
ETRI Journal, Volume 37, Number 4, August 2015 © 2015 Kang Woon Hong et al. 743
http://dx.doi.org/10.4218/etrij.15.0114.0065

Cloud gaming services are heavily dependent on the
efficiency of real-time video streaming technology owing to
the limited bandwidths of wire or wireless networks
through which consecutive frame images are delivered to
gamers. Video compression algorithms typically take
advantage of similarities among video frame images or in
a single video frame image. This paper presents a method
for computing and extracting both graphics information
and an object’s boundary from consecutive frame images
of a game application. The method will allow video
compression algorithms to determine the positions and
sizes of similar image blocks, which in turn, will help
achieve better video compression ratios. The proposed
method can be easily implemented using function call
interception, a programmable graphics pipeline, and off-
screen rendering. It is implemented using the most widely
used Direct3D API and applied to a well-known sample
application to verify its feasibility and analyze its
performance. The proposed method computes various
kinds of graphics information with minimal overhead.

Keywords: Cloud gaming, video compression, graphics
information, depth value, motion vector, occlusion map,
call interception, programmable shader, off-screen
rendering.

Manuscript received Jan. 31, 2014; revised May 13, 2015; accepted June 1, 2015.
This research was supported by ‘The Cross-Ministry Giga KOREA Project’ of The Ministry

of Science, ICT and Future Planning, Rep. of Korea (GK13P0100, Development of Tele-
Experience Service SW Platform based on Giga Media).

Kang Woon Hong (corresponding author, gwhong@etri.re.kr) and Won Ryu (wlyu@
etri.re.kr) are with the Broadcasting & Telecommunications Media Research Laboratory, ETRI,
Daejeon, Rep. of Korea.

Jun Kyun Choi (jkchoi59@kaist.ac.kr) is with the Department of Electrical Engineering,
KAIST, Daejeon, Rep. of Korea.

Choong-Gyoo Lim (cglim@skhu.ac.kr) is with the Department of Computer Engineering,
Sungkonghoe University, Seoul, Rep. of Korea.

I. Introduction

Cloud gaming has lately emerged as an interesting
commercial service in the computer gaming industry. Some
examples include OnLive and Gaikai [1]–[4]. Cloud gaming
runs computer games on remote servers and transmits real-time
images of consecutive game frames to gamers through wire or
wireless networks. Some of its advantages can be summarized
as follows [5]:
instant play without any additional expensive hardware or

accessories
support of various kinds of user devices, and thus one-

source multiple-use
easy to monitor patterns of user game play and correct run-

time errors
instant installation of patches and upgrades
no piracy possible

However, there are also some disadvantages of cloud
gaming that cannot be alleviated easily. One of them is
response latency, which is a result of network lag. A few frames
of game play may be dropped owing to a poor Internet
connection, thus leading to an unpleasant gaming experience.
Another is the fact that gamers do not actually possess the
game titles themselves. Even worse, the total service charge for
online play that a gamer finally ends up paying is likely to far
exceed the one-time purchase cost of a game title.

One of its key technologies is real-time video streaming,
where consecutive frame images are compressed and delivered
to users with minimal network delay [3]. Regardless of
whether a network is wired or wireless, its bandwidth is limited
to a certain extent, and an efficient and effective compression
algorithm therefore needs to be developed. If there exists a
variety of appropriate information on consecutive frame

Extracting Graphics Information for
Better Video Compression

 Kang Woon Hong, Won Ryu, Jun Kyun Choi, and Choong-Gyoo Lim

744 Kang Woon Hong et al. ETRI Journal, Volume 37, Number 4, August 2015
http://dx.doi.org/10.4218/etrij.15.0114.0065

images, then a video compression algorithm, such as MPEG-4
or H.264, can be improved significantly, particularly with some
clues on where similar image blocks are located between
consecutive frames (see [6] for an example).

This paper presents a graphics information extraction
method that extracts various kinds of graphics information
from consecutive frame images of computer games. Because
there is a high possibility in computer games of finding a
similar collection of objects between consecutive frame images,
then it is equally highly likely that similar or even identical
image blocks exits between such frame images. The extraction
method computes graphics information and then extracts it so
that video compression algorithms can take advantage of this
information by using it to determine the sizes and locations of
similar image blocks. The graphics information provided by
the extraction method includes pixel depth, pixel movement,
and object boundaries. The aforementioned cloud-gaming
services are known to use H.264 for their video compression
[3], which is one of the well-established encoders in the
industry. However, the codec details are rarely known, and
whether they use any graphics information is not known
either. This is the first paper to present a method on extracting
graphics information from frame images of game
applications.

In Section II, we briefly explain some related technologies
needed for the implementation of the graphics information
extraction method. In Section III, we then discuss in detail how
to compute and extract various kinds of graphics information.
In Section IV, we explain our method’s current implementation
and analyze its performance when applied to a well-known
sample program. We conclude by discussing the pros and cons
of the method and some future work.

II. Related Technologies

1. Programmable Shaders

Three-dimensional APIs have been widely used to develop
3D applications in the computer graphics and computer game
industries. The most popular are OpenGL and Direct3D.
OpenGL was originally developed by the computer graphics
community to be used on many different platforms; namely, to
make cross-platform applications. OpenGL performs its
operations through its graphics pipeline, which consists of
consecutive execution phases to construct 3D images on a
device screen, as shown in Fig. 1 [7]. Owing to the very nature
of its pipeline architecture, each phase is executed in parallel to
the other phases to achieve a better performance. Recent
advancements in computer graphics technologies have made it
possible to customize the vertex shader and fragment shader

Fig. 1. OpenGL graphics pipeline (as of OpenGL 2.0).

Application
(API)

Buffer
objects,
textures

Vertex/index
buffer

Programmable
vertex shader

Display

Frame
buffer

Fixed
vertex

processor

Primitive
assembly Rasterizer

Fixed
fragment
processor

Per
fragment

operations

Texture
memory

Programmable
fragment shader

phases for constructing appealing visual effects, such as a
flame or splashing water. A programmable pipeline has been
officially integrated into the traditional rendering pipeline with
OpenGL 2.0 or later. At the fragment phase, the color value of
each pixel is computed for a position determined through
rasterization. The depth value of each pixel is also computed,
which indicates how far each pixel is away from the camera.
The pipeline saves the color and depth values into the color and
depth buffers, respectively. The depth buffer can be accessed
when one needs to perform additional tasks during the
rendering process or for other tasks. Video compression
algorithms can take advantage of depth values when necessary
by accessing the buffer directly. No information on the pixel
movement or object boundary is provided by the current
graphics pipeline, however.

Direct3D was developed by Microsoft to support the
development of 3D games on its Windows platforms. Its
pipeline is very similar to that of OpenGL. The fragment
shader is called a pixel shader instead [8]. The
programmability was first introduced through Direct3D 8.0
[9]–[10]. Unlike OpenGL, there was no direct access to the
depth buffer until the release of Direct3D 10.0 [11]. There is no
information available at all regarding pixel movements and
object boundaries for either OpenGL or Direct3D.

2. Off-Screen Rendering

Rendering is the process of generating each frame image for
3D applications. Its output is directly displayed inside a
window created by the window system for its application. The
output can be saved into the system memory just like any other
objects in the game, which is the off-screen rendering that most
APIs support. An image of a size bigger than the actual device
resolution may be constructed, and off-screen images may be
used to describe other objects with textures linked to them. If
a device supports the WGL_ARB_pbuffer extension, one of
OpenGL’s extensions, then off-screen rendering can be
implemented using pbuffer [12]. Direct3D uses dynamic
textures to conduct off-screen rendering [13].

ETRI Journal, Volume 37, Number 4, August 2015 Kang Woon Hong et al. 745
http://dx.doi.org/10.4218/etrij.15.0114.0065

Fig. 2. Modification to Direct3D architecture.

Win32 application

Direct3D runtime

Wrapper library

HAL device

GDI

Software driver Kernel
mode

User
mode

Graphics hardware

Direct3D API

DDI

3. Call Interception of API Functions

In a cloud-gaming service, game applications run on remote
servers, which are likely dedicated systems for running the
game applications. If an application’s source code is modified,
then various types of needed information can be directly
obtained for better video compression algorithms. This is not
desirable, however, because any change to the source code
may incur additional development costs. Using a call
interception of the API functions, one can avoid additional
development costs.

There are two methods for a call interception of the API
functions; namely, a physical modification method and a real-
time modification method [14]–[15]. In a physical modification
method, the execution code or library code is modified prior to
running the application. There are three different ways to do
this. One is to modify the start portion of the function code so
that it loads another library and runs one of the library functions
instead of the original function. Another way is to modify the
import table of the execution file. When a function is called, it
either loads another library or runs another part of the code.
The final way is to use a wrapper library. In this case, each and
every function that the application calls is rewritten, and a
wrapper library is constructed by combining these functions.
During run-time, the wrapper library is loaded and the
rewritten code is called instead. A real-time modification
method is used to insert an event hook during the execution of
the application. The host process must have permission to do
so. The wrapper library method is relatively easier to
implement, because it rewrites library functions and replaces
the original function with a newly constructed function, as
shown in Fig. 2. This is one of the widely used methods in the
literature, as described in [16]. Here, the original API functions
may be called through the wrapping library. On the other hand,
other applications are unable to call the original functions

directly once the replacement has taken place.

III. Computation and Extraction of Graphics Information

The accessibility to a depth buffer differs among 3D APIs, as
mentioned earlier. OpenGL allows direct access to a depth
buffer, whereas until the release of version 10.0, Direct3D did
not. This paper presents a method applicable to any version of
3D APIs. It computes not only a pixel’s depth but also its
movement and the object boundaries, and makes them
available to other processes such as video compression
algorithms.

To make it easy to implement while computing various kinds
of graphics information, the method adopts a common set of
steps that can be extended to compute other kinds of
information. The method consists roughly of the following
consecutive tasks:
1) At the start, the application loads DLL libraries including

wrapper libraries. The method creates a dynamic texture for
storing the graphics information.

2) In each frame, the application intercepts the function calls of
a 3D API and stores them into the command queue. It issues
the original function calls simultaneously to construct the
frame image. After the first frame, the original render target
has to be restored before the start of the frame because it will
be set to a newly created render target at the next step.

3) To compute the graphics information, the application saves
the current render target and switches to a new render target
attached to the dynamic texture.

4) A customized vertex shader and pixel shader run to compute
the graphics information while calling the original functions
once more concurrently. The graphics information is stored
into the dynamic texture while running the customized
shaders.

Fig. 3. Program flow of frame.

Game application

D3D9Wrap::Clear()

D3D9Wrap::Present()

Command queue

D3D9::Clear()

D3D9::Present()

D3D9Wrap::xxx() D3D9::xxx()

D3D9::Clear()

Frame image
construction

Graphics info.
computation

D3D9::xxx()

D3D9::Present()

 (Load wrapper library)
 (Create dynamic texture)
 Save API function calls to

command queue

API call interception

Next frame

Prev. frame

 Restore render target
 Issue saved calls
 Save current RT

 Set RT to DT
 Issue saved calls
 Run customized vertex/

pixel shaders

746 Kang Woon Hong et al. ETRI Journal, Volume 37, Number 4, August 2015
http://dx.doi.org/10.4218/etrij.15.0114.0065

5) The application switches back to the original render target.
The whole procedure can be illustrated as shown in Fig. 3
using Direct3D. Step 1 is carried out once at the beginning of
the application, and steps 2 through 5 are repeatedly performed
at every frame.

1. Call Interception of 3D API Functions

The method intercepts the API function calls issued by the
application and stores the call information including the
function name, data types of the parameters, and parameter
values. It runs the original function calls at the same time
because it needs to construct the same frame image of the
game application as it is supposed to do in the first place. The
stored function calls are executed once more at the end of the
frame to compute the graphics information. The whole
procedure is performed by the frame rather than by the
function call because a better performance is achieved by
running a collection of consecutive function calls than by
running each function call twice with alternating render targets.

OpenGL API consists of the core library (OpenGL),
OpenGL utility library (GLU), and OpenGL toolkit library
(GLUT). Each library is a collection of independent API
functions. To implement a call interception, one needs to write
wrapping codes for all functions of each library and combine
them as a wrapping library that replaces the original library. If
one of the original functions is called, then the wrapping code
of the newly constructed library is called. On the other hand,
Direct3D consists of the core library (Direct3D) and extension
library (D3DX). Each library is a collection of various COM
objects. One needs to define a wrapper class for every COM
object. For each member function of a COM object, a
wrapping code is written to become a member method for
the wrapping class. The dynamic-link library (DLL) of the
wrapper classes replaces the original DLL library. When the
original method of a COM object is called, it calls the
wrapping code of the wrapper class instead. In both OpenGL
and Direct3D, original libraries are renamed and loaded upon
execution so that the wrapper code can call the original
functions.

2. Computation of Graphics Information

A. Pixel Depth

The graphics pipeline stores the pixel depth values into a
depth buffer or Z-buffer, which is a part of the frame buffer, but
these values are inaccessible for certain versions of 3D APIs.
The method modifies the pipeline by running customized
shaders whose codes are dedicated to computing the pixel
depth values as follows:

(x, y, z, w) = (x, y, z, w) · Mw · Mc · Mp, (1)

where (x, y, z, w) is a 4D vector of homogenous coordinates of
a vertex position with (x, y, z, w) being the transformed
vector, and Mw, Mc, and Mp are the 4 × 4 matrices of the world
transformation, camera transformation, and projection,
respectively. The resulting depth value is z/w as computed
using perspective division.

As explained earlier with a common set of steps, the method
first creates a dynamic texture for off-screen rendering, which
replaces the original render target temporarily. It then computes
the pixel depth values by running customized shader programs
while running the stored function calls at the same time, which
were originally issued by the application. The following series
of consecutive steps briefly represents the procedure of the
vertex shader, particularly with Direct3D being the target API,
where INPUT is a collection of input data and OUTPUT is a
collection of output data:
1) Start.
2) Set the vertex position as INPUT.
3) Set the pixel position and depth as OUTPUT.
4) Compute the position of the current pixel by applying world,

camera, and projection matrices of the current frame to the
position vector of the input vertex (that is, vertex position).

5) Obtain the depth value from the z-value of the transformed
position by conducting perspective division.

6) Store the pixel position as the OUTPUT position.
7) Store the pixel depth value as the OUTPUT depth value.
8) Finish.

The application feeds an array of vertices into the graphics
pipeline, and thus into the vertex shader, which is a part of the
pipeline. The final depth value is computed for each pixel
through interpolation at the rasterization and is stored into the
dynamic texture at the pixel shader, particularly into one of four
color channels of the texture, for example.

B. Pixel Movement

Video compression algorithms such as MPEG and H.264
compute motion vectors to take advantage of pixel movement
between frame images, and thus movement of a certain
encoding block of the image. However, this typically
consumes a large amount of system resources, such as the CPU
time and memory, on a typical 2D image when no clues
regarding a pixel’s movement are available [6].

As with pixel depth, pixel movement can be easily computed
by modifying the graphics pipeline, which is adjusted to run
customized shaders whose codes are dedicated to computing
the pixel movement as follows:

(xi–1, yi–1, zi–1, wi–1) = (x, y, z, w) · M i–1
w · Mi–1

c · Mi–1
p, (2)

(xi, yi, zi, wi) = (x, y, z, w) · Mi
w · Mi

c · Mi
p, (3)

ETRI Journal, Volume 37, Number 4, August 2015 Kang Woon Hong et al. 747
http://dx.doi.org/10.4218/etrij.15.0114.0065

where (x, y, z, w) is a 4D vector of homogenous coordinates of

a vertex position, and (xi–1, yi–1, zi–1, wi–1) and (xi, yi, zi, wi)
are the transformed vectors of the (i–1)th and ith frames,

respectively, and Mi–1
- and Mi

- are the transformation matrices

of the (i–1)th and ith frames, respectively. The resulting motion

vector is (xi– xi–1, yi – yi–1).
First, the method creates a dynamic texture for off-screen

rendering, which replaces the original render target temporarily.
It then computes the pixel movement by running the
customized shader programs, while the application calls the
stored functions again at the same time. The procedure of its
vertex shader is very similar to that in computing the pixel
depth value as follows, where INPUT is a collection of input
data, and OUTPUT is a collection of output data. The
procedure is also targeted for Direct3D API.
1) Start.
2) Set the vertex position as INPUT.
3) Set the pixel position and motion vector as OUTPUT.
4) Compute the previous position of the current pixel by

applying world, camera, and projection matrices of the
previous frame to the position vector of the input vertex
(that is, vertex position).

5) Compute the current position of the current pixel by
applying world, camera, and projection matrices of the
current frame to the position vector of the input vertex (that
is, vertex position).

6) Store the pixel position as the OUTPUT position.
7) Store the pixel motion vector as the OUTPUT motion vector.
8) Finish.

The application feeds an array of vertices and two sets of
three world, camera, and projection matrices for both the
current frame and the previous frame into the pipeline, and thus
into the vertex shader. The final motion vector is computed for
each pixel through interpolation at the rasterization and stored
into the color buffer set to the dynamic texture at the pixel
shader. The result is stored using two color channels of the
texture because there are only two components of the motion
vector on a 2D image.

C. Object Boundary

A scene in a computer game consists of many different
objects, some of which are entirely represented on screen while
others are partially displayed because some parts of the objects
can be hidden by other objects from the viewpoint of the
camera. If information is available on where the objects are
displayed on screen and how big they are, then video
compression algorithms can take this information into account
to better determine the positions and sizes of the encoding
blocks. One may also utilize the information in determining

where similar image blocks are located between consecutive
frames.

As in the pixel depth and movement, the proposed method
can easily compute the boundaries of objects by modifying the
graphics pipeline; namely, running the stored function calls and
customized shaders. First, it creates a dynamic texture for off-
screen rendering, which replaces the original rendering target
temporarily. It computes the boundaries of objects by running
the customized shaders while running the stored function calls
at the same time. It then stores the result into the color buffer
associated with the dynamic texture. The following series of
consecutive steps briefly represents the whole procedure of the
vertex shader, where INPUT is a collection of input data and
OUTPUT is a collection of output data. The procedure is also
targeted for Direct3D API.
1) Start.
2) Set the vertex position and object ID as INPUT.
3) Set the pixel position and object ID as OUTPUT.
4) Compute the position of the current pixel by applying world,

camera, and projection matrices of the current frame to the
position vector of the input vertex (that is, vertex position).

5) Store the pixel position as the OUTPUT pixel position.
6) Store the object ID as the OUTPUT object ID.
7) Finish.

The application feeds an array of vertices and a preassigned
ID of the object into the pipeline, and thus into the vertex
shader. The pixel shader reads the object ID and stores it into
the pixel position of the color buffer, which is computed
through interpolation during the rasterization phase of the
pipeline. The object then has the same pixel value at the
position where it is displayed on screen. Pixel values can be
preassigned RGB color values instead.

IV. Implementation and Results

1. Implementation

To implement the proposed method, we used a system
equipped with a 2.67 GHz Intel Core i5 M580 CPU and 4 GB
of main memory. The method runs on MS Windows 7 (32 bit).
To show that the method is feasible with a 3D API, where there
is no direct access to its depth buffer, the implementation was
targeted for Direct3D 9.0c (released in April, 2006).

The module of a call interception is implemented based
on the wrapping library for easier implementation. The
implementation is applied to an example application to show
how well it works. For the example application, the ShadowMap
sample provided together with DirectX SDK was modified.
Applications must not create objects online and should use
only a fixed pipeline.

748 Kang Woon Hong et al. ETRI Journal, Volume 37, Number 4, August 2015
http://dx.doi.org/10.4218/etrij.15.0114.0065

Fig. 4. Results of pixel depth computation (left, depth map
image; right, screen image of sample run).

Fig. 5. Performance of pixel depth computation: (a) fps and (b)
time per frame (ms).

0

0.5

1.0

1.5

2.0

Avg Min Max
0

2,000

4,000

6,000

8,000

Avg Min Max

Time (orig.)
Time (mod.)

fps (orig.)
fps (mod.)

(a) (b)

2. Results

A. Pixel Depth

The current implementation computes the pixel depth, as
shown in Fig. 4. It also shows an image of the current
dynamic texture at the top-left corner of the screen at the
same time.

It takes 0.042 ms longer, on average, to compute the depth
values than without additional depth computation, as shown
in Fig. 5. The method creates 440 fewer frames per second.
The total time is increased by 12.4%, whereas the fps is
decreased by 13.1%. Considering the extra amount of time to
display the depth map texture on the screen simultaneously,
the extra time to compute the pixel depth value is negligible.
The overhead required to save into external storage is not
taken into account.

B. Pixel Movement

The current implementation computes the pixel movement,
as shown in Fig. 6. As with the pixel depth, the method
additionally displays an image of the current dynamic texture
on the screen.

It takes 0.040 ms longer, on average, to compute the motion
vectors than without additional motion vector computation, as
shown in Fig. 7. The method creates 585 fewer frames per
second. The total time is increased by 14.5%, whereas the fps

Fig. 6. Results of motion vector computation (left, motion vector
image; right, screen image of sample run).

Fig. 7. Performance of motion vector computation: (a) fps and
(b) time per frame (ms).

(a)

0

2,000

4,000

6,000

8,000

Avg Min Max
0

0.5

1.0

1.5

2.0

Avg Min Max

fps (orig.)
fps (mod.)

Time (orig.)
Time (mod.)

(b)

Fig. 8. Results of occlusion computation (left, occlusion map
image; right, screen image of sample run).

is reduced by 14.1%. As in computing the pixel depth value,
the extra time required to compute the pixel motion vector is
negligible.

C. Object Boundary

The implementation computes an object boundary, as shown
in Fig. 8. As in the pixel depth and movement, the method
additionally displays an image of the current dynamic texture
on the screen as well.

It takes 0.058 ms longer, on average, to compute the
occlusion than before the modification, as shown in Fig. 8. The
method creates 562 fewer frames per second. The total time is
increased by 18.3%, whereas the fps is decreased by 15.6%.
The extra time to compute an object boundary is minimal, as in
the pixel depth and movement.

ETRI Journal, Volume 37, Number 4, August 2015 Kang Woon Hong et al. 749
http://dx.doi.org/10.4218/etrij.15.0114.0065

 fps (orig.)

fps (mod.)

Fig. 9. Performance of occlusion computation: (a) fps and (b)
time per frame (ms).

0

2,000

4,000

6,000

8,000

Avg Min Max
0

0.5

1.0

1.5

2.0

Avg Min Max

Time (orig.)
Time (mod.)

(a) (b)

V. Conclusion

This paper presented a method to compute and extract
various graphics information from frame images of computer
games for video compression algorithms to take advantage of.
According to its implementation and performance analysis,
negligible overhead is incurred. Therefore, the proposed
method can be used in implementing a real-time streaming
service of game frame images and thus make cloud-gaming
services more technologically feasible. The method currently
provides pixel depth, pixel movement, and object boundaries;
it can be easily extended to provide other various kinds of
graphics information. One advantage of the method is the
simplicity of its architecture. It simply runs API functions of
each frame (a further time), a customized vertex shader, and a
pixel shader of the rendering pipeline, while keeping the other
parts of the graphics pipeline intact. Another advantage is that it
does not modify the source code of the application by
implementing the module of the API call interception, and thus
incurs no additional development costs.

On the other hand, the proposed method runs saved function
calls and customized shaders after running the original API
functions for each frame. This means that it takes an extra
amount of time to do so, though it incurs very little total
overhead in the process, as discussed earlier. Another
disadvantage is that even if the method finds an object
boundary between consecutive image frames, there is likely a
shading difference owing to the different lighting of
consecutive frames. The proposed method may be limited to a
certain extent in terms of compression ratios. The displayed
images of an object are still similar enough in terms of pixel
color values that an efficient compression can be achieved.

The current implementation was applied to an example
with limited features, particularly with no objects created on-
the-fly or programmable shaders. Support of both objects
created on-the-fly and programmable shaders is an area of
future work.

Appendix

Fig. 10. Sample texture image of pixel depth.

Fig. 11. Sample screen image of pixel depth computation.

Fig. 12. Performance of pixel depth computation in detail
(displayed every third frame for frames 200 to 400).

0

0.5

1.0

1.5

2.0

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0 50 100 150 200

T
im

e
(m

s)

Frames

fps (orig.) fps (mod.) Time (orig.) Time (mod.)

fp
s

Fig. 13. Sample texture image of pixel movement.

750 Kang Woon Hong et al. ETRI Journal, Volume 37, Number 4, August 2015
http://dx.doi.org/10.4218/etrij.15.0114.0065

Fig. 14. Sample screen image of pixel movement computation.

Fig. 15. Performance of pixel movement computation in detail
(displayed every third frame for frames 200 to 400).

0

0.5

1.0

1.5

2.0

0

1,000

2,000

3,000

4,000

5,000

6,000

0 50 100 150 200

T
im

e
(m

s)

Frames

fp
s

fps (orig.) fps (mod.) Time (orig.) Time (mod.)

Fig. 16. Sample texture image of object boundary.

Fig. 17. Sample screen image of object boundary computation.

Fig. 18. Performance of occlusion computation in detail
(displayed every third frame for frames 200 to 400).

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0

1,000

2,000

3,000

4,000

5,000

6,000

0 20 40 60 80 100 120 140 160 180 200

T
im

e
(m

s)

Frames

fp
s

fps (orig.) fps (mod.) Time (orig.) Time (mod.)

References

[1] E. Sofge, Games without Gizmos, The Wall Street Journal, Nov.

12, 2012. Accessed Dec. 14, 2013. http://www.wsj.com/articles/

SB10001424052970203707604578095413928945612

[2] K.I. Kim et al., “Cloud-Based Gaming Service Platform

Supporting Multiple Devices,” ETRI J., vol. 35, no. 6, Dec. 2013,

pp. 960–968.

[3] S. Perlman, The Process of Invention: OnLive Video Game

Service, lecture, Botwinick Lab, The Fu Foundation School of

Engineering and Applied Science, Columbia University, New

York, NY, USA, Nov. 13, 2009. http://tv.seas.columbia.edu/

videos/545/60/79

[4] D. Perry, GDC 2012: Gaikai CEO David Perry Talks What

Gaikai Offers, YouTube video, posted by GamerLiveTV,

uploaded Mar. 22, 2012. https://www.youtube.com/watch?v=

6lN5E_pgBsU

[5] P. Bradley, Cloud Gaming: The Pros and Cons, Masonic Gamer,

July 23, 2012. Accessed Dec. 14, 2013. http://masonicgamer.

com/cloud-gaming-the-pros-and-cons/

[6] I. Richardson, “H.264 and MPEG-4 Video Compression: Video

Coding for Next Generation Multimedia,” West Sussex, England:

Wiley, 2003.

[7] D. Hearn, M. Baker, and W. Carithers, “Computer Graphics with

OpenGL,” 4th ed., NJ, USA: Prentice Hall, 2010.

[8] Direct3D Architecture (Direct3D 9), Microsoft, Nov. 16, 2013.

Accessed Dec. 14, 2013. http://msdn.microsoft.com/en-us/library/

windows/desktop/bb219679(v=vs.85).aspx

[9] Using Shaders in Direct3D 9, Microsoft, Dec. 12, 2013. Accessed

Dec. 14, 2013. http://msdn.microsoft.com/en-us/library/windows/

desktop/bb509704(v=vs.85).aspx

[10] T. Jones, DirectX 8 Graphics and Video: A Fresh Start, Nov. 30,

2000. Accessed Dec. 14, 2013. http://archive.gamedev.net/

archive/reference/articles/article1247.html

[11] I. Cantlay, “High-Speed, Off-Screen Particles, GPU Gems 3,” H.

Nguyen, Ed., NJ, USA: Addison-Wesley, 2008, pp. 513–528.

ETRI Journal, Volume 37, Number 4, August 2015 Kang Woon Hong et al. 751
http://dx.doi.org/10.4218/etrij.15.0114.0065

[12] C. Wynn, Using P-Buffers for Off-Screen Rendering in OpenGL,

NVidia Technical Paper, Nvidia, 2002. Accessed Nov. 25, 2013.

https://developer.nvidia.com/sites/default/files/akamai/gamedev/d

ocs/PixelBuffers.pdf

[13] K. Harris, Off-Screen Rendering, Direct3D (DirectX 9.0) Code

Samples, Feb. 11, 2005. Accessed Dec. 1, 2013. http://www.

codesampler.com/dx9src/dx9src_7.htm

[14] API Hooking. Accessed Oct. 18, 2012. http://en.wikipedia.org/

wiki/Hooking

[15] S.W. Kim, Intercepting System API Calls, Mar. 7, 2012. Accessed

Oct. 18, 2012. http://software.intel.com/en-us/articles/intercepting

-system-api-calls

[16] S.M. Jang, W.H. Choi, and W.Y. Kim, “Client Rendering Method

for Desktop Virtualization Services,” ETRI J., vol. 35, no. 2, Apr.

2013, pp. 348–351.

Kang Woon Hong received his BS and MS

degrees in computer science and engineering

from Hanyang University, Ansan, Rep. of

Korea, in 1996 and 1998, respectively. Since

2000, he has been with the Electronics and

Telecommunications Research Institute (ETRI),

Daejeon, Rep. of Korea. He is currently

working as a principal researcher in the Intelligent Convergence Media

Research Department, ETRI. His main research interests are

distributed media processing, processing virtualization, and scalable

system architectures.

Won Ryu received his BS degree in computer

science and statistics from Pusan National

University, Rep. of Korea, in 1983 and his MS

degree in computer science and statistics from

Seoul National University, Rep. of Korea, in

1988. He received his PhD degree in

information engineering from Sungkyunkwan

University, Suwon, Rep. of Korea, in 2000. He is currently working as

the managing director of the Intelligent Convergence Media Research

Department, Electronics and Telecommunications Research Institute,

Daejeon, Rep. of Korea.

Jun Kyun Choi received his BS degree in

electronics from Seoul National University, Rep.

of Korea, in 1982 and his MS and PhD degrees

in electrical and electronics engineering from

the Korea Advanced Institute of Science and

Technology (KAIST), Daejeon, Rep. of Korea,

in 1985 and 1988, respectively. He worked for

the Electronics and Telecommunications Research Institute, Daejeon,

Rep. of Korea, from 1986 to 1997 and is now currently working as a

professor at KAIST. Since 1993, he has contributed to consenting ITU

Recommendations as a rapporteur or editor in ITU-T SG 13. His main

research interests include web of objects, open IPTV platforms, energy

saving networks, measurement platforms, and smart grids.

Choong-Gyoo Lim received his BS and MEd

degrees in mathematics education from the

Department of Mathematics Education, Seoul

National University, Rep. of Korea, in 1998 and

1990, respectively, and his PhD degree in

computer science from the Computer Science

Department, Louisiana State University, Baton

Rouge, USA, in 1998. From 1999 to 2011, he worked for the

Electronics and Telecommunications Research Institute, Daejeon, Rep.

of Korea. Since 2011, he has been with the Department of Computer

Science and Engineering, Sungkonghoe University, Seoul, Rep. of

Korea, where he is now an associate professor. His main research

interests are geometric modeling, massive terrain rendering, and

distributed rendering.

	I. Introduction
	II. Related Technologies
	III. Computation and Extraction of Graphics Information
	IV. Implementation and Results
	V. Conclusion
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

