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Within six months of the discovery of X-ray in 1895, the technology was used to scan the interior of the human body, 
paving the way for many innovations in the field of medicine, including an ultrasound device in 1950, a CT scanner in 
1972, and MRI in 1980. More recent decades have witnessed developments such as digital imaging using a picture archiving 
and communication system, computer-aided detection/diagnosis, organ-specific workstations, and molecular, functional, 
and quantitative imaging. One of the latest technical breakthrough in the field of radiology has been imaging genomics 
and robotic interventions for biopsy and theragnosis. This review provides an engineering perspective on these 
developments and several other megatrends in radiology.
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INTRODUCTION

Within 6 months of Röntgen’s discovery of X-ray in 1895, 
physicians were already utilizing the resulting technology 
to diagnose and treat diseases (1). Nonetheless, there were 
still many barriers to achieving its full use. In October, 
1920, 13 technicians established the American Association 
of Radiological Technicians (AART), the first national society 
of its kind, to overcome these obstacles by sharing ideas 

and skills on radiologic techniques (1). Since the founding 
of the AART, radiology has developed rapidly and plays an 
increasingly important role in the diagnosis of diseases in 
various clinical settings.

In the recent decades, there have been many new 
radiologic imaging modalities, including ultrasound, 
computed tomography (CT), and magnetic resonance 
imaging (MRI), with numerous applications to clinical 
practice. The first CT device was invented in 1972 by British 
engineer, Sir Godfrey Hounsfield, who worked at Electronic 
& Music Industries Ltd., and South African physicist, Allan 
Cormack, of Tufts University. The first clinical CT scanners 
were installed in Atkinson Morley Hospital in Wimbledon, 
England, and the first patient brain scan was performed 
on October 1, 1971 (2). In 1979, 7 years after the 
announcement of their invention, Hounsfield and Cormack 
were awarded the Nobel Prize for their contributions to 
medicine and science.

Beyond developments in the types of imaging modalities, 
there have been additional megatrends in radiology 
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that are of equal importance, including ‘being digital,’ 
new display and input devices for picture archiving and 
communication system (PACS), 3D intelligent and organ-
specific workstations, functional and quantitative imaging 
for imaging biomarkers, imaging genomics, bionics, and 
robotic interventions for interventional radiology. The 
digitization of medical imaging allows unlimited data 
storage and sharing without substantial effort. Spiral CT and 
volumetric MRI enable 3D visualization and quantitative 
analysis at the diagnostic workstation, which has become 
organ-specific in order to more effectively respond to the 
clinical need at hand. At the present time, the digital state 
demands that decision support systems based on clinical 
knowledge modeling, such as computer-aided detection/
diagnosis (CAD), are seamlessly integrated into PACS. In 
addition, the introduction of new display and input devices, 
including stereovision, holograms, 3D mouse, and stereo 
cameras, are expanding the ability of the radiologist, 
who can now efficiently deal with very large amounts of 
radiologic information. 

Molecular, functional, and quantitative imaging is an 
increasingly important capability in the field of radiology. 
Oncologic imaging is the clearest example in which 
functional and quantitative image metrics such as tumor 
diameter, tumor volume, standard uptake value, and 
permeability must be determined to assess treatment 
response. These functional and quantitative data, 
accessed by the interpreting radiologist in many cases 
using automated software tools, yield more definitive and 
ultimately more accurate diagnostic conclusions. From an 
engineering point of view, the final objective is to establish 
processes and profiles of the following, which, are accepted 
by the imaging community, the clinical trial industry, and 
regulatory agencies: imaging biomarkers as proof of biology, 
indicators of alterations in the underlying pathophysiology, 
and surrogate endpoints for changes in the health status of 
patients.

Imaging genomics is very likely to become another 
megatrend in radiology. The recent completion of human 
genome sequencing promises to provide unprecedented 
opportunities to explore the genetic basis of individual 
differences, which specifically requires radiologic imaging 
devices. These may offer a complementary strategy in 
the examination of genotype-phenotype relationships. 
Deciphering the complex nature of these relationships will 
require sophisticated computational methodologies.

The megatrend toward minimally invasive image-guided 

interventions has also created new challenges in the 
introduction of robotic technology. For example, the use 
of master-slave robot control technology and accurate 
pre-planning support may reduce radiation exposure to 
operators and patients. In addition, micro-imaging devices 
and various sensors will improve the safety of image guided 
interventions. 

In this review, we introduce many of these promising 
megatrends in radiology, i.e. those with the potential to 
change the future of radiology, and provide insight into 
their applications from an engineering perspective. 

Digitization of Medical Imaging

Unlimited data storage and sharing capabilities, which 
have rapidly become routine, reflect the digitization of 
medical imaging (Fig. 1). Consequently, PACS solutions have 
become an important component of radiology departments, 
with respect to the infrastructure responsible for medical 
image management according to the well-known standards 
elaborated in Digital Imaging and Communications in 
Medicine (DICOM) (3), Integrating Healthcare Enterprise 
(4), and Health Level Seven International (5). Since most 
imaging modalities transmit their images through these 
standard routes, all such images can be stored in a single 
PACS solution and then retrieved by physicians using their 
own desktop imaging software. Although PACS solutions 

Fig. 1. Digitization of medical image.
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are a vital and well-established commodity in diagnostic 
radiology, they are still expected to provide an innovation 
platform in radiology (6). Thus, regardless of the many 
functions already integrated within state of the art PACS 
solutions, upgrades by the major vendors continue to 
enhance productivity relying on medical images based on 
the following megatrends: 

Firstly, PACS is now expanding the territory of its 
applications beyond the radiology department. Many clinical 
departments, such as cardiology, dentistry, and radiation 
therapy, are incorporating medical imaging modalities into 
their workflow (7). Recently, the DICOM standards have 
been extended to incorporate medical specialties, such as 
radiotherapy, cardiology, pathology, and ophthalmology, 
such that the images can be viewed with respect to their 
specialty-specific information (8, 9). This has necessitated 
a wide range of modifications in the pre-existing radiology 
PACS, since each specialty has its own specific workflow, in 
addition to the fact that the primary nature of the various 
imaging modalities differs. So far, most large hospitals have 
implemented separate and independent PACS solutions 
for each department, although this is an unnecessarily 
complex and inefficient way to share images. Instead, it 
would be preferable for one given PACS solution to manage 
all patient-relevant images in a unified manner, with 
server-side components and storage commonly shared by 
all departments, and optimized access for client viewers 
according to the requirements of each clinical department. 

Secondly, PACS viewing is adopting a growing number 

of image processing algorithms and 3D/4D visualization 
technologies to support the intuitive and quantitative 
analyses of clinicians. Nowadays, most PACS are equipped 
with the advanced visualization and image processing 
algorithms that, until recently, were available for high-
end workstations only. For example, doctors can use 
PACS with CAD to detect or diagnose suspicious regions 
more easily and productively (10). Such functions must 
be available within the PACS viewer itself, as separate 
workstations are unable to significantly enhance daily 
routine workflow, due to the computational complexity, 
network bandwidth limitation, and the lack of hardware 
capabilities at the client workstations. To overcome these 
obstacles, server-side computing technologies, such as the 
thin-client approach, have been used intensively for PACS 
implementation (11). Transmission of the images to the 
central PACS solution allows its computing machines to be 
configured, such that computer-intensive image processing 
is performed automatically. Doctors can then view the pre-
processed results, including those related to segmentation, 
registration, quantification, or CAD. In addition, thin-client 
technology will enable doctors to make use of the full range 
of complex image processing and visualization techniques 
anywhere and at anytime. These technologies will be the 
key foundation in a mobile environment, in which the 
development of devices such as smartphones and tablets, 
including Google AndroidTM devices, Apple iPhoneTM, and 
iPadTM, are already recognized as one of the most significant 
developments in the IT world.

Computer-Aided Detection/Diagnosis

Clinical intelligence and knowledge must be integrated 
into PACS solutions to support daily radiology tasks. 
Although attempts at computerizing the analysis of medical 
images (12, 13) were previously made in the 1960s, serious 
and systematic investigations into the possibility of CAD 
began in the 1980s, paralleling a fundamental change in 
the concept of computer output utilization, from computer-
automated to computer-aided diagnosis (14-17). While 
those efforts were initially hindered by the difficulty of 
digitalizing medical images (14), CAD has since become a 
major focus of research, and developments in this field have 
been incorporated into the routine diagnostic radiology 
approach to the detection of breast cancer on mammograms 
(Fig. 2) (18-24). The motivation and philosophy guiding 
the early development of CAD was the application of 

Fig. 2. ImageChecker computer aided diagnosis for Digital 
Mammography by Hologic Inc.
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intelligence and knowledge to PACS, based on medical 
images being digital. With CAD, radiologists are able to use 
computer decision supports as a second opinion in reaching 
a final diagnosis, which means that computer performance 
compliments decision making by physicians. In fact, in 
addition to the aforementioned application in breast cancer 
detection (18-23), CAD has the potential to improve overall 
performance in the detection of lung nodules (25-29) and 
vertebral fractures. The latter can be reliably detected by 
CAD on lateral chest radiographs (30), thus improving the 
early diagnosis of osteoporosis (31). In MR angiography, 
a CAD system has been developed to detect intracranial 
aneurysms (32, 33). Interval changes on successive bone 
scan images, such as those obtained from patients with 
suspected bone metastases, can also be detected using a 
CAD system, based on the subtraction images (34).

Many different types of CAD systems have been recently 
implemented as part of PACS solutions (10, 35-38). In 
chest radiographs and CT scans, the package for chest 
CAD might include the automated detection of lung 
nodules, interstitial opacities, cardiomegaly, vertebral 
fractures, interval changes, etc., as well as the automatic 
differentiation of benign and malignant nodules, and the 
differential diagnosis of interstitial lung diseases. This 
seamless integration of CAD and PACS significantly increases 
reader sensitivity and reduces the average image reading 
time, thus vastly improving the efficiency of daily clinical 
practice (35). In the near future, it should be possible to 
use PACS to search for and retrieve lesion images that are 
similar in appearance to previously queried images, based 
on a set of primitive image characteristics which are not 
related to any specific diagnostic method able to visually 
characterize the image, by utilizing reliable and practical 
methods developed for quantifying the similarity of a pair 
of images for further visual comparison by radiologists (39-
42). Similar content-based image search engines will no 
doubt be of interest to all medical specialties that make use 
of medical imaging or digital biomedical signals, drawing 
support from the information available in medical archives 
(40).

Organ-Specific Diagnostic Workstations

Beyond the simple display of medical images, radiologic 
diagnosis demands more specialized image processing, 
based on targeted organ types, organ-specific diagnosis, 
or organ-specific surgery procedures, in order to increase 

the accuracy and the efficiency of the workflow. Therefore, 
not only major modality vendors (Siemens Healthcare, 
Erlangen, Germany, GE Healthcare, Milwaukee, WI, USA, 
Toshiba Medical Systems, Tokyo, Japan, and Philips, Best, 
The Netherlands) (Fig. 3), but also 3D medical image 
visualization and processing software companies (e.g., 
TeraRecon, MeVis, Aze, and INRIA) have been expanding 
their 3D visualization platforms to include organ-specific 
workstations. In particular, Aze has developed organ-specific 
workstations with more than 50 organ-specific modules, 
while software companies such as EDDA Technology and 
Diagnostics focus on specific organs, such as liver and 
lung, respectively. The organ-specific capabilities of these 
workstations are detailed as follows.

Cardiology workstations differ from general radiology 
workstations. In the latter, the workflow for viewing and 
reporting study cases is primarily driven by an imaging 
request, whereas the cardiology workstation must access 
all cardiology imaging data for each patient, which may be 
stored across a number of different storage systems. Thus, 
data recorded during a cardiac catheterization procedure 
would also be available for viewing on a cardiology 
workstation.

Brain-imaging workstations require advanced 
visualization techniques to allow the interpretation of 
images from the various MRI imaging (anatomic, perfusion, 
diffusion, functional, etc.). Some commercial stand-
alone workstations, e.g., BrainVoyager and BrainMagix, 
are specifically devoted to brain imaging. In addition to 
commercial workstations, a number of academic open 
source programs have been developed and distributed for 
various purposes such as brain segmentation, functional 
imaging analysis, and diffusion tensor imaging (DTI). Well-
known systems include Harvard University’s FreeSurfer, 
for the analysis of the cortical thickness of the brain (43, 
44); the University of Birmingham’s Brain Imaging Lab, for 
general neuroimaging analysis (45); and the University of 
Pennsylvania’s DTI-TK, for atlas construction (46).

Mammography also requires a workstation with a 
specialized functionality, because the ability to detect fine 
details in mammography images is vital to their effective 
use in diagnosis. Therefore, image analysis software 
must be capable of resolving micro-calcifications, the 
appearance of which can be a clinical indicator of pre-
cancerous changes in the breast. Currently, there are several 
commercial systems that offer the required functions, such 
as IDI Mammography Workflow Solutions (GE Healthcare, 
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Milwaukes, WI, USA), IDS7/MX (Sectra: Linköping, Sweden), 
and the BX Mammography Workstation (Neusoft Neusoft, 
Shenyang, China).

Finally, lung workstations also require special 
processing algorithms, such as lobar segmentation, airway 
segmentation, airway tree labeling and wall measurement, 
parenchymal density analysis, and emphysema analysis. 
The pulmonary workstation developed by VIDA Diagnostics 
has been widely adopted. The GE Advantage WorkstationTM 
has advanced lung analysis modules, while the TeraRecon 
Aquarius workstation includes lung nodule tracking and 
analysis functions. In addition, some academic labs in 
South Korea and Netherlands have developed in-house 
software for lung specific workstations (47-55).

Functional, Molecular, and Quantitative 
Imaging

Despite the many advantages offered by these 
technologies, the differential diagnosis together with the 
standard qualitative reporting procedure is very likely to 
remain the heart and soul of radiology. However, radiology 
is gradually embracing functional and quantitative metrics, 
which provide vital information in an increasing number of 
radiology settings.

In general, functional imaging means functional magnetic 
resonance imaging (fMRI) to detect blood-oxygen-level-
dependent contrast material, as an indicator of brain 
neuronal activity. Following the groundbreaking discovery of 
fMRI by Ogawa et al. (56), it was applied in a large number 

A

C

B

D
Fig. 3. Toshiba’s cardiology imaging solution. 
A. Ultrasound. B. CT. C. X-ray. D. MRI
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of studies aimed at discovering the ’secrets‘ of the brain. 
Thus far, fMRI has been used to study not only neuroscience 
with respect to memory, cognition, brain-robot interfaces, 
etc., but also to obtain evidence of the diagnosis-specific 
patterns of brain activation in various neurologic diseases 
(57-61). 

The management of oncology patients increasingly 
depends on medical imaging to reach a diagnosis, as 
well as to monitor treatment response and follow-up. The 
clinical applicability of combined functional and anatomical 
imaging modalities, which integrate the benefits of 
visualizing tumor biology with high-resolution anatomical 
imaging, has revolutionized the clinical management of 
cancer patients (62). High-resolution anatomical imaging 
modalities such as CT and MRI provide detailed structural 
information regarding lesion location, size, morphology, 
and morphological changes, but they do little to further 
the understanding of tumor physiology. With the increasing 
focus on molecularly targeted therapies, imaging radio-
labeled compounds with positron emission tomography 
(PET) and single-photon emission tomography (SPECT) 
are often carried out to gain insights into the biology 
and surrounding environment of the tumor (63, 64). 
The availability of multimodality imaging with PET/
CT, SPECT/CT, and PET/MRI has the potential to improve 
lesion characterization, treatment decision-making, and 
patient management, to name just a few of its potential 
advantages. In addition, continual developments in 
instrumentation and imaging agents will improve the ability 
to non-invasively evaluate disease processes (64). 

Based on these developments, the Radiological Society 
of North America (RSNA), has committed to help transform 
patient care by making radiology a more quantitative 
science (65-68). Quantitative imaging is the extraction 
of quantifiable information from medical images to define 

the normal condition or to measure the severity, degree 
of change, or status of a disease, injury, or chronic 
condition relative to normal. This requires the development, 
standardization, and optimization of anatomical, functional, 
and molecular imaging acquisition protocols, data analyses, 
display techniques, and reporting systems. This information 
will allow the validation of accurately and precisely 
obtained image-derived numerical metrics with anatomically 
and physiologically relevant parameters, including treatment 
response and outcome, and the use of such metrics in 
research and patient care. 

Efforts to accumulate public resources and open source 
tools in order to qualify longitudinal volumetric CT imaging 
for use with imaging biomarkers (Table 1), i.e., reproducible 
biologic features detectable by imaging modalities (69), 
were re-invigorated in 2005 by an informal alliance between 
the US Food and Drug Administration (FDA), the National 
Cancer Institute, the National Institute of Standards and 
Technology (NIST), and the National Institute of Biomedical 
Imaging and Bioengineering (NIBIB) (70-74). The 
preliminary initiative of this inter-federal agency led to the 
organization of a public workshop, which was held at the 
NIST headquarters in 2006 and modeled on the Integrating 
Healthcare Enterprise. The Scientific Advisory Board of 
the RSNA met in 2006 and consequently established a 
Quantitative Imaging Biomarker Alliance (QIBA), with 
the aim of advancing quantitative imaging and the use of 
imaging biomarkers in clinical trials and clinical practice 
by engaging researchers, healthcare professionals, and 
industry members (67). RSNA was awarded a two year, 
$2.4 million contract from the NIBIB to support QIBA. 
This contract encouraged a coordinated effort to establish 
an infrastructure for collecting and analyzing imaging 
biomarker data. The purposes of QIBA are two-fold: 
collaborating to identify needs, barriers, and solutions to 

Table 1. Selected List of Quantitative Magnetic Resonance Biomarkers
Physiological Parameter Imaging Method Biomarker

Hemodynamics Phase velocity MRI v, Q, ∆P, wall shear stress, etc
Tissue cellularity Diffusion-weighted imaging ADC, Intravoxel incoherent motion (IVIM)
Triglyceride concentration Chemical-shift-based water/fat imaging Fat fraction
Iron concentration R2/R2* relaxometry R2, R2*
Fibrosis MR elastography Shear stiffness
Tissue perfusion DCE, DSC Ktrans, f, Vd

Fascicular tissue structure Diffusion tensor imaging FA, mean/axial/radial diffusivity
Macromolecule content Quantitative magnetization transfer Bound pool fraction, exchange rate, T2 bound pool

Note.— DCE = Dynamic Contrast Enhanced MRI, DSC = Dynamic Susceptibility Contrast MRI, ADC = Apparent Diffusion Coefficient, FA = 
fractional anisotropy
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develop and test consistent, reliable, valid, and achievable 
quantitative imaging results across imaging platforms, 
clinical sites, and time; accelerating the development and 
adoption of hardware and software standards needed to 
achieve accurate and reproducible quantitative results from 
imaging methods (75). In terms of engineering, QIBA could 
resolve major problems, including differences between 
vendors or between different machine versions of the same 
vendor.

Extensive research has also been carried out in the 
field of pulmonary functional and quantitative imaging. 
In the former, xenon ventilation (76, 77) and iodine 
perfusion (47) using dual-energy CT have been evaluated 
(Fig. 4). In quantitative imaging, lung segmentation, 
airway measurement, textural analysis of the parenchyma, 
automatic quantification, follow-up analysis, and clinical 
applications were examined (47-53). 

New Display and Input Devices

With the goal of diagnosing and evaluating patients 
non-invasively, medical visualization is a highly intuitive 
approach, and its applications are being continually 
extended. Effective visualization of the disease region to 
determine its position is likely to go beyond the realm of 
diagnosis to include minimally- or non-invasive examination 
and treatment. The emerging technologies to display the 
products of visualization and the input devices for seamless 
interaction with users are introduced in this section.

One of the trends of display devices is to show more 
realistic depictions by making use of 3D depths, such as 
stereovision (78). When combined with a 3D diagnostic 
workstation, surgical planning software, simulation, and 
a robot-master console, there are benefits in terms of 
usability, as relative depths are displayed among the 
complex 3D anatomical shapes, the different organs, and 

Fig. 4. Pulmonary functional imaging using dual-energy CT. 
A. Xenon ventilation map. B. Iodine perfusion map

A B
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the end effectors.
In general, while most stereovision systems require 

special glasses, 3D virtual scenes can be generated 
without them if the user’s typical viewing distance and 
viewing direction are within the specified range, such as is 
demonstrated by the small mobile devices (79, 80). Another 
option is holographic technology, which generates 3D 
objects rather than a virtual model. Pennsylvania based Ark 
Media shows a cylindrical holographic example of the lungs 
(81) that can be viewed 360° (82).

While realistic virtual reality or holography has many 
technical limitations, augmented reality offers greater 
opportunities and feasibility. In the operating room, 
separate 2D monitors are generally used to show pre-
operative and intra-operative medical images, with the 
positions of current surgical devices obtained via surgical 
navigations. However, viewing distracts visual attention 
from the surgical field to the display monitors, thus 
disturbing the surgeon’s concentration and requiring a 
substantial amount of imagination and attention in the 
interpretation of the displayed images. Accurately and 
effectively displaying the image directly on the patient’s 
body would obviate the need for a mapping process between 
the monitor and the patient. These technologies could be 
useful to the interventional radiologist in determining entry 
points and the direction of needle insertion.

In this context, Kutter et al. (83) developed a real-
time volume-rendering system that is set up over the 
patient’s body and makes use of the head mount display 
devices shown, while Werkgartner et al. (84) explored a 3D 
model overlay on a 2D image plane. Although their clinical 
applicability awaits further testing, these novel systems 
may provide an alternative method, allowing intuitive and 

seamless access to displays in the operating room.
Another trend in display devices is portability. High-

resolution portable devices and thin-client software systems 
via networks allow diagnoses to be made on demand. The 
limited size of the mobile display devices can be solved by 
small pico-projectors such as the one shown in Figure 5. 

As the popularity of 3D display devices continues to grow, 
the requirements for new, compatible input devices will also 
grow. Figure 6 shows 3D input devices allowing the control 
of medical images and a haptic device. A 3D mouse is an 
input device with more than 3 degrees of freedom (DOF) 
about a rigid-body transformation. Typically, there are 6 
DOF: 3 related to translation, and a maximum of 3 related 
to rotation. The 3D mouse shown in Figure 7A is used to 
interact with the medical image browser (85). Sometimes 
haptic devices that provide force feedback, including 6 DOF 
positioning and remote robotic control, are used for special 
purposes.

In reality, as opposed to virtual space, stereo acquisition 
systems are generally used to obtain depth information. 
Similar to human vision, the depth information can be 
calculated using the difference perceived by binocular 
vision. Figure 7B shows a low-priced general-purpose 
stereo camera, KinectTM, developed by Microsoft Corp. 
Since its software development toolkit includes a human 
motion analysis function, a visual sensor for the detection 
of human gestures has attracted attention. However, the 
current version is plagued by the problems of latency and 
relatively large spatial errors when used for images. For 
fast and accurate 3D tracking, special markers are often 
adopted, as shown in Figure 7A. These have been widely 
employed in medical applications as a navigation system. 

A B
Fig. 5. Portable display devices. 
A. MIM mobile software with mobile devices. B. Pico-projector (Samsung SP-H03TM)

70 mm (W)

70 mm (D)

27.5 mm (H)



Korean J Radiol 14(2), Mar/Apr 2013kjronline.org 147

Engineering View on Megatrend in Radiology

Imaging Genomics

Imaging genomics is defined as an association analysis 
between genes and a physiological response of the brain 
during specific information processing, which is captured 
in images (86). It is a field of study that integrates 
molecular genetics, represented by the Human Genome 
Project, with neuroscience, based on recent progress in 
neuroimaging modalities, since approximately 70% of all 
genes are expressed in the brain (86). Closely related to 
bioinformatics, imaging genomics has advanced rapidly 
because of the increase in scanning data obtained from 
individuals using structural and functional MRI, and the 
emergence of voxel-wise methods that search every location 
in the brain for statistical analysis (87, 88). 

Many genes expressed in the brain are important in 
disease, including behavioral disorders, not only with 
respect to understanding disease mechanism but also in 
the diagnosis of patients with suspected pathologies, as 
well as in the identification of individuals at risk and in 
the development of new treatments. Even if genes are not 
solely responsible for disease, twin studies have shown 40-
70% heritability in cognition, personality, and other human 
behavioral patterns (86). In addition, genes are known to 
be the only consistent risk factor for psychiatric disease. 
The 3D neuro-anatomical patterns of gene effects can be 
visually assessed using DTI. 

Magnetic resonance imaging-based methods including 
DTI and fMRI are regarded as the most fruitful modalities 
in imaging genomics. In addition, there may be related 
applications that benefit from nuclear medicine modalities, 
i.e., PET and SPECT. While magnetoencephalography and 
electroencephalography are also of interest in this setting, 
this paper will focus on the various MRI sequences. 

To apply neuroimaging to a specific behavioral study, 
Hariri and Weinberger (86) suggested three general 
procedures: selection of candidate genes, control for non-
genetic factors, and task selection. The first step involves 
the selection of the appropriate candidate genes, that is, 
those related to the behavior of interest. Depending on 
the gene, functional polymorphisms may be well known, 
circumscribed, or unknown. While candidate genes with 
identified single nucleotide polymorphisms are tractable 
in imaging genomics, studies based on genes which have 
poorly or not at all understood functional effects and 
their variations should be carefully designed. Second, non-
genetic factors must be controlled for, as the effects of a 
single gene on the brain may be limited. Thus age, gender, 

A B
Fig. 6. 3D input devices. 
A. User interaction with 3D mouse. B. Haptic device (Sensible PHANToM OmniTM)

A

B
Fig. 7. Stereo cameras. 
A. NDI Polaris system and passive markers. B. Microsoft KinectTM
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or environmental factors may prevent the effects of a single 
gene from being detected unless a carefully matched control 
is included across genotype groups. Lastly, as the effects 
of single genes are relatively small, and potential gene 
effects are the detection targets of information processing, 
it is recommended that imaging tasks that are known to be 
effective for information processing are selected in order to 
maximize the sensitivity of those tasks. 

For example, apolipoprotein E4 (APOE4) is one of the 
most studied polymorphisms in neuroimaging. The various 
APOE4 alleles are known to increase the risk for developing 
late-onset Alzheimer’s disease (before the age of 75 years) 
by three-fold. A decrease in the volumes of grey and 
white matter in the brains of the elderly is also related 
to APOE4 levels (89-91). Children carrying this gene later 
show cortical thinning and trajectory changes; in addition, 
resting-state activity in the young brains of these gene 
carriers is modified (92, 93). Besides genes related to 
Alzheimer’s disease and schizophrenia, mutations of the 
Parkin gene (PARK2) and the PINK1 gene (PARK6) are 
known to cause Parkinson’s disease. Van Nuenen performed 
a neuroimaging study for individuals with PINK1 (94). In 
tumor evaluation, the gene expression patterns for a mouse 
tumor model have been attempted using MRI (95).

Imaging genomics is a promising field of study that 
has many advantages over earlier approaches to genetic 
research, especially in light of the steady advances in 
medical imaging technologies. Imaging genomics may be 
better than epidemiological studies, as the former can 
demonstrate the roles of genes in psychotic disorders, 
including schizophrenia, and requires fewer subjects with 
high behavioral accuracies (96).

Active studies on imaging genomics began with the 
completion of the Human Genome Project in 2003 and are 
still ongoing (87). Many academic institutes have provided 
software, databases, and websites to facilitate gene studies. 
For instance, the University of California, Santa Cruz hosts 
an online genome browser service (Fig. 8), called the UCSC 
Genome Browser, in which users can access a database of 
genome sequences and download related documentation 
(97). Another example is the Galaxy platform, supported 
by multiple organizations including Pennsylvania State 
University and Emory University, which offers a scientific 
workflow, data integration, and analysis services with 
a graphical interface (98). In addition, international 
conferences such as the Imaging Genetics Conference at the 
University of California, Irvine continue to promote research 

on genes and medical imaging technologies. Imaging 
genomics has recently expanded from the brain to include 
the imaging of various organ-specific diseases, such as 
chronic obstructive pulmonary disease (99), cardiovascular 
disease (100), and cancer (101). 

Robotic Interventions

The word ’robot‘ was originally introduced in the play 
“Rossum’s Universal Robot,” written by the Czech dramatist 
Karel Capek in 1921, in which the meaning of robot was 
a laborer or servant (102, 103). It was in 1958 that 
robots were adopted in the real world for manufacturing 
automation, by the General Motors Company. Sometime 
later, robots began to be used in various fields.

The first medical robot was ROBODOC, released in 1992 
by Integrated Surgical Systems; it was an automatic-drilling 
robot that inserted orthopedic implants in artificial-joint 
replacement surgery (104). However, as a fully automatic 
robot, obtaining FDA approval was a prolonged process 
which was not accomplished until 2008, at which point 
the company had partnered with a Korean company, Curexo 
Technology Corporation.

For laparoscopic surgery, human-controlled, master-slave 
robots were developed. In the 1980s, Scott Fisher carried 
out research in this field at the National Aeronautics and 
Space Administration (103). In the 1990s, Phil Green 
devised a tele-operated surgical system at Stanford 
Research Institute (SRI). Based on these developments, the 
US Department Of Defense invested tremendous amounts of 
money into the research and development of surgical robots 

Fig. 8. UCSC Genome Browser. 
UCSC = University of California-Santa Cruz
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(105, 106). Frederick Moll also acquired the technologies 
of a tele-operated surgical robot from SRI, and in 1995 
he established Intuitive Surgical, which released the first 
version of the da Vinci surgical robot system (107, 108). 

In this current technology, the surgeon’s hand motions 
are used to manipulate robot arms and surgical instruments. 
Similar strategy has been applied to image-guided surgery, 
in which pre-operative or intra-operative CT/MR images are 
the basis for robot manipulation. With the development of 
the surgical robot, robotic intervention has been introduced, 
with remote manipulation systems for needle and catheter. 
Needle manipulation robots have a multi-joint actuation 
mechanism for instrument motion, which is controlled 
either by a computer that automatically analyses real-time 
images of the intervention or by a remotely located human 
operator with a master control device. This interventional 
real-time image can be obtained by ultrasound, X-ray 
fluoroscope, MRI etc. The motion of the master control 
device, guided by its human operator, is conveyed to the 
actual procedure slave robot. While needle manipulation 
robots have been intensively tested, they have not yet 
reached full-fledged commercialization, which means that 
more studies and innovative developments are required to 
prove their clinical efficacy. On the other hand, systems for 
catheter manipulation have been actively commercialized, 
and are drawing increasing interest in assisting catheter 
treatment. Meaningful success has been demonstrated both 
clinically and industrially. 

Needle manipulation robots have a wide spectrum of 
clinical applications. As a general overview, the notable 
trends in their adoption can be summarized as follows. 1) 
Robots to assist needle biopsy under CT or X-ray fluoroscopy 
have recently re-gained research interest, possibly in 
accordance with the increasing interest in technologies 
for minimally-invasive treatments. 2) Numerous studies 
involving MR-compatible robotic biopsy are underway, 
in response to clinical demand for improvements in 
the diagnosis of prostate cancer. 3) One of the novel 
innovations in needle manipulation robots is steerable 
needle implementation. 

In a few recent studies, active steering of the needle tip 
to achieve a curved insertion, in order to avoid vessels or 
dangerous regions, has been investigated. Nuebach and 
Shoham (109) reported a robotic system for flexible needle 
steering inside soft tissues, with real-time ultrasound 
imaging. An inverse kinematics algorithm based on a virtual 
spring model was applied to evaluate the needle base 

manipulations required for the tip to follow a predetermined 
curved trajectory. A closed-loop experiment with updated 
tissue stiffness parameters demonstrated a needle tip 
tracking error of less than 1 mm (109).

Recently, novel technologies have been explored by 
several research groups. Ganji et al. investigated the 
implementation of electromagnetic tracking of the spatial 
position of the catheter tip. The electromagnetic signal was 
used to achieve a kind of automatic control. The system 
automatically guides the motion of the catheter along a 
path specified by the operator (110). Patel et al. developed 
an actively controllable catheter, embedding a shape 
memory alloy. Through image processing and a visual-servo 
technique, the motion of the catheter is automatically 
controlled along a path determined by the visual signal 
(111). Plicchi et al. reported clear benefits for tele-control 
systems compared to conventional manual approaches, 
in that the operation time required for maneuvering the 
catheter is considerably reduced (112, 113).

CONCLUSION

Since the discovery of X-ray in 1895, radiology has 
opened the gate to new technical developments in the field 
of medicine, with a broad range of clinical applications. 
In this review, written from an engineering perspective, 
we have pointed out some of the megatrends in radiology, 
including digitization, new display and input devices, and 
the rapid developments of various imaging modalities. 
Additional radiologic demands, including intelligent support 
and workflow-specific PACS, functional and quantitative 
imaging, and CAD and organ-specific workstations, may 
give rise to several new megatrends. Finally, robotic 
interventions for biopsy and theragnosis, as well as for 
imaging genomics, are likely to set off another such wave 
in the near future. These innovations will expand the role of 
medical imaging in both diagnosis and treatment.
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