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We theoretically study Aharonov-Bohm resonances in an antidot system with multiple bound modes in

the integer quantum Hall regime, taking capacitive interactions between the modes into account. We find

the spectator behavior that the resonances of some modes disappear and instead are replaced by those of

other modes, due to internal charge relaxation between the modes. This behavior is a possible origin of the

features of previous experimental data which remain unexplained, spectator behavior in an antidot

molecule and resonances in a single antidot with three modes.
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Electron-electron interactions play an important role in
an antidot in the integer quantum Hall regime [1]. In an
antidot with one or two bound modes (edge states), the
number of which is determined by local filling factor �c

around the antidot, the interactions cause interesting phe-
nomena [2–9], such as charging effects and h=2e
Aharonov-Bohm (AB) effects. It is valuable to extend the
phenomena to generic effects in antidots with multiple
modes. The extension is reminiscent of the stream of
studies from a quantum dot to multiple dots [10], and
useful for applying antidots to the fractional quantum
Hall regime [11,12] or to qubit implementation [13].

Some works [14–16] have been done in that direction,
but require further studies. In Ref. [14], an antidot mole-
cule with �c ¼ 4 was experimentally studied; see a sim-
plified view with �c ¼ 2 in Fig. 1(a). It has atomic modes
X1, X2, and molecular modes Y. Under certain conditions,
AB resonances with period �BY corresponding to the area
enclosed by Y disappear in electron conductance GT

through the system, while those to X1;2 were observed

[Fig. 1(c)]. This finding disagrees with the noninteracting
electron case, in which Y more clearly shows AB reso-
nances than X1;2 since Y couples more strongly with ex-

tended edge channels. Such disappearance of AB
resonances was called spectator behavior [14]. Its mecha-
nism remains unclear despite of efforts [17].

Unexpected experimental results [15] were also found in
a �c ¼ 3 antidot with three modes [Fig. 1(b)]. The
magnetic-field dependence of GT shows three peaks in
one AB period �B, two of which have almost same peak
height higher than the third [Fig. 1(d)]. And, the depen-
dence of GT on the backgate voltage VBG applied to the
antidot shows two alternating peak separations, i.e., the
pairing of two neighboring peaks. Even more strange is
that the peak pairing was not found for �c ¼ 2 and 4. These
features disagree with the noninteracting case, in which
there appear three independent peaks with different height
and separation within one period since each mode shows
one peak per period and couples to extended edge channels
differently from the others; for example, X1 couples to
channels 1 " and 20 " , while X2 to 0 # and 10 # [Fig. 1(b)].

The unexpected results may come from the interactions;
however, they are different from the h=3e AB effect, a
naive extension of the h=2e AB effect [2] of �c ¼ 2, in
which the three peaks have the same height.
In this Letter, we theoretically study AB resonances in

antidot systems with three modes in the integer quantum
Hall regime, based on a capacitive interaction model. We
predict the spectator behavior that the AB resonances of
some modes disappear and instead are replaced by those of
other modes because of internal charge relaxation between
the modes. Which and howmanymodes show the spectator
behavior depends on ratios of capacitances. Our finding
provides unified understanding of the unexpected results
[14,15] on the two different systems.
Antidots with three modes.—We consider two represen-

tative systems with three modes, a symmetric �c ¼ 2

FIG. 1. Schematic views of (a–b) antidots and (c–d) relevant
experimental data. (a) A symmetric antidot molecule with local
filling factor �c ¼ 2 and bulk filling �b � 4. It has atomic modes
X1, X2, and molecular mode Y. Each mode has Landau-level (0,
1, 2) and spin ( " , # ) indexes. The solid and dashed lines
represent edge states and electron tunneling, respectively.
(b) A �c ¼ 3 antidot with modes X1, X2, Y. (c) Fourier trans-
formation of AB oscillations of conductance GT through an
antidot molecule with �c ¼ 4. From [14]. (d) Magnetic-field B
and backgate-voltage VBG dependence of GT for an antidot with
�c ¼ 3. From Figs. 11 and 13 of [15].
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molecule and a �c ¼ 3 antidot [15] (Fig. 1); a �c ¼ 4
molecule in Ref. [14] is spin-unresolved so that some of
its features can be described by the �c ¼ 2 molecule. Each
mode tunnel couples to extended edge channels with the
same spin, and also to the other modes with the same spin.
The two systems have one outermost mode Y and two inner
modes X1 and X2. We treat X1 and X2 equally, since in the
molecule they are symmetric, and in the �c ¼ 3 antidot,
they have Zeeman gap (albeit exchange enhanced [18])
much smaller than Landau gap.

We consider the regime of zero bias, zero temperature,
and strong perpendicular magnetic field B0 � �B�. Here,
�B� is the AB period of mode � ¼ X1, X2, Y. In the
tunneling regime, we describe the total energy of the two
systems by the same form (with system-dependent parame-
ters) of the capacitive interaction model,

Eðf�Q�gÞ ¼
X

�m

~��mn�m þX

��0
U��0�Q��Q�0=e2; (1)

where �, �0 ¼ X1, X2, Y. We derive it by generalizing the
case of a �c ¼ 2 antidot [1,7] in the same way as in
multiple dots [10]. It governs the ground-state transition
as a function of B0 or VBG. By analyzing the transition, we
predict the features (height and separation) of AB reso-
nance peaks in GT . For the �c ¼ 2 case, the model (1)
successfully describes the charging effect, h=ð2eÞ AB ef-
fect and Kondo effect [7]; we here ignore Kondo effects.

The first term of Eq. (1) comes from the energy ~��m and
occupation n�m of single-electron orbital m of �. We will

derive below that ~� satisfies ~��m ¼ ��m;0 þ ����B=�B�

when the magnetic field varies from B0 by �B (�B0).
Here, ��� is the single-particle level spacing of �, and
~��m ¼ ��m;0 at B0. This dependence of ~��m on �B leads to

the fact that mode � shows one AB resonance per period
�B� in the noninteracting limit.

The second term of Eq. (1) shows capacitive interactions
U��0 � e2ðC�1Þ��0=2 between the excess charges �Q�

accumulated in mode �. �Q� depends on �B as

�Q� ¼ eN� �QG
� þ e�B=�B�: (2)

The total charge eN� of � is compensated by gate charge
QG

� ( / VBG) tuned by VBG. N�ð¼
P

mn�mÞ varies by an
integer due to the discreteness of electron charge e < 0.

We explain the dependence of ~��m and �Q� on �B. As
B0 increases by �B, each orbital �m spatially shifts toward
the center of its antidot to keep enclosing a given number,
saying m, of magnetic flux quanta. Then, its energy
changes by ð��� þ 2

P
�0U�0��Q�0=eN�Þ�B=�B�. The

term ����B=�B�, coming from antidot potential, results

in the dependence of ~��m on �B. The other term, resulting
from the interactions between the orbital and �Q�0 , causes
the dependence on �B in Eq. (2). The dependence on �B
captures the physics of antidots.

We discuss the parameters of Eq. (1). For B0 � �B�, it
is natural to apply the constant interaction model [10] that
��� and C��0 are constant over several AB periods, and

that C�� ¼ jCg;�j þ
P

�0��jC��0 j. Cg;� is the ‘‘gate’’ ca-

pacitance of � due to extended edge channels and VBG. X1

and X2 have the same values of �B�, ���, U��, U�Y , and
Cg;� because of the symmetry.

Charge accumulation and relaxation.—As �B increases,
�Q� continuously accumulates with rate 1=�B� as in
Eq. (2). The accumulated charges are relaxed with resonant
tunneling, resulting in the transition of the ground-state
configuration (NX1

, NX2
, NY). There are two kinds of

single-electron relaxation. External relaxation occurs be-
tween a mode (here, X1) and extended edge channels (with
Fermi level �F), e.g., when Eð�QX1

� e; �QX2
; �QYÞ ¼

Eð�QX1
; �QX2

; �QYÞ � �F. This causes resonance peaks

in GT . By contrast, internal relaxation occurs between
modes, through tunneling or cotunneling mediated by vir-
tual states, e.g., when

Eð�QX1
� e; �QX2

; �QY � eÞ ¼ Eð�QX1
; �QX2

; �QYÞ:
(3)

It does not cause peaks inGT . It occurs only between Y and
� 2 fX1; X2g in our case with the symmetry between X1

and X2. In general, relaxations involving more than one
electron can occur. Two-electron relaxation occurs in the
molecule (see below), while not in the �c ¼ 3 antidot.
The ground-state evolution of the antidots and the re-

sulting AB resonances are governed by the relaxations. We
study them by analyzing a charge stability diagram [10]. In
Fig. 2(a), it is drawn for a �c ¼ 3 antidot in (�QXþ , �QY)

plane, where �QX� � �QX1
� �QX2

; this two-

dimensional view is possible due to the symmetry of X1

and X2. Below, we first consider the strong interaction
regime of U�� � ���, which is analogous to the case of
metallic dots, and then discuss finite ���.
The internal relaxation results in the spectator behavior.

The evolution of f�Q�g follows different types of sequen-
ces of AB resonances, depending on how many times the
spectator behavior appears per �BX1

. For example, in a

�c ¼ 3 antidot, there are three types I, II, III [Fig. 2]. In
type I of X1-Y-X2, the evolution never passes the internal
relaxation, and AB resonances occur sequentially by X1, Y,
X2, X1, Y, X2, � � � . In type II of X1-Y-Y (III of Y-Y-Y), the
evolution passes the internal relaxation once (twice) per
�BX1

, and the AB resonances by X2 (X1 and X2) disappear

and are replaced by those by Y. Here, X1 or X2 shows the
spectator behavior.
We discuss the general features of the spectator behav-

ior. Which mode shows the behavior is governed by

� � ðUX1X1
þUX1X2

� 2UX1YÞ�B=�BX1

ðUYY �UX1YÞ�B=�BY

¼ Cg;Y�BY

Cg;X1
�BX1

;

(4)

the ratio of energy gains between �QXþ (¼�QX1
þ �QX2

),

and �QY in the internal relaxation between them; see
Eq. (3). In Fig. 2(a), � equals the ratio of slopes between
the dash-dot relaxation line and the evolution arrow. When
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�< 1, the relaxation occurs from �QY to �QX1
or �QX2

;

hence, Y shows the spectator behavior. For �> 1, X1 and
X2 show it. On the other hand, the intermode interaction
strength (/jC�0�ð��0Þj) also governs the behavior. As the

strength increases and as�more and more deviates from 1,
more sequences (with different ‘‘initial’’ values of f�Q�g at
B0) show the behavior (type II or III); the dash-dot line in
Fig. 2(a) becomes longer so that the evolution has more
chance to pass the internal relaxation. When the strength
vanishes or � ¼ 1, the spectator behavior is suppressed
and only type I appears. Note that noninteracting electrons
show only type I.

Antidot with �c ¼ 3.—We discuss the spectator behavior
in a �c ¼ 3 antidot [Fig. 1(b)]. Its geometry indicates
�BX1

’ �BY and jCX1X2
j> jCX1Yj. The spatial separation

between the outermost mode Y (inner modes X1;2) and the

extended channels 1 # is governed by Zeeman splitting
energy (Landau gap) so that Cg;Y=Cg;X1

is much larger

than 1. These lead to �> 1 [Eq. (4)]. Hence, as mentioned
above, X1 and X2 show the spectator behavior that type II
sequence of X1-Y-Y and III of Y-Y-Y appear instead of I of
X1-Y-X2. As � (>1) and jCX1;2Yj increase, type II and III

appear more dominantly. For a �c ¼ 3 antidot, we obtain
the probability PJð1=�Þ of finding type J 2 fI; II; IIIg in the

ensemble of sequences with different initial values of
f�Q�g at B0 [Fig. 2(c)].
In Fig. 2(b), we plot GTð�BÞ. We obtain it in the

sequential tunneling regime using the standard master
equation method [16], which is enough for demonstrating
the positions and relative heights of AB peaks; here, we
assumed low temperature ( � U��) and the backward-
reflection regime, as in Ref. [15], that mode � couples to
edge channel � with coupling strength ��-� as �Y�1" >
�X1�1" > � � � . For each type, we describe the features of

GT . In type I, each of X1, X2, and Y shows one peak per
period �BX1

. The resulting three peaks in �BX1
have

different height because of different ��-�’s. The peak by

Y is the highest since Y is the outermost mode.
In type II, two peaks among the three within �BX1

come

from Y and have the same height higher than the third. The
separation 	�BX1

between two consecutive peaks by Y

depends on interactions as 	 ¼ UX1Y=ð2UX1Y þUYYÞ, re-
gardless of the initial values of f�Q�g at B0. In the strong
intermode interaction limit of Cg;X1

=CX1Y ! 0, 	 ! 1=3.

The position of the other peak by X1 or X2 depends on the
initial values of f�Q�g.
In type III, all the three peaks within�BX1

come from Y,

showing the same peaks. The separation between them is
determined by interactions as 	�BX1

and ð1� 2	Þ�BX1
.

In the strong intermode interaction limit, it becomes
�BX1

=3, showing h=ð3eÞ AB effects, and the total energy

in Eq. (1) becomes E ’ U�Q2
tot=e

2, where �Qtot ¼P
��Q� ¼ 3e�B=�BX1

þ � � � . This form of E, mentioned

in literatures [16], cannot describe type II.
So far, we have restricted to ��� ¼ 0. In the case of

finite level spacing ���, the first term of Eq. (1) is ab-
sorbed into the second so that E has the same form as that
of ��� ¼ 0, but with replacement (i) U�� !
U�� þ ���=2 and (ii) QG

� ! ~QG
�, where ~QG

� is obtained

by
P

�0 ðU��0 þ ���0���=2Þ ~QG
�0 ¼ P

�0U��0QG
�0 . The re-

placement does not modify the dependence of �Q� on
�B in Eq. (2), but weakens the spectator behavior [see
replacement (i)]. For example, when ��� is comparable to
e2=CX1X1

, type II and III are suppressed by 25% and 100%,

respectively, for the antidot studied in Fig. 2.
The above findings indicate that the result of Ref. [15],

two peaks with equal height in �B [the upper panel of
Fig. 1(d)], may be explained by type II; we do not exclude
the possibility of type I that two modes among the three
accidently give the two peaks with almost equal height.
On the other hand, replacement (ii) affects the evolution

of �Q� as a function of VBG. For ��� ¼ 0, the evolution
follows a line of slope QG

Y =ð2QG
X1
Þ ’ 0:5 in the stability

diagram. When ��� is finite, the slope becomes s ¼
~QG
Y =ð2 ~QG

X1
Þ ’ 0:5½1 þ ðjCg;X1

j þ 3jCX1YjÞ��X1
=e2	=½1 þ

ðjCg;Yj þ 3jCX1YjÞ��Y=e
2	. s can be very small for ��� ’

e2=jCX1Yj, jCg;Y j � jCg;X1
j, jCX1Yj. The latter condition

can be satisfied in a �c ¼ 3 antidot since the spatial sepa-
ration between Y (X1) and extended edge channels is

FIG. 2 (color online). (a) Charge stability diagram for a �c ¼ 3
antidot. It consists of two types (A) and (B) of hexagonal cells in
(�QXþ , �QY) plane. Each cell represents a ground-state configu-

ration of ðNX1
; NX2

; NYÞ ¼ ðL;M;NÞ. Cell boundaries are deter-

mined by charge relaxation conditions such as Eq. (3). At dashed
blue (solid red) boundaries, AB resonances occur via tunneling
through Y (X1 or X2), and at dash-dot green boundaries internal
charge relaxations occur between Y and X1;2. As the magnetic

field increases, (�QXþ , �QY) evolve along a line (solid arrow) of

slope �BX1
=ð2�BYÞ, while �QX� is constant within a cell and

differs by charge e between (A) and (B). Depending on initial
values of �Q� ’s at given field B0, the evolution shows one of
three possible sequences of AB resonances, ‘‘X1-Y-X2’’ (type I),
‘‘X1-Y-Y’’ (type II), ‘‘Y-Y-Y’’ (type III). Parameters are chosen
as ��� ¼ 0, �BX1

¼ �BY , Cg;Y ¼ 8Cg;X1
, CX1Y ¼ 2Cg;X1

,

CX1X2
¼ 8CX1Y , and �QX� ¼ 0 for cell (A) and �e for (B).

(b) Sequence of resonance peaks in GT as a function of �B for
each type shown in (a). The modes giving peaks are shown.
Triangles represent internal charge relaxation. (c) Probability
PJð1=�Þ of finding the sequences of type J ¼ I, II, III is drawn
with the parameters of (a).
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determined by Zeeman (Landau) splitting. The evolution
line with small slope s can pass only the solid boundaries in
the stability diagram [Fig. 2], showing paired peaks by X1

and X2. Or, depending on the initial value of fQ�g at B0, it
can pass only the dashed lines, showing paired peaks by Y.
The paired peaks agree with the lower panel of Fig. 1(d). In
the cases of �c ¼ 2 and 4 with finite ���, the slope s has a
similar form to �c ¼ 3, but the peak pairing does not
appear because the separation between the outermost
mode and edge channels is governed by Landau splitting
so that s has a similar value to the case of ��� ¼ 0. These
indicate that the peak pairing in Ref. [15] is due to finite
��� and the interaction between Y and edge channels.

Molecule.—We discuss the molecule in Fig. 1(a). Its
geometry implies �BX1

* 2�BY and jCX1X2
j< jCX1Yj.

Since the circumference of Y is shorter than 2 times of
that of X1, one has jCg;Yj< 2jCg;X1

j, provided that VBG

affects Cg;Y and Cg;X1
more dominantly than edge chan-

nels. Then, �< 1, and Y shows the spectator behavior.
For an example case of CX1X2

¼ 0:5CX1Y , selected AB

resonance sequences are shown as a function of �B in
Fig. 3. The spectator behavior occurs such that type Ia of
Y-X2-Y-X1 is replaced by IIa of Y-X2-X2-X1 (III of
X1-X2-X2-X1) when the relaxation in Eq. (3) occurs
once (twice) within �BX1

. In the molecule, in addition to

the one-electron relaxation, there occurs two-electron
relaxation, Eð�QX1

� e; �QX2
� e; �QY � eÞ ¼

Eð�QX1
; �QX2

; �QYÞ � �F, which is a mixture of internal

and external relaxations. This additional process results in
more types such as IIb of Y-X2-X2-X1. Type IIb has the
same sequence as IIa, and results from Ib of Y-X2-X1-Y due
to two one-electron internal relaxations and one two-
electron relaxation within �BX1

. We plot PJð�Þ of type J

in Fig. 3(b). As � decreases from 1, type II (e.g., IIa and
IIb) becomes dominant. Note that when ��� ’ e2=C��,
PII and PIII are reduced by less than 10% for 0:6 & �< 1.
Qualitatively same features appear in other parameter
ranges.

The unexpected results of Ref. [14] can be understood
by type II, provided that the inner modes X1 and X2 are
almost decoupled from edge channels (i.e., only Y shows
AB peaks). In this case, the period of AB peaks in type II is
2�BY instead of �BY due to the spectator behavior
[Fig. 3(a)]. This agrees with Fig. 1(c), since 2�BY ’
�BX1

. On the contrary, all the other types of �< 1 and

those of �> 1 cannot explain Fig. 1(c); for example, type I
shows peaks with �BY or a mixture of �BY and �BX1

,

depending on the coupling of X1;2 with edge channels.

These indicate that the molecule of Ref. [14] is in the
regime of type II of �< 1.
Conclusion.—Electron-electron interactions give rise to

the spectator behavior of AB resonances in antidots with
three modes. The spectator behavior is generic, i.e., ex-
pected to appear in other quantum Hall systems with
multiple modes, such as antidots and quantum dots. And
it is useful for detecting interactions between edge states.
To experimentally test the spectator behavior and our
explanation of the experimental data [14,15], one can
monitor the modes showing resonance signals by selective
injection and detection of edge channels [19].
We thank C. J. B. Ford, V. J. Goldman, and M. Kataoka

for discussion, and NRF (2009-0078437).

[1] H.-S. Sim, M. Kataoka, and C. J. B. Ford, Phys. Rep. 456,
127 (2008).

[2] C. J. B. Ford et al., Phys. Rev. B 49, 17456 (1994); M.
Kataoka et al., Phys. Rev. B 62, R4817 (2000).

[3] I. J. Maasilta and V. J. Goldman, Phys. Rev. B 57, R4273
(1998).

[4] M. Kataoka et al., Phys. Rev. Lett. 83, 160 (1999).
[5] I. Karakurt et al., Phys. Rev. Lett. 87, 146801 (2001).
[6] M. Kataoka, C. J. B. Ford, M.Y. Simmons, and D.A.

Ritchie, Phys. Rev. Lett. 89, 226803 (2002).
[7] H.-S. Sim et al., Phys. Rev. Lett. 91, 266801 (2003); N. Y.

Hwang, S.-R. E. Yang, H.-S. Sim, and H. Yi, Phys. Rev. B
70, 085322 (2004).

[8] S. Ihnatsenka and I. V. Zozoulenko, Phys. Rev. B 74,
201303(R) (2006).

[9] M. Kato et al., Phys. Rev. Lett. 102, 086802 (2009).
[10] W.G. van der Wiel et al., Rev. Mod. Phys. 75, 1 (2002).
[11] I. J. Maasilta and V. J. Goldman, Phys. Rev. Lett. 84, 1776

(2000).
[12] D. V. Averin and J. A. Nesteroff, Phys. Rev. Lett. 99,

096801 (2007).
[13] D. V. Averin and V. J. Goldman, Solid State Commun. 121,

25 (2001).
[14] C. Gould et al., Phys. Rev. Lett. 77, 5272 (1996).
[15] V. J. Goldman, J. Liu, and A. Zaslavsky, Phys. Rev. B 77,

115328 (2008).
[16] S. Ihnatsenka, I. V. Zozoulenko, and G. Kirczenow, Phys.

Rev. B 80, 115303 (2009).
[17] Y. Takagaki, Phys. Rev. B 55, R16021 (1997).
[18] W. Xu et al., J. Phys. Condens. Matter 7, 4419 (1995).
[19] M. Kataoka, C. J. B. Ford, M.Y. Simmons, and D.A.

Ritchie, Phys. Rev. B 68, 153305 (2003).
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and empty triangles represent the single- and two-electron
internal relaxations, respectively. (b) Probability PJð�Þ of find-
ing the sequences of type J ¼ I, II, III. Here, I (II) means the
types, e.g., Ia and Ib (IIa and IIb), having two (one) Y resonances
within �BX1

. Parameters are chosen as ��� ¼ 0, �BX1
¼

2�BY , CX1Y ¼ 10Cg;X1
, and CX1X2

¼ 0:5CX1Y .
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