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Abstract

This paper addresses the problem of object tracking by particle filter in catadioptric
images. Whereas a large literature exists for traditional images, only a very few methods
have been developed for catadioptric vision. We present two techniquesto correctly deal
with the strong distortion inherent to catadioptric images. First, we propose generating
and diffusing the particles in the equivalent sphere space rather than in the original 2D
catadioptric image. It allows to handle the specific distance associated to the distorted
image in a general framework. Second, we use an adapted neighborhood to perform
template matching by histogram comparison. It permits to compare templatesquickly
while using an active neighborhood for space-variant windows. An additional important
feature of our system is that no interpolation is performed: we directly work on the orig-
inal catadioptric image. Experimental results demonstrated the validity of theproposed
approach.

1 Introduction

Target tracking is an important task in computer vision and robotic applications. The general
goal is to detect a specific target and track it along time in a sequence of images. Most of
existing algorithms for target tracking are composed of three important aspects. The first one
is target representation (its signature) which aims to characterize the target in terms of color
or shape for example. For fast execution, color representation associated with a rectangular
window centered at the object is usually preferred. The second aspect is template compari-
son which measures the similarity of the representation of an hypothesized template with the
representation of the target. Popular similarity measurements between two rectangular win-
dows are sum of absolute difference (SAD) and normalized cross-correlation (NCC). The
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third and final aspect is the search procedure whose goal is todefine a smart method to find
the template that best matches with the target in the image. The most basic search procedure
consists in performing a full search in the image (i.e. at every pixel location) but it is very
slow. A very popular search procedure is the particle filter which is based on theoretical
justifications and is studied in this paper. Particle filter (PF) for target tracking have been
widely applied and great results can be obtained.

This paper particularly focuses on target tracking in catadioptric images. Compared to
traditional vision, catadioptric vision offers a much wider field of view, which permits to
acquire more information from the environment. That is why more and more robots are
equipped with catadioptric camera that can see in “almost every direction”. It has been
shown that these cameras can sensibly improve robustness and accuracy in robotic applica-
tions [3][10]. Whereas there exists a large literature on target trackingby PF on traditional
images, only a very few systems have been developed for catadioptric images. Practical is-
sues of object tracking are related to occlusion, illumination changes and scale, for which
several methods have been proposed. The goal of this paper israther dedicated to handle
strong distortions inherent to catadioptric images, but the proposed approach could also be
combined with some existing methods dealing with these practical issues. The basic and
popular method of PF for catadioptric vision consists in, first rectifying the catadioptric
image in a panoramic image and then, “blindly” applying traditional PF on the panoramic
image [10][9]. The main disadvantage is that rectification requires a large amount of com-
putation because of interpolation and introduces noise in the image. Moreover underlying
distortions still exist in the rectified image. Nowadays, itis more and more admitted that
the rectangular window and template matching commonly usedin traditional images are not
adapted for catadioptric vision. Indeed, some recent papers proposed some new neighbor-
hood definitions and adapted template matching. For example, [19] defines some patches in
the mirror surface using some ranges of elevation and azimuth angles that play the role of
the height and the width of the usual rectangular shape. Thenthis small patch is projected
in the catadioptric image. Since the size of the matching window depend on its location,
the windows have different sizes. Thus for comparison, the authors normalized to a com-
mon shape and size, which enables direct measure of traditional similarity measure (e.g.
SAD or NCC). This normalization process involves interpolation for each tested template,
which considerably increases the execution time. [6] proposed a similar neighborhood defi-
nition, with the difference that the elevation and azimuth ranges are applied in the equivalent
sphere surface (cf section2) rather than the mirror surface. [17] extended the NCC method
for catadioptric images where the correlation is computed on the sphere surface. This is a
very interesting approach but requires large computation because of both interpolation in the
sphere and computation of the NCC itself. Moreover NCC similarity measure is not really
adapted for stochastic search because even if a small part ofthe target is not included in the
template, the NCC will give a bad score. [21] proposed a particle filter-based approach for
3D tracking. This method can, in a sense, predict the distortion because it tracks the object
directly in 3D. It avoids the resolution problem by using a special sensor that provides a con-
stant resolution view of the ground plane. It leads to interesting results but requires to known
apriori the shape of the object because it tries to detect/track the object boundary. Despite
not directly related to catadioptric vision, we can also refer to the method of [13] developped
for lens distortion. Using a specific warping matrix, the authors aimed to handle changes in
perspective and scale but also the slight variations in lensdistortion across the image.

Our paper is divided into four main parts. First, catadioptric projection and the equivalent
sphere theorem are presented. Then, we remind particle filter algorithm for self-readability
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of the paper and clearer explanations. In the third part, we present our proposed approach
for target tracking by particle filter in catadioptric images. Finally, some experiments are
performed to evaluate the proposed method.

(a) (b)

Figure 1: Compared to a traditional perspective camera (left), a catadioptric system (right)
can gather much more information from the environment thanks to its wide field of view.
These two images have been acquired at the same position. Thered box (in the right image)
corresponds to the portion of the perspective image included in the catadioptric image. In
the following, we will refer to the blind spot at the image center as the “inner circle” and the
large circular boundary as the “outer” circle.

2 Catadioptric Projection

Catadioptric cameras are a specific kind of omnidirectionalsensors. They are composed
of a mirror with a specific shape and a camera (perspective or telecentric). Compared to
traditional cameras, they permit to acquire a much wider part of the environment (cf. Fig.
1). Baker and Nayar classified catadioptric sensors into two categories depending on the
number of viewpoints [1]. Geyer and Daniilidis [11] have demonstrated the equivalence for
the single viewpoint category with a two-step projection via a unitary sphere centered on the
focus of the mirror (the single viewpoint). In order to applythe equivalence, it is necessary
to know the intrinsic parameters of the camera and two additional parameters that define the
shape of the mirror and can be estimated by calibration (refer to [11] for further details on
their signification).

3 Particle Filter for Traditional Images

This section first briefly introduces the particle filter for target tracking in traditional images
and then, presents the histogram matching technique that isused to represent and compare
the object to track with an hypothesized template.

Particle filter
This section briefly presents particle filter algorithm and its associated methods such as re-
sampling. Interested readers are invited to refer to [15] and [7] for detailed information and
theoretical justifications. Particle filter (also known as condensation algorithm or boostrap



4 BAZIN et al.: PARTICLE FILTER FOR CATADIOPTRIC IMAGES

filtering) is a widely used stochastic algorithm for approximating aposteriori density. Letxt

be a state vector of the target at time stept andzt be the measurement vector at the same
time stept with observation historyZt = {z0,z1, . . . ,zt}. The goal is to estimate the location
of the target from the image measurements, i.e. the aposteriori distribution p(xt |Zt). Let
st = {x1

t , . . . ,x
N
t } be a set ofN particles at timet. A samplex j

t is selected from the sets
with the probabilityπ j

t = p(zt |x
j
t ), wherep(zt |x

j
t ) is the normalized weight associated to the

jth particle and corresponds to the likelihood thatx j
t is the true location of the target. The

next section will explain how to compute this weight by histogram technique. In practice,
the samples are selected using a uniform generator on[0,1] and getting the corresponding
sample from the cumulative distribution ofp(zt |xt). Then the selected samples are diffused
by a dynamic modelp(xt |xt−1) to generate a new set of samples. For object tracking in an
image sequence, a constant velocity model is usually applied for the dynamic model.

In practice, a degeneracy phenomenon might occur, i.e. all but one particle might have
negligible weight after a certain number of recursive steps. Whenever a significant degener-
acy is observed, a common technique is to perform a resampling step that is also designed to
handle sample impoverishment (the particles that have highweights are statistically selected
many times). To maintain the diversity among the particles,regularization and MCMC-move
steps are two methods that are commonly applied [15]. These two methods jitter the resam-
pled values using a Gaussian distribution whose variance isempirically computed from the
weighted particles.

Histogram representation and matching
If the object to track exists in the image with no transformation compared to its representa-
tion, then pixelwise methods such as SAD or NCC will indicatea single peak value for the
correct location of the target. However if the target is compared to a template that is slightly
translated/rotated with respect to the true location/rotation of the target, then the similarity
will be very low. As a consequence, whereas a particle may be very closed to the true loca-
tion of the target, it might receive a low score. That is why these pixelwise methods usually
require scanning the whole search space and are not recommended for stochastic search such
as particle filter. Histogram technique presents an interesting and popular alternative for both
template representation and comparison. It is slightly invariant to translation, rotation, skew
and scale [14][18], and thus leads to great results for target tracking by particle filter [22]. A
common way to represent a template by an histogram is based onthe chromaticity space (eq
1) because it reduces the illumination change caused by the brightness variation.

[r,g] =

[

R
R+G+B

G
R+G+B

]

(1)

Several distances have been defined to compute the similarity between two histograms (cf
[16] for a review). For experiments, we have implemented the popular Minkowski-form
distance of order 1 ([20]):

d(Ho,Ht) =
Nb

∑
i=1

Nb

∑
j=1

|Ho(i, j)−Ht(i, j)| (2)

whereHo andHt are the histograms associated to the object to track and the current template,
and are composed ofNb bins for the componentsr andg of the chromaticity space. Other
distances like histogram intersection, KL-distance or Bhattacharyya coefficient could also
be used.
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4 Proposed Particle Filter for Catadioptric Images

First, this section discusses the limitations of the traditional particle filter for catadioptric
images with respect to the 3 aspects listed above (representation, comparison and search).
Then our proposed approach for extending particle filter to catadioptric vision is presented.

4.1 Limitations of Traditional Particle Filter

The distortions inherent to catadioptric images induces some important consequences for
the target tracking approach presented in the previous section (particle filter associated with
histogram technique). First of all, the particles should respect the distortion. For example, at
the initialization, the particles are usually uniformly distributed, but intuitively, there should
be more points at the center of the catadioptric image than inthe boundaries. It means the
sample distribution must be space-variant in the 2D image. Moreover, the variance should be
appropriately updated with respect to the distortion sincethe distance is not linear. Concern-
ing the histogram technique, it has been shown that the neighborhood must be space-variant:
larger in the image boundary than in the center. Moreover, since neighborhoods of different
size are compared, histogram matching must be extended to compare histograms of different
size. We will show that working on the equivalent sphere provides a nice general framework
to handle most of these aspects.

4.2 Modifications for the Particle Filter

We propose two important modifications for the particle filter: representation of a particle
state and variance computation.

Particle state
In traditional images, particles usually take place in the(x,y) space (i.e. in the image) and
are manipulated in this space. In order to deal with distortions, we suggest working in the
equivalent sphere space, rather than in the image 2D plane, and thus the particles should be-
long to the surface of the sphere. This surface can be represented using spherical angles: the
azimuthθ ∈ [−π;π] and the elevationφ ∈ [−π/2;π/2]. Therefore uniformly sampling the
(θ ,φ) space permits to uniformly distribute some particles whilesimply taking into account
the distortion. Similarly, diffusing the particles is performed by simply manipulatingθ and
φ . One may note that, in practice,φ angle is bounded by the vertical field of view of the
catadioptric system:φ ∈ [φdown;φup].

Variance computation
As explained in section3, variance plays a key role in the regularization and MCMC-move
steps to maintain the particle diversity. When the state of the particles are represented by
(x,y) in cartesian space, the variance can be easily computed [7]. A difficulty arises when
calculating the mean and the variance of angles because of the cycling definition of angles.
For example, the arithmetic mean of two angles−160◦ and+160◦ is 0, which does not
correspond to the intuitive mean angle−180◦ (or 180◦). Thus it is clear that mean and
variance of spherical angles cannot be calculated by traditional arithmetic formulae.

Let {θ} = {−π ≤ θi ≤ π, i = 1, . . . ,N} and{φ} = {−π/2≤ φi ≤ π/2, i = 1, . . . ,N} be
the sets of the azimuth and elevation angles andW = {wi, i = 1, . . . ,N} the set of weights
assigned to each sample, computed by histogram matching in our specific application. Let



6 BAZIN et al.: PARTICLE FILTER FOR CATADIOPTRIC IMAGES

note(θ ,σθ ) and(φ ,σφ ) the mean/variance of the sets{θ} and{φ}. Circular statistics [8][4]
define the mean and variance of circular quantities as follows:

θ = tan−1(yθ ,xθ ) andσθ = 1−
√

x2
θ + y2

θ (3)

wherexθ =
N

∑
i

wi cosθi andyθ =
N

∑
i

wi sinθi

By applying the same procedure for set{φ}, we can also compute the mean and variance for
the elevation angleφ .

4.3 Modifications for the Histogram Technique

This section presents how to define space-variant neighborhood and how to compare his-
tograms of different sizes.

Neighborhood definition
The neighborhood of a given point for perspective images is usually simply defined as the

square region centered at this point. Due to distortions, such a definition is not appropriate
for catadioptric images. Among the neighborhood definitions adapted to catadioptric vision,
we selected [6] for his generality (definition on the sphere rather than on the mirror surface).
Originally, the neighborhood of a point does not contain itsown point, but for template
definition, the center point is usually included. So we slightly modify [6] to include the center
point. LetPi a point in the image planeI2 projected on the sphereS2 atΛ(Pi) = Ps = (θ ,φ ,1)
whereΛ() is the projection function from the image planeI

2 to the sphere surfaceS2. The
spherical neighborhood ofPs, notedNs(Ps), is defined as:

Ns(Ps) =







P′
s = (θ ′,φ ′,1) ∈ S

2 such that
min(|φ −φ ′|,π −|φ −φ ′|) ≤ φthresh and
min(|θ −θ ′|,2π −|θ −θ ′|) ≤ θthresh

(4)

In plain English, the neighborhoodNs(Ps) is the set of spherical points contained in a
patch centered atPs and whose “lengths” alongθ andφ directions are respectivelyθthresh

andφthresh. Then the neighborhoodNi(Pi) of a pointPi in the image planeI2 is defined as the
pixels that lie in the projection of the spherical neighborhood of its spherical point onto the
image plane:

Ni(Pi) = {P′
i ∈ I

2/Λ(P′
i ) ∈ Ns(Λ(Pi))} (5)

For notation, the subscripts ofNi andNs are used to emphasize thatNi andNs respec-
tively corresponds to the neighborhoods in the image plane and the sphere space. These
equations permit to nicely define an adapted patch for each particle on the sphere and build
their associated histogram. Fig2 shows some examples of patches obtained by this adapted
neighborhood. An important remark is that no interpolationis required for this proposed
neighborhood since only the pixels of the original catadioptric image are used.

Histogram matching
As the neighborhood size depends on the location of the particle, we must be able to compare
histograms containing a different number of pixels. Obviously, this problem can be solved by
normalizing the counts in the histogram, which can be done intwo ways (cf eq6). The basic
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Figure 2: Example of adapted neighborhood withθt = φt = 4◦. Notice the size and the shape
of the patches with respect to its location.

and intuitive solution is to divide the number of observation of each bin by the total number of
observations. Thus each bin corresponds to the proportion of data and their sum is 1. Another
solution consists in dividing each bin by the total number ofpixels and multiplying by the
bin width. Whereas this normalization is less intuitive, it permits to model the distribution
by a probability density function (the area under the histogram is equal to 1) [5].

H(n) =
H(n)

Nb

∑
i=1

H(i)

andH(n) =
H(n)w(n)

Nb

∑
i=1

H(i)

(6)

whereH(i) represents the number of observations in theith bin of the histogramH andw(i)
the width of theith bin.

5 Experimental Results

The experiments are conducted to compare two approaches forobject tracking: (1) tradi-
tional particle filter in the rectified panoramic image and (2) proposed particle filter in sphere
space. Our catadioptric system used in the experiments is composed of a Canon PowerShot
G10 camera and a mirror from the 0-360 company, and was calibrated by [2]. We acquired
6 sequences of catadioptric images with a resolution of 640×480 at 10 frames per second.
Each sequence is composed of about 1000 frames. At the first frame of the sequence, the user
is invited to, first, select the object to track by clicking onthe image and then, set the template
size. This template is referred as “panoramic template” in the following. Then we compute
the neighborhood adapted for catadioptric images (cf section 4.3). Since the template size
might influence the tracking results, the neighborhood parametersθt andφt are calculated
such that the number of pixels in the rectangular and adaptedwindows are similar for fair
comparison of tracking algorithms. The template defined by the adapted neighborhood is
referred as “catadioptric template” in the following. Thenthe histograms representing the
panoramic and catadioptric templates are built (cf section3).

For traditional PF, we rectified each catadioptric image into a panoramic image [12][9].
Rectification is composed of two steps: coordinate warping and interpolation. The coordi-
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nate transformation can be performed once in pre-processing and stored in a look-up table.
As previously explained, an important disadvantage of rectification is its computation re-
quirements due to interpolation. Moreover another practical difficulty is that the object to
track might be "split" during the rectification. For example, a similar problem occurs when
the world map sphere is projected into a Europe-centered panoramic map: the Pacific Ocean
in split into 2 parts. In such case, the object obviously cannot be tracked properly. For fair
comparison, we stored 2 look-up tables for warping and alternated between them, depending
on whether or not the tracked object location in the previousframe is near the "splitting axis".
For proposed PF, we simply projected the catadioptric imageonto the equivalent sphere. This
projection does not require any interpolation and can be done instantaneously by a look-up
table computed only once in pre-processing. Due to space limitation, examples of panoramic
images and spherical projections are not included.

Figure 3: Comparison of tracking accuracy between traditional particle filter on rectified
panoramic images (blue bars) and our proposed particle filter on original catadioptric images
(red bars). Refer to the text for the definition of tracking accuracy.

The goal is to track the template in the image sequence. A track is defined as a suc-
cess when the distance between the estimated location (obtained by the best particle) and the
ground truth position (obtained manually) is less than a threshold (10 pixels in our experi-
ments). Figure3 compares the tracking accuracy obtained by traditional PF in the rectified
panoramic image and the proposed PF in the original catadioptric image in the tested se-
quences. For the sequences 1 and 2, the traditional and proposed methods obtain similar
results. By analyzing the results, we have found two explanations. First, the targets (red
cup with white background and red car in parking lot) have a very specific signature for the
environment of these two sequences and thus the particles easily converged to the true target
location. Second, when the user selected the targets at the first frame, they were lying at
about the middle distance between the inner and outer circles of the catadioptric image and
thus the distortion amplitude of the target was not very high(half of the maximum distortion
amplitude). In the 4 other sequences, the objects to track (car, face, magazine, phone) did
not have a very specific signature. Moreover they were selected near the outer circle in the
first frame and approached the image center several times during the sequence in order to
demonstrate the consequences of distortion. For these sequences, the proposed method pro-
vides an higher tracking success rate. It clearly demonstrates our approach can efficiently
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handles strong distortions while performing no interpolation (for neither image rectification
nor template matching) and not having to consider the “splitting” difficulty.

(a) (b) (c)

Figure 4: Examples of occlusion-reappearance (O-R) cases.Column (a): O-R by the blind
spot of the inner circle and the camera holder after a yaw rotation; column (b): O-R by the
field of view (outer circle) after a yaw rotation; column (c):O-R by the field of view (outer
circle) after a pitch rotation.

The probability that the target is observable (i.e. lies inside the field of view) is much
higher for catadioptric systems than for traditional cameras thanks to their wider field of
view. Fig 4 shows some practical cases where the target gets occluded and reappears. In
traditional vision, if the target leaves the field of view, itcould reappear anywhere near the
image boundaries. In catadioptric vision, if the object leaves the field of view by the outer
(respectively inner) circle, it will likely reappear near the outer (respectively inner) circle. A
simple method to consider the target “occluded” is a threshold on the histogram matching,
and more advanced method could be used. If the occlusion occurs near the outer (respectively
inner) circle, then we generate a new set of particles near the outer (respectively inner) circle.
Examples of re-detection by the proposed approach are shownin Fig 4. A similar approach
could be applied in the rectified panoramic image, but since the target location is not known,
then the rectification might split the target, as discussed above. A solution would be to test
the 2 versions of the panoramic views (using the 2 look-up tables) but would execute twice
slower. On the contrary, our approach works directly on the original catadioptric image and
thus implicitly solves this difficulty.

6 Conclusion

This paper addresses the problem of object tracking by particle filter in catadioptric im-
ages. The difficulty of catadioptric vision is the distortion induced by the mirror, which
complicates the image processing. The proposed approach iscomposed of two techniques
to correctly handle this important distortion. First, we proposed manipulating the particles
in the equivalent sphere space rather than in the original 2Dcatadioptric image. It provides
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a general framework to easily handle the specific distance associated to the distorted image.
Second, we combined an adapted neighborhood with histogramtechnique. It allows to com-
pare templates quickly while using an active neighborhood for space-variant windows. The
proposed approach provides 3 main advantages. First, it permits to correctly handle distor-
tion and track object more robustly, as demonstrated by the experimental results. Second,
no interpolation is performed (for neither image rectification nor template matching): we
directly work on the original catadioptric image which leads to a faster execution. Finally, it
implicitly solves the problem where the target is split during the rectification.
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