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Cloud gaming services are heavily dependent on the 
efficiency of real-time video streaming technology owing to 
the limited bandwidths of wire or wireless networks 
through which consecutive frame images are delivered to 
gamers. Video compression algorithms typically take 
advantage of similarities among video frame images or in 
a single video frame image. This paper presents a method 
for computing and extracting both graphics information 
and an object’s boundary from consecutive frame images 
of a game application. The method will allow video 
compression algorithms to determine the positions and 
sizes of similar image blocks, which in turn, will help 
achieve better video compression ratios. The proposed 
method can be easily implemented using function call 
interception, a programmable graphics pipeline, and off-
screen rendering. It is implemented using the most widely 
used Direct3D API and applied to a well-known sample 
application to verify its feasibility and analyze its 
performance. The proposed method computes various 
kinds of graphics information with minimal overhead. 
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I. Introduction 

Cloud gaming has lately emerged as an interesting 
commercial service in the computer gaming industry. Some 
examples include OnLive and Gaikai [1]–[4]. Cloud gaming 
runs computer games on remote servers and transmits real-time 
images of consecutive game frames to gamers through wire or 
wireless networks. Some of its advantages can be summarized 
as follows [5]: 
instant play without any additional expensive hardware or 

accessories 
support of various kinds of user devices, and thus one-

source multiple-use 
easy to monitor patterns of user game play and correct run-

time errors 
instant installation of patches and upgrades 
no piracy possible 

However, there are also some disadvantages of cloud 
gaming that cannot be alleviated easily. One of them is 
response latency, which is a result of network lag. A few frames 
of game play may be dropped owing to a poor Internet 
connection, thus leading to an unpleasant gaming experience. 
Another is the fact that gamers do not actually possess the 
game titles themselves. Even worse, the total service charge for 
online play that a gamer finally ends up paying is likely to far 
exceed the one-time purchase cost of a game title. 

One of its key technologies is real-time video streaming, 
where consecutive frame images are compressed and delivered 
to users with minimal network delay [3]. Regardless of 
whether a network is wired or wireless, its bandwidth is limited 
to a certain extent, and an efficient and effective compression 
algorithm therefore needs to be developed. If there exists a 
variety of appropriate information on consecutive frame 
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images, then a video compression algorithm, such as MPEG-4 
or H.264, can be improved significantly, particularly with some 
clues on where similar image blocks are located between 
consecutive frames (see [6] for an example).  

This paper presents a graphics information extraction 
method that extracts various kinds of graphics information 
from consecutive frame images of computer games. Because 
there is a high possibility in computer games of finding a 
similar collection of objects between consecutive frame images, 
then it is equally highly likely that similar or even identical 
image blocks exits between such frame images. The extraction 
method computes graphics information and then extracts it so 
that video compression algorithms can take advantage of this 
information by using it to determine the sizes and locations of 
similar image blocks. The graphics information provided by 
the extraction method includes pixel depth, pixel movement, 
and object boundaries. The aforementioned cloud-gaming 
services are known to use H.264 for their video compression 
[3], which is one of the well-established encoders in the 
industry. However, the codec details are rarely known, and 
whether they use any graphics information is not known 
either. This is the first paper to present a method on extracting 
graphics information from frame images of game 
applications.  

In Section II, we briefly explain some related technologies 
needed for the implementation of the graphics information 
extraction method. In Section III, we then discuss in detail how 
to compute and extract various kinds of graphics information. 
In Section IV, we explain our method’s current implementation 
and analyze its performance when applied to a well-known 
sample program. We conclude by discussing the pros and cons 
of the method and some future work. 

II. Related Technologies 

1. Programmable Shaders 

Three-dimensional APIs have been widely used to develop 
3D applications in the computer graphics and computer game 
industries. The most popular are OpenGL and Direct3D. 
OpenGL was originally developed by the computer graphics 
community to be used on many different platforms; namely, to 
make cross-platform applications. OpenGL performs its 
operations through its graphics pipeline, which consists of 
consecutive execution phases to construct 3D images on a 
device screen, as shown in Fig. 1 [7]. Owing to the very nature 
of its pipeline architecture, each phase is executed in parallel to 
the other phases to achieve a better performance. Recent 
advancements in computer graphics technologies have made it 
possible to customize the vertex shader and fragment shader  

  

Fig. 1. OpenGL graphics pipeline (as of OpenGL 2.0). 
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phases for constructing appealing visual effects, such as a 
flame or splashing water. A programmable pipeline has been 
officially integrated into the traditional rendering pipeline with 
OpenGL 2.0 or later. At the fragment phase, the color value of 
each pixel is computed for a position determined through 
rasterization. The depth value of each pixel is also computed, 
which indicates how far each pixel is away from the camera. 
The pipeline saves the color and depth values into the color and 
depth buffers, respectively. The depth buffer can be accessed 
when one needs to perform additional tasks during the 
rendering process or for other tasks. Video compression 
algorithms can take advantage of depth values when necessary 
by accessing the buffer directly. No information on the pixel 
movement or object boundary is provided by the current 
graphics pipeline, however. 

Direct3D was developed by Microsoft to support the 
development of 3D games on its Windows platforms. Its 
pipeline is very similar to that of OpenGL. The fragment 
shader is called a pixel shader instead [8]. The 
programmability was first introduced through Direct3D 8.0 
[9]–[10]. Unlike OpenGL, there was no direct access to the 
depth buffer until the release of Direct3D 10.0 [11]. There is no 
information available at all regarding pixel movements and 
object boundaries for either OpenGL or Direct3D. 

2. Off-Screen Rendering 

Rendering is the process of generating each frame image for 
3D applications. Its output is directly displayed inside a 
window created by the window system for its application. The 
output can be saved into the system memory just like any other 
objects in the game, which is the off-screen rendering that most 
APIs support. An image of a size bigger than the actual device 
resolution may be constructed, and off-screen images may be 
used to describe other objects with textures linked to them. If  
a device supports the WGL_ARB_pbuffer extension, one of 
OpenGL’s extensions, then off-screen rendering can be 
implemented using pbuffer [12]. Direct3D uses dynamic 
textures to conduct off-screen rendering [13]. 
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Fig. 2. Modification to Direct3D architecture. 
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3. Call Interception of API Functions 

In a cloud-gaming service, game applications run on remote 
servers, which are likely dedicated systems for running the 
game applications. If an application’s source code is modified, 
then various types of needed information can be directly 
obtained for better video compression algorithms. This is not 
desirable, however, because any change to the source code 
may incur additional development costs. Using a call 
interception of the API functions, one can avoid additional 
development costs.  

There are two methods for a call interception of the API 
functions; namely, a physical modification method and a real-
time modification method [14]–[15]. In a physical modification 
method, the execution code or library code is modified prior to 
running the application. There are three different ways to do 
this. One is to modify the start portion of the function code so 
that it loads another library and runs one of the library functions 
instead of the original function. Another way is to modify the 
import table of the execution file. When a function is called, it 
either loads another library or runs another part of the code. 
The final way is to use a wrapper library. In this case, each and 
every function that the application calls is rewritten, and a 
wrapper library is constructed by combining these functions. 
During run-time, the wrapper library is loaded and the 
rewritten code is called instead. A real-time modification 
method is used to insert an event hook during the execution of 
the application. The host process must have permission to do 
so. The wrapper library method is relatively easier to 
implement, because it rewrites library functions and replaces 
the original function with a newly constructed function, as 
shown in Fig. 2. This is one of the widely used methods in the 
literature, as described in [16]. Here, the original API functions 
may be called through the wrapping library. On the other hand, 
other applications are unable to call the original functions 

directly once the replacement has taken place.  

III. Computation and Extraction of Graphics Information 

The accessibility to a depth buffer differs among 3D APIs, as 
mentioned earlier. OpenGL allows direct access to a depth 
buffer, whereas until the release of version 10.0, Direct3D did 
not. This paper presents a method applicable to any version of 
3D APIs. It computes not only a pixel’s depth but also its 
movement and the object boundaries, and makes them 
available to other processes such as video compression 
algorithms. 

To make it easy to implement while computing various kinds 
of graphics information, the method adopts a common set of 
steps that can be extended to compute other kinds of 
information. The method consists roughly of the following 
consecutive tasks:  
1) At the start, the application loads DLL libraries including 

wrapper libraries. The method creates a dynamic texture for 
storing the graphics information.  

2) In each frame, the application intercepts the function calls of 
a 3D API and stores them into the command queue. It issues 
the original function calls simultaneously to construct the 
frame image. After the first frame, the original render target 
has to be restored before the start of the frame because it will 
be set to a newly created render target at the next step. 

3) To compute the graphics information, the application saves 
the current render target and switches to a new render target 
attached to the dynamic texture. 

4) A customized vertex shader and pixel shader run to compute 
the graphics information while calling the original functions 
once more concurrently. The graphics information is stored 
into the dynamic texture while running the customized 
shaders. 

 

 

Fig. 3. Program flow of frame. 
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5) The application switches back to the original render target. 
The whole procedure can be illustrated as shown in Fig. 3 
using Direct3D. Step 1 is carried out once at the beginning of 
the application, and steps 2 through 5 are repeatedly performed 
at every frame. 

1. Call Interception of 3D API Functions 

The method intercepts the API function calls issued by the 
application and stores the call information including the 
function name, data types of the parameters, and parameter 
values. It runs the original function calls at the same time 
because it needs to construct the same frame image of the 
game application as it is supposed to do in the first place. The 
stored function calls are executed once more at the end of the 
frame to compute the graphics information. The whole 
procedure is performed by the frame rather than by the 
function call because a better performance is achieved by 
running a collection of consecutive function calls than by 
running each function call twice with alternating render targets.  

OpenGL API consists of the core library (OpenGL), 
OpenGL utility library (GLU), and OpenGL toolkit library 
(GLUT). Each library is a collection of independent API 
functions. To implement a call interception, one needs to write 
wrapping codes for all functions of each library and combine 
them as a wrapping library that replaces the original library. If 
one of the original functions is called, then the wrapping code 
of the newly constructed library is called. On the other hand, 
Direct3D consists of the core library (Direct3D) and extension 
library (D3DX). Each library is a collection of various COM 
objects. One needs to define a wrapper class for every COM 
object. For each member function of a COM object, a 
wrapping code is written to become a member method for  
the wrapping class. The dynamic-link library (DLL) of the 
wrapper classes replaces the original DLL library. When the 
original method of a COM object is called, it calls the 
wrapping code of the wrapper class instead. In both OpenGL 
and Direct3D, original libraries are renamed and loaded upon 
execution so that the wrapper code can call the original 
functions. 

2. Computation of Graphics Information 

A. Pixel Depth 

The graphics pipeline stores the pixel depth values into a 
depth buffer or Z-buffer, which is a part of the frame buffer, but 
these values are inaccessible for certain versions of 3D APIs. 
The method modifies the pipeline by running customized 
shaders whose codes are dedicated to computing the pixel 
depth values as follows: 

(x, y, z, w) = (x, y, z, w) · Mw · Mc · Mp,      (1) 

where (x, y, z, w) is a 4D vector of homogenous coordinates of 
a vertex position with (x, y, z, w) being the transformed 
vector, and Mw, Mc, and Mp are the 4 × 4 matrices of the world 
transformation, camera transformation, and projection, 
respectively. The resulting depth value is z/w as computed 
using perspective division. 

As explained earlier with a common set of steps, the method 
first creates a dynamic texture for off-screen rendering, which 
replaces the original render target temporarily. It then computes 
the pixel depth values by running customized shader programs 
while running the stored function calls at the same time, which 
were originally issued by the application. The following series 
of consecutive steps briefly represents the procedure of the 
vertex shader, particularly with Direct3D being the target API, 
where INPUT is a collection of input data and OUTPUT is a 
collection of output data: 
1) Start. 
2) Set the vertex position as INPUT. 
3) Set the pixel position and depth as OUTPUT. 
4) Compute the position of the current pixel by applying world, 

camera, and projection matrices of the current frame to the 
position vector of the input vertex (that is, vertex position). 

5) Obtain the depth value from the z-value of the transformed 
position by conducting perspective division. 

6) Store the pixel position as the OUTPUT position. 
7) Store the pixel depth value as the OUTPUT depth value. 
8) Finish. 

The application feeds an array of vertices into the graphics 
pipeline, and thus into the vertex shader, which is a part of the 
pipeline. The final depth value is computed for each pixel 
through interpolation at the rasterization and is stored into the 
dynamic texture at the pixel shader, particularly into one of four 
color channels of the texture, for example.  

B. Pixel Movement 

Video compression algorithms such as MPEG and H.264 
compute motion vectors to take advantage of pixel movement 
between frame images, and thus movement of a certain 
encoding block of the image. However, this typically 
consumes a large amount of system resources, such as the CPU 
time and memory, on a typical 2D image when no clues 
regarding a pixel’s movement are available [6]. 

As with pixel depth, pixel movement can be easily computed 
by modifying the graphics pipeline, which is adjusted to run 
customized shaders whose codes are dedicated to computing 
the pixel movement as follows: 

(xi–1, yi–1, zi–1, wi–1) = (x, y, z, w) · M i–1
w · Mi–1

c · Mi–1
p,  (2) 

(xi, yi, zi, wi) = (x, y, z, w) · Mi
w · Mi

c · Mi
p,      (3) 
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where (x, y, z, w) is a 4D vector of homogenous coordinates of 

a vertex position, and (xi–1, yi–1, zi–1, wi–1) and (xi, yi, zi, wi) 
are the transformed vectors of the (i–1)th and ith frames, 

respectively, and Mi–1
- and Mi 

- are the transformation matrices 

of the (i–1)th and ith frames, respectively. The resulting motion 

vector is (xi– xi–1, yi – yi–1).  
First, the method creates a dynamic texture for off-screen 

rendering, which replaces the original render target temporarily. 
It then computes the pixel movement by running the 
customized shader programs, while the application calls the 
stored functions again at the same time. The procedure of its 
vertex shader is very similar to that in computing the pixel 
depth value as follows, where INPUT is a collection of input 
data, and OUTPUT is a collection of output data. The 
procedure is also targeted for Direct3D API. 
1) Start. 
2) Set the vertex position as INPUT. 
3) Set the pixel position and motion vector as OUTPUT. 
4) Compute the previous position of the current pixel by 

applying world, camera, and projection matrices of the 
previous frame to the position vector of the input vertex 
(that is, vertex position). 

5) Compute the current position of the current pixel by 
applying world, camera, and projection matrices of the 
current frame to the position vector of the input vertex (that 
is, vertex position). 

6) Store the pixel position as the OUTPUT position. 
7) Store the pixel motion vector as the OUTPUT motion vector. 
8) Finish. 

The application feeds an array of vertices and two sets of 
three world, camera, and projection matrices for both the 
current frame and the previous frame into the pipeline, and thus 
into the vertex shader. The final motion vector is computed for 
each pixel through interpolation at the rasterization and stored 
into the color buffer set to the dynamic texture at the pixel 
shader. The result is stored using two color channels of the 
texture because there are only two components of the motion 
vector on a 2D image. 

C. Object Boundary 

A scene in a computer game consists of many different 
objects, some of which are entirely represented on screen while 
others are partially displayed because some parts of the objects 
can be hidden by other objects from the viewpoint of the 
camera. If information is available on where the objects are 
displayed on screen and how big they are, then video 
compression algorithms can take this information into account 
to better determine the positions and sizes of the encoding 
blocks. One may also utilize the information in determining 

where similar image blocks are located between consecutive 
frames.  

As in the pixel depth and movement, the proposed method 
can easily compute the boundaries of objects by modifying the 
graphics pipeline; namely, running the stored function calls and 
customized shaders. First, it creates a dynamic texture for off-
screen rendering, which replaces the original rendering target 
temporarily. It computes the boundaries of objects by running 
the customized shaders while running the stored function calls 
at the same time. It then stores the result into the color buffer 
associated with the dynamic texture. The following series of 
consecutive steps briefly represents the whole procedure of the 
vertex shader, where INPUT is a collection of input data and 
OUTPUT is a collection of output data. The procedure is also 
targeted for Direct3D API. 
1) Start. 
2) Set the vertex position and object ID as INPUT. 
3) Set the pixel position and object ID as OUTPUT. 
4) Compute the position of the current pixel by applying world, 

camera, and projection matrices of the current frame to the 
position vector of the input vertex (that is, vertex position). 

5) Store the pixel position as the OUTPUT pixel position. 
6) Store the object ID as the OUTPUT object ID. 
7) Finish. 

The application feeds an array of vertices and a preassigned 
ID of the object into the pipeline, and thus into the vertex 
shader. The pixel shader reads the object ID and stores it into 
the pixel position of the color buffer, which is computed 
through interpolation during the rasterization phase of the 
pipeline. The object then has the same pixel value at the 
position where it is displayed on screen. Pixel values can be 
preassigned RGB color values instead. 

IV. Implementation and Results 

1. Implementation 

To implement the proposed method, we used a system 
equipped with a 2.67 GHz Intel Core i5 M580 CPU and 4 GB 
of main memory. The method runs on MS Windows 7 (32 bit). 
To show that the method is feasible with a 3D API, where there 
is no direct access to its depth buffer, the implementation was 
targeted for Direct3D 9.0c (released in April, 2006).  

The module of a call interception is implemented based   
on the wrapping library for easier implementation. The 
implementation is applied to an example application to show 
how well it works. For the example application, the ShadowMap 
sample provided together with DirectX SDK was modified. 
Applications must not create objects online and should use 
only a fixed pipeline. 
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Fig. 4. Results of pixel depth computation (left, depth map 
image; right, screen image of sample run).  

 
 

Fig. 5. Performance of pixel depth computation: (a) fps and (b) 
time per frame (ms). 
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2. Results 

A. Pixel Depth 

The current implementation computes the pixel depth, as 
shown in Fig. 4. It also shows an image of the current 
dynamic texture at the top-left corner of the screen at the 
same time. 

It takes 0.042 ms longer, on average, to compute the depth 
values than without additional depth computation, as shown 
in Fig. 5. The method creates 440 fewer frames per second. 
The total time is increased by 12.4%, whereas the fps is 
decreased by 13.1%. Considering the extra amount of time to 
display the depth map texture on the screen simultaneously, 
the extra time to compute the pixel depth value is negligible. 
The overhead required to save into external storage is not 
taken into account. 

B. Pixel Movement 

The current implementation computes the pixel movement, 
as shown in Fig. 6. As with the pixel depth, the method 
additionally displays an image of the current dynamic texture 
on the screen. 

It takes 0.040 ms longer, on average, to compute the motion 
vectors than without additional motion vector computation, as 
shown in Fig. 7. The method creates 585 fewer frames per 
second. The total time is increased by 14.5%, whereas the fps  

 

Fig. 6. Results of motion vector computation (left, motion vector 
image; right, screen image of sample run).  

 

 

Fig. 7. Performance of motion vector computation: (a) fps and 
(b) time per frame (ms). 
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Fig. 8. Results of occlusion computation (left, occlusion map 
image; right, screen image of sample run).  

 
is reduced by 14.1%. As in computing the pixel depth value, 
the extra time required to compute the pixel motion vector is 
negligible. 

C. Object Boundary 

The implementation computes an object boundary, as shown 
in Fig. 8. As in the pixel depth and movement, the method 
additionally displays an image of the current dynamic texture 
on the screen as well. 

It takes 0.058 ms longer, on average, to compute the 
occlusion than before the modification, as shown in Fig. 8. The 
method creates 562 fewer frames per second. The total time is 
increased by 18.3%, whereas the fps is decreased by 15.6%. 
The extra time to compute an object boundary is minimal, as in 
the pixel depth and movement. 
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Fig. 9. Performance of occlusion computation: (a) fps and (b) 
time per frame (ms). 
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V. Conclusion 

This paper presented a method to compute and extract 
various graphics information from frame images of computer 
games for video compression algorithms to take advantage of. 
According to its implementation and performance analysis, 
negligible overhead is incurred. Therefore, the proposed 
method can be used in implementing a real-time streaming 
service of game frame images and thus make cloud-gaming 
services more technologically feasible. The method currently 
provides pixel depth, pixel movement, and object boundaries; 
it can be easily extended to provide other various kinds of 
graphics information. One advantage of the method is the 
simplicity of its architecture. It simply runs API functions of 
each frame (a further time), a customized vertex shader, and a 
pixel shader of the rendering pipeline, while keeping the other 
parts of the graphics pipeline intact. Another advantage is that it 
does not modify the source code of the application by 
implementing the module of the API call interception, and thus 
incurs no additional development costs.  

On the other hand, the proposed method runs saved function 
calls and customized shaders after running the original API 
functions for each frame. This means that it takes an extra 
amount of time to do so, though it incurs very little total 
overhead in the process, as discussed earlier. Another 
disadvantage is that even if the method finds an object 
boundary between consecutive image frames, there is likely a 
shading difference owing to the different lighting of 
consecutive frames. The proposed method may be limited to a 
certain extent in terms of compression ratios. The displayed 
images of an object are still similar enough in terms of pixel 
color values that an efficient compression can be achieved. 

The current implementation was applied to an example 
with limited features, particularly with no objects created on-
the-fly or programmable shaders. Support of both objects 
created on-the-fly and programmable shaders is an area of 
future work.  

Appendix 

 

Fig. 10. Sample texture image of pixel depth. 
 

 

Fig. 11. Sample screen image of pixel depth computation.  

 

Fig. 12. Performance of pixel depth computation in detail
(displayed every third frame for frames 200 to 400). 
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Fig. 13. Sample texture image of pixel movement.  
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Fig. 14. Sample screen image of pixel movement computation.
 

Fig. 15. Performance of pixel movement computation in detail
(displayed every third frame for frames 200 to 400). 
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Fig. 16. Sample texture image of object boundary. 
 

 

Fig. 17. Sample screen image of object boundary computation.  

 

Fig. 18. Performance of occlusion computation in detail
(displayed every third frame for frames 200 to 400). 
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