
matrix history Cτ , while J0(τ ) and ∆S(τ ) in (13) have been
computed in advance independently of pτ .
To account for the limited mobility of the sensor, the path is,

in general, represented as a set of equations of the location vector
and its time derivatives: gdyn(r(t), ṙ(t), r̈(t),u(t)) = 0, where u
is the control input for the sensor motion. For instance, a two-
dimensional holonomic motion of a sensor platformwith constant
speed v can be written as
ẋ(t) = v cos θ(t), ẏ(t) = v sin θ(t), (34)
where θ(t) is the heading angle, which is treated as a control input
in this model.

5. Path planning formulations

5.1. Optimal path planning

The optimal trajectory planning determines the path pτ , or
equivalently the time history of the control input, that maximizes
the smoother form information reward JSV (T , τ ) = J0(τ ) −

1
2

ldet(I+QX (τ ;Cτ )∆S(τ )). The prior and posterior initial covariance
P0 and P0|V , respectively, are computed first, which enables calcu-
lation of J0(τ ) and ∆S(τ ). Then, an optimization problem involv-
ing only the computation of QX (τ ;Cτ ) is posed. This optimization
problem is indeed a nonlinear optimal control problem (OCP) with
a terminal cost functional. The control variables for this OCP are the
controls for the sensor motion (e.g., θ(t) for the two-dimensional
holonomic motion), while there are two types of state variable:
the vehicle position variables, x and y, and the entries of the QX (t)
matrix. The optimal path planning problem for a two-dimensional
holonomic mobile sensor is stated as
θ ?(t) ∈ argmax

θ(t)
J0(τ )− ldet(I + QX (τ ;Cτ )∆S(τ )) (35)

subject to
Q̇X = AQX + QXA′ +ΣW − QXC(x, y)′Σ−1N C(x, y)QX
ẋ = v cos θ, ẏ = v sin θ, QX (0) = P0,
x(0) = x0, y(0) = y0,
where C(x, y) is expressed as a function of x and y to emphasize
that its dependency on time is only through the evolution of x and
y. Regarding the size of this OCP, there is one control variable, and
the number of state variables is nX (nX + 1)/2 + 2. Constraints in
the sensor’s motion such as specified final locations and those in-
duced by non-holonomy can be easily incorporated by modifying
the vehicle’s dynamics and imposing additional constraints. Also,
multiple sensor problems can be dealt with by adding associated
dynamic/kinematic constraints and bymodifying the expression of
the observation matrix.

5.2. Gradient-ascent steering

Optimal path planning gives a motion plan for maximum infor-
mation reward, but solving a nonlinear optimal control problem
can take a substantial amount of computational effort, especially
when nX is large. Thus it is beneficial in practice to devise a com-
putationally efficient suboptimal steering law. One approach is to
build some potential field and to move along the gradient of that
field. The mutual information rate discussed in Section 3.1 can be
utilized to construct an information potential field, which provides
a visualization of how information is distributed or concentrated.
This type of information potential field extends a similar notion
presented in Grocholsky (2002), which derived the expression of
time derivative of entropy (as discussed in Remark 2), and ne-
glected terms unrelated to the observationmatrix to build a poten-
tial field. Note that since the potential field in Grocholsky (2002)
was developed for a different problem formulation that focused
on reducing the entropy of the state at a given time, it cannot be
directly used for the problem formulation in this work. Thus, this
section builds a potential field using the smoother-form informa-
tion rate in (24) that correctly identifies the influence of ameasure-
ment taken at time t on the entropy reduction of the verification
variables at T .
For the two-dimensional holonomic sensor motion in (34), the

gradient-ascent steering law is

θG(t) = atan2
{
∂

∂y

(
d
dt

JSV (T , t)
)
,
∂

∂x

(
d
dt

JSV (T , t)
)}

,
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where d
dtJ

S
V (T , t) is the smoother-form mutual information rate,

and atan2 denotes the four-quadrant inverse tangent function.
Since the relationship between C(x, y) and (x, y) is known, the
mutual information rate in (24) can be written as a function of
spatial coordinates, and its gradient can be evaluated accordingly.
When C(x(t), y(t)) ∈ R1×nX , namely, there is only one environ-
mental variable of interest, the spatial derivative can be written as
∂

∂p

(
d
dt

JSV (T , t)
)
= Σ−1N C(x(t), y(t))Π(t)d(p), p = x, y,

where d(p) is an nX -dimensional column vector whose i-th ele-
ment isd(p)i = −l−2p

∑
j αijρ(r, rj)(p−pj), p = x, y.When C is not

a row vector, the relation in (29) can be used to derive the expres-
sions for the mutual information rate and its gradient by treating
each row of the observation matrix as a separate sensor.

6. Numerical examples

This section compares several planning methodologies that are
based on different quantifications of the information reward. The
results of the simulation study show the potential advantages
of the new technologies proposed in this paper for forecasting
problems when compared with traditional planning techniques.

6.1. Scenarios

A simplified weather forecasting problem is considered for
numerical simulations. The two-dimensional Lorenz-2003 model
(Choi & How, 2007) is employed to describe the nonlinear envi-
ronmental dynamics. The system equations are

φ̇ij = −φij − ζi−4,jζi−2,j +
1
3

∑
k∈[−1,1]

ζi−2+k,jφi+2+k,j

−µηi,j−4ηi,j−2 +
µ

3

∑
k∈[−1,1]

ηi,j−2+kφi,j+2+k + φ0,

where ζij , 1
3

∑
k∈[−1,1] φi+k,j, ηij ,

1
3

∑
k∈[−1,1] φi,j+k for (i, j) ∈

{1, 2, . . . , Li} × {1, 2, . . . , Lj}. The subscript i denotes the west-to-
east grid index, while j denotes the south-to-north grid index. The
boundary conditions of φi+Li,j = φi−Li,j = φi,j and φi,0 = φi,−1 =
3, φi,Lj+1 = 0, in advection terms, are applied to model the mid-
latitude area of thenorthernhemisphere as an annulus. Theparam-
eter values are Li = 72, Lj = 17, µ = 0.66 and φ0 = 8. The size of
the 1×1 grid corresponds to 347 km×347 km in real distance, and
1 time unit in this model is equivalent to 5 days in real time. The
overall system is tracked by a nonlinear estimation scheme, specif-
ically an ensemble square-root filter (EnSRF) (Whitaker & Hamill,
2002) data assimilation scheme, that incorporates measurements
from a fixed observation network of size 186.
The path planning problem is posed for the linearized model

over some 4 × 3 local region (therefore, nG = nX = 12) in
the entire Li × Lj grid space. A linear time-invariant model is
obtained by deriving the Jacobian matrix of the dynamics around
the nonlinear estimate for the φij’s at the grid points in the local
region. Thus, the state vector Xt represents the perturbation of the
φij from the ensemble mean. In this linear model, the dependence
of the local dynamics on the evolution of the external dynamics
is ignored in deriving the Jacobian matrix (or A matrix). Instead,
this effect is incorporated in the process noise term, i.e., the states
on the boundary of the local region, which may be affected by
external dynamics more substantially, are assumed to be subject
to larger process noise. The goal is to design a 6 h flight path
(τ = 6 h) for a single UAV sensor platform to improve the forecast
over the three grid points (red squares in Fig. 3) in the eastern
part of the local region in 72 h (T = 72 h). The motion of the
sensor is described as two-dimensional holonomic motion in (34)
and it flies at constant speed v grid/h (=347 V km/h). The prior
and posterior initial covariance matrices, P0 and P0|V are provided
by the EnSRF data assimilation scheme, where P0|V is computed
by the ensemble augmentation method in Choi et al. (2007).
Two scenarios with different local region, correlation length scale
parameters ((lx, ly) = (1, 0.7) or (1.5, 1)), and vehicle speed (v =
1/3 or 1/2) are considered, and the sensing noise intensity is set at
ΣN = 0.0025.

6.2. Comparison of strategies for two scenarios

Two proposed path planning methods, optimal path planning
and gradient-ascent steering, are compared with the shortsighted
versions of them. Shortsighted path planning takes into account
I(Xτ ;Zτ ) instead of I(VT ;Zτ ) to represent the implementation of
the traditional planning approach (i.e., T = τ and MV = I) to a
forecasting problem. The optimal shortsighted solution minimizes
ldetQX (τ ), and the shortsighted gradient-ascent law utilizes the
filter-form information rate in (20) to construct an information
potential field. Since the information dissipation term of the filter-
form information rate in (20) is not an explicit function of (x, y),
the shortsighted gradient-ascent law results in a formula that has
QX instead ofΠ in the gradient expression.
Each of the two optimal control problems is formulated as a

nonlinear program (NLP) by parameterizing the control history
as a piecewise linear function consisting of 12 linear segments of
equal time span. TOMLAB/SNOPT (2008, v6.0) is used to solve the
NLPs; gradient-ascent solutions, and various straight-line solutions
are used as the initial guess for the optimization. Both optimized
solutions are obtained within two minutes (per initial guess) and
satisfy first-order optimality criteria with tolerance of 10−4. Also,
as a reference, the best and the worst straight-line paths are also
considered. The best straight line solves anNLP to find a constant θ0
that maximizes the smoother-form information reward, assuming
the vehicle dynamics of ẋ = v cos θ0, ẏ = v sin θ0.
Table 1 represents the information rewards JSV (T , τ ) for all the

methods considered. It is first found that the gradient-ascent steer-
ing provides relatively good performance for both scenarios, while
the two shortsighted strategies provide very poor performance in
scenario 2. Fig. 3(a) and (b) illustrate the sensor trajectories from
the six strategies for scenario 1 overlaid with the snapshots of the
smoother-form and the filter-form information potential field at
the initial time. In both potential fields, a dark region represents
an information-rich area; it is generally beneficial to move toward
dark regions to gather information. But, since the shape of the po-
tential fields change over time as measurements are taken, the
shape of an optimal trajectory can be quite complex, depending
on the dynamics and the correlation structure.
In Fig. 3(a) and (b), the shape of the smoother-form informa-

tion and filter-form information fields are similar in terms of the
locations of information-rich regions: two information peaks in
the middle, and information ridges in the far east and far west. It
can be seen that the gradient-ascent, the shortsighted optimal, the
shortsighted gradient-ascent strategies lead the sensor toward the
northern information peak in the middle, resulting in similar total
amounts of information gathered. The best straight-line trajectory
steers the sensor toward the southern information peak, and turns
out to gather more information than the aforementioned three
strategies. The optimal solution first heads toward to the southern
peak, and then turns back to the north in order to gather the in-
formation around the north peak. This turningmaneuver results in
the maximum information by effectively visiting both information
peaks. These figures are complex to interpret since the information
potential field evolves with time as measurements are taken along
the path. However, Fig. 3 just shows snapshots of the information
field at the initial time (showing the time evolution of the informa-
tion field is unfortunately not practical, but see Choi (2009, Section
5.5.2) formore detailed discussions). Of course, the peaks represent
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Fig. 3. Sensor trajectories during the planning horizon for different strategies overlaid with snapshots of the information field at the initial time: (a) top left: scenario 1 on
smoother-form field; (b) top right: scenario 1 on filter-form field; (c) bottom left: scenario 2 on smoother-form field; (d) bottom right: scenario 2 on filter-form field; the
x-axis and y-axis indicate the longitudinal and latitudinal grid indices; the smoother-form and the filter-form information potential fields are significantly different from
each other for scenario 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 1
Information rewards for different strategies.

Optimal Gradient Shortsighted optimal Shortsighted gradient Best straight Worst straight

Scenario 1 1.04 0.85 0.86 0.79 0.93 0.29
Scenario 2 0.69 0.62 0.20 0.14 0.43 0.14
key sources of information and are likely targets for the optimized
paths, but with constrained length paths it might be beneficial to
just approach many of the peaks rather than actually visit a lim-
ited number. This tendency can be seen in the optimal solution for
scenario 1. Also note that the two shortsighted strategies provide
reasonable performance compared to the far-sighted strategies in
this scenario, as the locations of information peaks are relatively
similar in both information fields.
In contrast, Fig. 3(c) and (d) illustrate the large difference be-

tween the initial smoother-form and filter-form information fields
in scenario 2. The smoother-form information potential field in-
dicates that a large amount of information is concentrated in
the south-middle area, while the filter-form information potential
field suggests that information is concentrated in the northwest
area. As a consequence, while the paths generated based on the
smoother form (i.e., optimal, gradient-ascent, and best straight-
line) head southwards, those for the two shortsighted decisions
head north, leading to significant performance deterioration.

6.3. Choice of verification variables

Monte Carlo simulations are performed to further investigate
the differences in the information potential fields, and ensuing
performance deterioration of shortsighted strategies, discussed in
the previous section. Recall that the shortsighted and the far-
sighted decisions concern I(Xτ ;Zτ ) and I(VT ;Zτ ), respectively;
and there are two main factors that distinguish these quantities:
(i) MV 6= I , and (ii) T > τ . While the second factor is discussed
in Choi and How (2009) in the context of receding-horizon sensor
planning, this section illustrates the importance of the first factor
with a weather forecasting example, using T = 72 h and τ = 6 h.
For 36 different local regions of size 4× 3 grids (i.e., 1041 km×

694 km), four choices of verification variables are considered:
whole local region (nV = nX = 12), eastern half of the local re-
gion (nV = nX/2 = 6), eastern quarter of the local region (nV =
nX/4 = 3), and a single point in the east (nV = 1). For a total of
144 scenarios, information rewards for the (far-sighted) gradient-
ascent and the shortsighted gradient-ascent strategies were com-
pared. Table 2 compares the average ratio of the information
reward of the far-sighted and shortsighted strategies for the four
different choices of verification variables. Note that the perfor-
mance degradation of the shortsighted strategy tends to be more
significant as the verification variables are a smaller subset of the
whole state variables (ratio increases to 1.46 for a single point).

6.4. Summary

In summary, the numerical results illustrate that (a) for some
problems, the difference between planning solutions based on the
smoother form I(VT ;Zτ ) and those based on the filter approach
I(Xτ ;Zτ ) can be quite large; and (b) one key factor causing this
difference is that the information gather focuses on a verification
region that is a particular subset of the state variables.
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Table 2
Average ratio of information reward for the (far-sighted) gradient-ascent to the shortsighted gradient-ascent for different choices of the scope of the verification region.

Verification variables Whole state Eastern half Eastern quarter Single point

Info. reward ratio 1. 10 1. 12 1.21 1.46
7. Conclusions

A methodology for continuous motion planning of sensors for
informative forecastingwas presented. The key contribution of this
work is to provide a framework for quantifying the information
obtained by a continuous measurement path to reduce the
uncertainty in the long-term forecast for a subset of state variables.
The smoother form of the information reward that projects the
decision space from the long forecast horizon onto a short planning
horizon is shown to improve computational efficiency, enables
correct evaluation of the rate of information gathering, and offers
flexibility in the choice of path synthesis tools. An optimal path
planning formulation and a gradient-ascent steering law were
presented using spatial interpolation for path representation. A
numerical example for a simplified weather forecast compared
several planning methodologies and illustrated the performance
degradation of the traditional approach for some scenarios.
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