
  

 
1

 
Designing Logical Architectures of Software Systems  

 
Sungwon Kang, Yoonseok Choi 

School of Engineering, Information and Communications University, Korea 
{kangsw, yschoi}@icu.ac.kr 

 
Abstract 

It is commonly agreed that architecture design is 
essential for development of complicated software and 
that depending on viewpoints software architecture can 
be captured in various views.   Among them, the logical 
view is the earliest and foremost view that software 
developers should consider because it shapes the later 
phase of architecture design and the subsequent 
development. In this paper, we present an architecture 
description language for logical architecture and its 
associated design method. The main characteristic of 
the language and the design method are that they 
support recursive top-down design so that logical 
architectures for software systems of any scale and 
complexity can be designed. We apply them to a 
realistic system and show their efficacy.  

1.  Introduction 
 

As the importance of software architecture in soft-
ware development is increasingly recognized, research-
ers increasingly contributed to software architecture 
research. One of the results they found is that software 
architecture cannot be adequately captured in a single 
view but needs to be captured from various viewpoints. 
Such viewpoints include logical view, runtime view, 
module view and deployment view and others [1][7][8]. 
Then depending on the specific view taken, each in-
stance of software architecture obtained is respectively 
a logical architecture or a runtime architecture or a 
module view architecture and so on. Among various 
views’ architectures, the logical architecture is the one 
that should be established before any other architecture 
so that it guides derivation of the other views’ architec-
tures and shapes the whole subsequent development 
[7][8]. 

However, research on logical view of software ar-
chitecture is not well established yet. So, for example, 
Bass et al did not include the logical view among the 
set of views they considered [1]. Kruchten recognized 
the importance of the logical view but the granularity 
of architecture design elements in his work was too 
small since they were classes and objects rather than 
subsystems and components [8]. Hofmeister et al did 
not provide an appropriate level of abstraction for logi-

cal architecture by essentially considering runtime ar-
chitecture instead [7].  

For all views of software architecture, there are two 
important related questions. One question is, “What is 
the adequate Architecture Description Language (ADL) 
for the view? Specifically, what are the architecture 
design elements for the architecture and how can their 
relationships be expressed?” The other question is, 
“Given such an ADL, how can we actually carry out 
architecture design and use the ADL to express the de-
sign results?” This paper addresses these two questions 
for logical architecture. 

The remainder of the paper is organized as follows: 
In Section 2, related works are surveyed and their limi-
tations are discussed. Section 3 provides the foundation 
for our work. For that, starting with the definition and 
the goals of logical architecture, we discuss what needs 
to be done for logical architecture design. Section 4 
presents an ADL for logical architecture called AL-
FReD. Section 5 presents a logical architecture design 
procedure called ReDLArch. In Section 6, the efficacy 
of ALFReD and ReDLArch are demonstrated by work-
ing out a logical architecture design with an example. 
Section 7 concludes the paper.  

 
2. Related Works  
 

In this section, we survey related works and discuss 
their limitations. For that, first we surveys three widely 
known software architecture frameworks. Among the 
three frameworks, only Kruchten’s 4+1 Views frame-
work recognizes and provides a due role to logical view. 
But we see that the design elements of the Kruchten’s 
logical view are too fine-grained and its design method 
does not allow recursive design. Lastly, we look at the 
existing ADLs and points out that they focus on run-
time architecture rather than logical architecture.  

 
2.1 Various Software Architecture Frameworks  
 

Researchers on software architecture proposed vari-
ous software architecture frameworks, each consisting 
of a set of architecture views. There are three well-
known frameworks proposed by Kruchten [8], Hof-
meister et al  [7] and Bass et al [1][5]. In this paper, we 
will call them respectively Kruchten’s 4+1 Views, Sie-



  

 
2

mens Four Views and SEI Views. The Kruchten’s 4+1 
Views framework considers five views, each of which 
addresses a specific set of concerns. In the framework, 
the architectural design decisions are captured in four 
views, i.e. the logical view, the development view, the 
process view and the physical view and the fifth view 
is the use cases view. The use case view consists of a 
few selected use case scenarios to drive the discovery 
of the architectural elements during the architecture 
design and to validate and illustrate the architecture 
design later. Table 1 compares the views of this paper 
with the Kruchten’s 4+1 Views framework and the 
other two frameworks. Although the exact meanings of 
various views differ from framework to framework, we 
regarded them as the same views if the intended con-
cepts are similar. 
 

Table 1. Comparison of architectural  
frameworks 

Views of 
this paper 

Kruchten’s 
4+1 Views 

Siemens 
Four Views 

SEI Views 

Logical 
View 

Logical View   

Code View Development 
View 

Code View  

Module 
View 

 Module 
View 

Module 
View 

Deploy-
ment View 

Physical 
View 

Execution 
View 

Allocation 
View 

Runtime 
View 

Process View Conceptual 
View 

Component 
& Connector 
(C&C) View

 Scenario 
View 

  

 
2.2 Kruchten’s Logical Architecture and 
Logical Architecture Design 
 

In the paper [8], Kruchten said, “The logical archi-
tecture primarily supports the functional require-
ments—what the system should provide in terms of 
services to its users. The system is decomposed into a 
set of key abstractions, taken (mostly) from the prob-
lem domain, in the form of objects or object classes.” 
So in the Kruchten’s logical view, the main concern of 
logical architecture is functionality distribution and the 
design elements for logical architecture are classified 
into components and connectors, where a component 
can be class, class utility, parameterized class, and class 
category and a connector can be a relationship between 
components such as containment, aggregation, usage, 
inheritance and instantiation. Therefore we can see that 
Kruchten’s logical architecture focuses on compara-
tively low-level design elements. Also it’s connector 
concept contrasts with that of Siemens Four Views and 
SEI Views in that in the latter frameworks connector 

means a special component that connects components. 
Kruchten‘s architecture design method targets all views 
of architecture at once and no specific design method is 
given for logical architecture.  
 
2.3 ADLs 
 

In the past, many ADLs were developed with a view 
to help analysis, design and evolution by formalizing 
software structure description notations [4][11]. Some 
representative ADLs are Wright [6], UniCon [13], 
Rapide [9]  and C2 [11]. Wright focuses on modeling 
and analyzing the behavior of concurrent systems. 
UniCon focuses on generating the glue code for the 
existing components to make them work smoothly by 
using a Common Interaction Protocol. C2 focuses on 
representing distributed and real-time systems. ACME 
is an architectural description interchange language that 
allows various ADLs to be interchanged with each oth-
er [6]. 

Since the existing ADLs did not explicitly consider 
multiple views of software architecture and primarily 
focused on the runtime view, they are not suitable for 
logical architecture description. For example, the pre-
vious ADLs included for runtime view design elements 
such as port, role, component instance and connector 
instance. But these are the concerns for which the deci-
sions can be deferred to the later architecture design 
stage or to the detail design stage.  

 
3. The Logical Architecture and Its Design 
 

In this section, we discuss what logical architecture is 
and how its design should be carried out. For this, we first 
give our definition of logical architecture. Then, based on 
the definition, the goals of logical architecture design are 
identified as buildability and reusability. Finally, we discuss 
what the design process for logical architecture should be 
like to achieve those goals.  
 
3.1 The Definition of Logical Architecture 
 

The intended meaning of the term logical architec-
ture often appears clear but researchers differ when it 
comes to the details of what it means. In the paper [8], 
Kruchten said, “The logical architecture primarily sup-
ports the functional requirements – what the system 
should provide in terms of services to its users. The 
system is decomposed into a set of key abstractions, 
taken (mostly) from the problem domain, in the form of 
objects or object classes.” Hofmeister et al talked about 
conceptual architecture rather than logical architecture 
in their work [7]. But their conceptual architecture was 
actually closer to runtime architecture as they say, “In 
the conceptual view, you model your product as a col-



  

 
3

lection of decomposable, interconnected conceptual 
components and connectors” and their components and 
connectors are actually runtime elements. 

The definition of logical architecture in this paper is 
as follows: 

Definition A logical architecture for a software system 
defines a collection of components and their relation-
ships so that realizations of the components and their 
relationships can satisfy all the requirements of the 
system. 

Logical architecture can be descriptive or prescrip-
tive. Descriptive software architecture is the architec-
ture of the existing system and prescriptive architecture 
is the specification of the architecture for the software 
system to be built. The above is the prescriptive defini-
tion of logical architecture.  Here the term component 
means an entity that resides inside an enclosing entity 
and constitutes part of it. So a component can be a tar-
get for logical architecture design unless it is an atomic 
component, which is a component that we decide not to 
decompose any further. So the above definition does 
not prevent the design process for logical architecture 
from proceeding in a recursive manner.  

 
3.2 The Goals of Logical Architecture Design 
 

Given the notion of logical architecture as defined in 
Section 3.1, what are the ultimate goals that should be 
pursued to have a “good” logical architecture design? 
The answer depends on what one regards as the most 
important things in architecture design. We believe that 
as the first architecture design stage we should abstract 
from less important concerns as much as possible in 
logical architecture design and focus only on the most 
important concerns. We assert that the most important 
concerns for logical architecture are (1) how we can 
successfully build a functionally working system at all 
and (2) how we can save development effort as much 
as possible. For the first concern, what needs to be 
done is to reduce the complexity of software develop-
ment. This can be naturally done by decomposing the 
task of developing a system into more manageable 
tasks of developing smaller subsystems (i.e. compo-
nents) and putting them together. As a general problem 
solving strategy, it is often referred to as the divide-
and-conquer strategy. The second concern can be ad-
dressed to a great extent by not duplicating work during 
development or by reusing what can be reused as much 
as possible. We call these two concerns buildability and 
reusability respectively and claims the following 
proposition. 

Proposition The goals of logical architecture design 
are to assure buildability and reusability.  

3.3 Logical Architecture Design Process 
 

Buildability and reusability concerns are different 
from other concerns about software systems in that 
regardless of the customer’s requirements they are ap-
plied by the developers for the sake of development. 
After the logical architecture is designed, the other 
concerns from the customer can be incorporated at 
other phases of development. 

We view logical architecture design process as a 
process that determines the structure of the system un-
der construction and specifies the constituent compo-
nents that participate in the structure. We can do this by 
repeating (1) the step of partitioning or factoring, fol-
lowed by (2) the step of specifying components by as-
signing responsibilities to the components and defining 
the interfaces between them. This process is depicted in 
Figure 1. 
 

Structural Decisions 

Components 
Specification 

.
.

 Partitioning 
or 

 Factoring 

 Responsibilities Assignment
and 

 Interface Definitions 

. Logical 
Architecture

Design 

Figure 1. Design process for logical  
architecture 

 
In the first stage of Structure Decisions in Figure 1, 

we find out a set of components and a structure consist-
ing of them from the requirements for the whole system. 
Each component would have an associated set of re-
quirements and the components together would satisfy 
the requirements for the whole system. This step can be 
either a partitioning step or a factoring step. If it is a 
partitioning step, then the main concern is how to make 
the system easy-to-build by applying the divide-and-
conquer strategy. If it is a factoring step, then the main 
concern is to maximize reusability by factoring out a 
certain functionality that has already been realized by 
an existing component or by factoring out a common 
functionality from the existing components.  

In the second step for components specification, 
new but less complicated requirements than the initial 
system’s requirements are derived and assigned to the 
components. In this step, not only functional require-
ments but also non-functional requirements as well as 
constraints are distributed to components. Also well-
specified components should define provider-user pro-
tocols for interactions with other components. Such 
specification includes not only how to use services but 



  

 
4

also the context of the services as well. These two steps 
are repeated until there is no need for introducing fur-
ther structure.  
 
4. ADL for Logical Architecture 
 

To meet the concerns of logical architecture, the 
ADL for logical architecture should have the following 
characteristics: (1) the language constructs should be 
the logical architecture design elements, (2) it should 
allow for a hierarchical manner description to help top-
down design and, furthermore, (3) description notation 
for each layer of the hierarchy should be the same. The 
second and the third characteristics would help the top-
down recursive design description and design process. 
This section presents an Architecture description Lan-
guage For Recursive Design (ALFReD) that has all the 
characteristics stated above.  

Traditionally, boxes and lines as shown in Figure 2 
were used to represent structures of systems.  Boxes 
represent computing entities and lines represent the 
relationships between components. We call them logi-
cal component and logical relationship to emphasize 
that they are design elements for logical architecture. 

 

: Box  : Line

 
Figure 2. Box and Line 

 
Logical relationships can be elaborated with the 

same decorations that are used for association between 
classes in UML [3] such as roles and multiplicities as 
illustrated in Figure 3.  
 

Subsystem 
A 

Subsystem
B Rolename1 

1..* 0..* 

Rolename2 

 
Figure 3. The System represented with the 

Consumer-side and the Producer-side 
 

Figure 4 shows a system represented with one box. 
The internal architecture may be undetermined yet or 
may be determined but not shown because only the 
topmost level view is given. In the first case, it has all 
the requirements associated with it. In the latter case, it 
may have the internal architecture design as shown in 
Figure 5. In Figure 5, there are two logical components 
and they have a certain logical relationship between 
them. The nature of the relationship can be expressed 
with decorations of the association and further through 
separate sets of requirements for the two components. 

 
Consumer-Producer 

 
Figure 4. The system represented with one box 

 
Producer-side Consumer-side

 
Figure 5. The System represented with the 

Consumer-Side and the Producer-Side 
 

In ALFReD, a component is described with a quad-
ruple consisting of name, observable requirements, 
non-observable requirements and constraints. The Fig-
ure 6 shows how we describe a logical component in 
ALFReD. 
  

Name 
 
 

Logical Component 

Observable 
requirements are  
given with  
Sequence Diagrams 

Non-observable 
requirements and 
Constraints are given  
in a natural language Constraints 

Non-observable 
Requirements 

Observable 
Requirements 

Non-observable 
Requirements 

Constrains 

 
Figure 6. ALFReD specification of a logical 

component 
 

ALFReD uses sequence diagram to describe com-
ponent’s functional and non-functional requirements 
and interfaces that can be expressed with interactions 
with other systems or components. With the notation 
for condition and repetition, sequence diagram is ex-
pressive enough to describe most computation and in-
teraction behavior. The further advantages of sequence 
diagram are that it is a formal language such that use 
case scenarios can be easily translated into it and func-
tionality given in sequence diagram for a system can be 
semi-automatically distributed to their components.  

 
Producer-side

Ready? 

Yes 

m1 

Produce 

Consume 

Consumer-side 

 
Figure 7. A sequence diagram for component 

interaction 
Suppose that from the system’s requirements we 

have decided that the system should consist of Pro-
ducer-side component and Consumer-side component 
and control flow should exist between them. When we 
look closely into Producer-side and Consumer-side for 
further design, they may have the internal behaviors 
that can be derived from the interaction in Figure 7. 
One possible scenario for such interactions is depicted 
in Figure 8. Then the interactions between the internal 
components within of the Producer-side component and 



  

 
5

the Consumer-side component can in turn be described 
in sequence diagrams. They are indicated with the 
shaded areas in Figure 8. 
 

m1 

m1 

Producer Flow 
Control Producer Consumer

Consumer Flow
Control 

Ready? 

Yes 

m1 

 
Figure 8. Refinement of Figure 5 

 
5. Design Method for Logical Architecture  
 

We argued in Section 3 that buildability and reus-
ability are the most important concerns that should be 
considered for design of logical architecture. In Section 
4, we presented a recursive design language for logical 
architecture. In this section, we show how logical ar-
chitecture can be designed using the ALFReD language 
in such a way that the two concerns are properly ad-
dressed. For this, we first consider the following two 
questions: (1) what actions need to be taken to achieve 
those goals and (2) what guidelines need to be followed 
in taking the actions so that we get the best results by 
performing the actions. Table 2 summarizes the an-
swers to these questions. 
 

Table 2. The process to achieve the goals of 
logical architecture 

Purpose Decompose the system into components 
to make it realizable and implementable.

Actions Partition the system based on architec-
ture patterns. 
Partition the system into collaborating 
design elements by considering decoup-
ling and cohesion. 

B
ui

ld
ab

ili
ty

 

Guide-
lines 

Ensure understandability. 
Consider developer’s skill. 
Consider the available number of devel-
opers. 

Purpose Reuse components as much as possible 
to make development efficient. 

Actions Factor out part of functionality to an 
already existing component. 
Factor common functionality of two 
components to a separate component. 

R
eu

sa
bi

lit
y 

Guide-
lines 

Consider trade-off between amount of 
reuse and amount of effort for reuse. 
Consider extending functionality of a 
component beyond what is required so 
that the existing component can be re-
used. 

Architectural patterns are well-known design solu-
tions for commonly arising architectural design prob-
lems. Architectural patterns can play an important role 
in decomposing a component into the simpler collabo-
rating components because by adopting the existing 
proven solutions into the design they promote 
buildability. Each architecture pattern has its name, the 
requirements it addresses and the solution design. Table 
3 shows a list of names for some architectural patterns 
that can be used in the logical architecture design.  

 
Table 3.  Architectural patterns for buildability 
MVC pattern 
Layered pattern 
Whole-Part pattern 
Pipes and Filter pattern  
Blackboard pattern 

Presentation-Abstraction- 
Control pattern 

Strategy pattern 
Process Control pattern 
Event-Based pattern 

 
Our procedure for logical architecture design is de-

scribed in Figure 9. We call it the ReDLArch method 
for Recursive Design for Logical Architecture method. 
Our design method consists of the step for buildability 
and then the step for reusability. The buildability step 
first starts with the sub-step that utilizes the existing 
architecture patterns and then performs the design not 
relying on architectural patterns. This second sub-step 
of buildability performs divide-and-conquer based on 
the principle of “decoupling and cohesion” such that 
individual components have maximum cohesion in 
themselves and minimum coupling exists between 
them. This will make it much simpler to perform the 
next level of design of the newly introduced compo-
nents. The final phase of design explores reusability 
possibilities and performs two kinds of factoring to the 
existing components. One is factoring into an existing 
component and the other is factoring out from the exist-
ing components.  

Each of these three steps is immediately followed by 
the step of fleshing out the newly introduced compo-
nents. Through fleshing out, each component becomes 
a system that is complete with all the pieces necessary 
for further design. When we design logical architecture, 
we not only make decisions on structure among com-
ponents but also always distribute the requirements that 
have not been taken care of at the current level iteration 
to the appropriate components. This enables the next 
level iteration of the procedure to continue afresh only 
with the resulting components and makes the design 
procedure top-down and recursive.  

Note that for the first iteration of the application of 
the procedure of Figure 9, the input system is the whole 
system. Also note that the method can be customized in 
various ways. One dimension is whether to base struc-
ture decisions on a complete set of requirements or on a 
selected set of more significant quality attributes and 
constraints.  



  

 
6

ReDLArch - Logical Architecture Design Procedure 
Input:   A system S specified with ALFReD 
Output: A logical architecture specified with ALFReD 
if S is simple then return ;  /* Else S requires design */ 
/* Perform buildability design */  
if there are architectural patterns applicable 
then introduce components for the architectural patterns; 
Flesh out the components for the architectural patterns;  
if there are remaining requirements for S not taken of by 
the architectural patterns 
then introduce new components for the remaining require-
ments by considering decoupling and cohesion; 
Flesh out the new components by distributing the remaining 
requirements for S  to the new components; 
/* Perform reusability design */ 
if there are existing components for part of the system  
functionality or there are commonalities among the
 components introduced so far 
then factor them out as separate components; 
Flesh out the components that are affected in this step by re
distributing the relevant requirements ; 
Recursively apply this method to each component; 

Figure 9. Logical architecture design  
procedure 

 
6.  An Application Example 
 

In this section, we show how ALFReD and ReD-
LArch can be used for logical architecture design. The 
application target is a simplified version of the Point Of 
Sale (POS) system that appears in [9]. 
 

6.1 The POS System 
 

The requirements are as follows:  
(1) When customers bring goods for check-out, cashier 
handles a sale process through POS. 
(2) Customers can return damaged goods. 
(3) Product manager can manage goods. 
(4) Sale manager can see the summary of the sale infor-
mation and profit for specified period. 

Figure 10 is the use case context diagram. Figure 11 
describes use case scenarios for the Process Sale use case. 
Figure 12 shows the system constraints. The use case sce-
narios for Handle Returns (HR) use case are omitted.  
 

cashier 

               POS  

administrator 
Sale manager 

Manage Sale 
Information 

Process Sale 

Handle Returns 

Manage Inventory 

 Figure 10. Use case context diagram for the 
POS system 

Process Sale Use Case Scenario 
 

Pre-condition: Cashier is identified and authenticated. 
Post-condition: Sale is successfully saved 
 
Main Success Scenario 
1. Customer arrives at POS checkout with goods 
2. Cashier starts a new sale 
3. Cashier enters item identifier 
4. System records sale line item and presents item de-
scription, price, and running total 
Cashier repeats Steps 3-4 until all the items are identified 
5. Casher tells the total price to the customer 
6. Customer pays expense 
7. System handles payment and logs complete sale and 
then returns a receipt 
8.  
Alternative Flow for 3~5 
(3-4) Customer asks Cashier to remove an item from the 
purchase 
1. Cashier enters item identifier for removal from sale 
2. System displays updated running total 
Figure 11. Process Sale (PS) use case scenario  

 
Constraints 

C1. Different types of users need different user interfaces. 
C2. Maximum of 20 cashiers can use the system together. 

Figure 12. Constraints for the POS system 
 

Figure 13 shows the system interaction diagrams de-
rived from Process Sale use case. 

 
  

POS 

starts a new sale 

Enters item identifier 

Present item description, total 

Pays price 

Returns a receipt 

Cashier 

*[more items] 

 
Figure 13. System sequence diagram for  

Process Sale (PS.SD) 
 

Now that we have the system requirements and con-
straints specification in ALFReD notation as shown in 
Figure 14, we can perform the ReDLArch procedure. The 
following two sections show the first level design process 
and part of the second level design process.  
 



  

 
7

POS 
Observable Requirements 
POS.PS 
POS.HR 
Non-observable Requirements 
None 
Constraints 
C1. Different types of users need different user interfaces.
C2. Maximum of 20 cashiers can use the system together 
Figure 14. Logical component POS for input to 

ReDLarch 
 

6.2 The First Level Design 
 

Initially the whole system is the target of design. 
Step 1) Perform buildability design  
The first step is to utilize appropriate architectural pat-
terns that show feasible solutions. By considering the 
constraint C1 that each type of actors has its own pres-
entation, we decide to apply the MVC pattern that sup-
ports different views for different types of users. The 
structure obtained is shown in Figure 15. 
 

POS 

View Controller Model 

 
Figure 15. The structure after applying the 

MVC pattern 
 
This step is followed by the step of fleshing out the 

introduced components. The result of applying PS use 
case scenario is shown in Figure 16. 

 

Item information Item info 

Receipt Receipt 

Handle the payment 

Enters Item Identifier 

View Controller Model 

Starts a new sale 

Item Identifier Find Item info 

Show the item info 

Pays Price 
Price 

Shows the receipt 

Cashier 

<<View.PS.SD>> <<Controller.PS.SD>>.<<Model.PS.SD>> 

POS 

 
Figure 16. Fleshing out the structure of  

Figure 15 
 

View 
View.PS.SD. 
View.HR.SD. 
 

Controller 
Controller.PS.SD. 
Controller.HR.SD. 
 

Model 
Model.PS.SD. 
Model.HR.SD. 
 

C2.  
Figure 17. The result of buildability design 

PS.SD is split into three sequence diagrams for View, 
Controller and Model components, respectively. Note 
that the constraint C2 was passed only to the Controller 
as shown in Figure 17. When we distribute require-
ments and constraints to components, we should con-
sider whether they are completely disposed of by the 
structural design or they have been only partially taken 
care of by the structural design. In the latter case, they 
should be distributed to some or all the components for 
further handling.  
Step 2) Perform reusability design 
The first step for reusability design is to find out an 
appropriate existing component that can perform part 
of the functionality of a newly introduced component 
or to find the same functionality between two compo-
nents to factor out common functionality.  

In the current example, the developer finds out that 
there is an existing accounting component that handles 
payment and records sales. By this decision, the Model 
component is further partitioned into two components 
Accounting Subsystem for accounting and Item Man-
ager for the rest of the functionality. The result is 
shown in Figure 18. 

 
  

 
 

Accounting 
Subsystem 

Item 
Manager 

 
View 

 
Controller

POS 

Model 

 
Figure 18. Components obtained after  

reusability design decision 
 
Again this step is followed by the step of fleshing 

out the new components as in Figure 19 and Figure 20. 
 

 

 

Show the Receipt 

Price 

Show the Item info 

Item Identifier 
Enter Item Id 

Starts handling returns 

Find Item Info 

Item Info 

Handle payments 

Receipt 

Controller 
Accounting 
Subsystem 

Item 
Manager 

Item out 

Pays Price 

Item Info 

Receipt 

View 

Success 

Cashier 

 Model 

POS 

<<AccountingS
ubsystem.Model
.PS.SD>>> 

<<ItemManager.
Model.PS.SD>>>

 
Figure 19. Fleshing out Figure 18 



  

 
8

 
 Model 

ItemManager 
ItemManager.Model.PS.SD 
ItemManager.Model.HR.SD

 
 

AccountingSubsystem 
AccountingSubsystem.Model.PS.SD 
AccountingSubsystem.Model.HR.SD 
 
 

 
Figure 20. Result of applying reusability  

design to the Model component 
 

Putting these results together, Figure 21 shows the logi-
cal architecture obtained from the first level design. 
 POS 

View 

Model 
Item 

Manager
Controller Accounting 

Subsystem 

 
Figure 21.The logical architecture after the first 

iteration 
 

6.3 The Second Level Design 
 

While the other components are simple enough, the 
Controller component is complex and is selected for 
further design to handle the constraint C2. For 
buildability design, there are no suitable architectural 
patterns. So applying the second if-then part of the 
ReDLArch procedure, the controller component is de-
composed into Request Controller and Service Control-
ler components. By separating the business logic from 
the functionality of controlling customers’ requests, it 
increases decoupling and make it possible to develop 
them independently. The result is shown in Figure 22. 
The step of fleshing out and the remaining steps are 
similar to the first-level design and are not shown here.  
 

POS 
 

View Request 
Controller 

0.. 20 1 
Service 
Controller 

Accounting 
Manager 

Item  
Manager 

Model 

 
Figure 22. The logical architecture of the 

second iteration 
 

7. Conclusion 
 

In this paper, we presented an architecture descrip-
tion language for logical architecture ALFReD and its 
associated design method ReDLArch. Both ALFReD 
and ReDLArch are recursive, allowing top-down de-
sign. We applied them to a realistic system and showed 
their efficacy. The main characteristic of them are that 
they support recursive top-down design so that logical 

architectures for software systems of any scale and 
complexity can be designed.  

There are several directions in which our work can 
be extended. To mention just a couple of them, firstly, 
we plan to build a tool that supports ALFReD and 
ReDLArch. Secondly, there are software architecture 
views other than logical view. Those views play their 
roles in appropriate phases of development. In addition 
to ALFReD and ReDLArch, the ADLs and the associ-
ated design methods for those views are needed to form 
a complete software architecture design framework.  

 

8. References 
 
[1] Bass, L., Clements, P., and Kazman, R., Software Archi-
tecture in Practice, 2nd ed., Addison-Wesley, 2003. 
[2] Bass, L, Klein, M., and Bachman, F., “Quality At-
tribute Design Primitives and the Attribute Driven De-
sign Method,” Software Engineering Institute, Carnegie 
Mellon University, 2003. 
[3] Booch, G., Object-Oriented Analysis and Design 
with Applications, The Benjamin/Cummings Publish-
ing Co. Inc, 1994.  
[4] Clements, P. C,, “A Survey of Architecture Descrip-
tion Languages,” Eighth Int’l Workshop on Software 
Specification and Design, Germany, 1996. 
[5] Clements, P., Bachmann, F., Bass, L., Garlan, D., 
Ivers, J., Little, R., Nord, R., and Stafford, J., Docu-
menting Software Architectures: Views and Beyond, 
Addison-Wesley, 2003. 
[6] Garlan, D., and Allen, R., “Formalizing Architec-
tural Connection,” Proc. 16th Int’l Conf on SE, 
Sorrento, Italy, 1994. 
[7] Hofmeister, C., Nord, R., and Soni, D., Applied 
Software Architecture, Addison-Wesley, 2000. 
[8] Kruchten, P., “Architectural Blueprints - the ‘4+1’ 
View Model of Software Architecture,” IEEE Software 
12(6), Nov. 1995. 
[9] Larman, G., Applying UML and Pattern, 2nd Ed., 
Prentice Hall, 2002. 
[10] Luckham, D. C., et al, “Specification and Analysis 
of System Architecture using Rapide,” SIGSOFT Soft-
ware Engineering Notes 19(5), 1994. 
[11] Medvidovic, N., et al., “Using Object-Oriented 
Typing to Support Architectural Design in the C2 
Style,” Proc. ACM SIGSOFT '96 Fourth Symposium on 
the Foundations of Software Engineering. p.24-32, 
ACM SIGSOFT. San Francisco, CA, Oct., 1996. 
[12] Medvidovic, N., and Taylor, R. N., “A Classifica-
tion and Comparison Framework for Software Archi-
tecture Description Languages,” IEEE Trans. Software 
Engineering, Vol. 26, No. 1, Jan. 2000. 
[13] Shaw, M., et al, “Abstractions for Software Ar-
chitecture and Tools to Support Them,” IEEE Trans. 
Software Engineering 21(6), 1995. 


