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Abstract

This paper introduces simple, but effective, equations to calculate the dead load and cantilever tendon moments in reinforced

concrete (RC) bridges constructed using the balanced cantilever method (FCM). Through time-dependent analyses of RC bridges

considering the construction sequence and creep deformation of concrete, structural responses related to the member forces are

reviewed. On the basis of the compatibility condition and equilibrium equation at every construction stage, basic equations which

can describe the moment variation with time in balanced cantilever construction are derived. These are then extended to take into

account the moment variation according to changes in the construction steps. By using the introduced relations, the design moment

and its variation over time can easily be obtained with only the elastic analysis results, and without additional time-dependent

analyses considering the construction sequences. In addition, the design moments determined by the introduced equations are

compared with the results from a rigorous numerical analysis with the objective of establishing the relative efficiencies of the in-

troduced equations.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In accordance with the development of industrial

society and global economic expansion, the construction

of long span bridges has increased. Moreover, the con-

struction methods have undergone refinement, and they

have been further developed to cover many special cases,

such as progressive construction of cantilever bridges
and span-by-span construction of simply supported or

continuous spans. Currently, among these construction

methods, balanced cantilever construction of concrete

box-girder bridges has been recognized as one of the

most efficient methods of building bridges as it does not

require falsework. This method has great advantages

over other kinds of construction, particularly in urban

areas where temporary shoring would disrupt traffic and
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service below, in deep gorges, and over waterways where

falsework would be not only expensive but also a

hazard.

However, the design and analysis of bridges con-

structed by the balanced cantilever method (FCM) re-

quire the consideration of the internal moment

redistribution which takes place over the service life of a

structure because of the time-dependent deformation of
concrete and changes in the structural system repeated

during construction. This means that, to preserve the

safety and serviceability of the bridge, an analysis of

bridges which considers the construction sequence must

be performed. All the related bridge design codes [1,6]

have also mentioned the need to consider the internal

moment redistribution due to creep and shrinkage of

concrete when the structural system is changed during
construction.

Several studies have dealt with the general topics of

design and analysis of segmentally erected bridges, while

a few studies have been directed toward the analysis of
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the deflection and internal moment redistribution in

segmental bridges [3,7,22]. Bishara and Papakonstanti-

nou [3] investigated the time-dependent deformation of

cantilever construction bridges both before and after

closure, and Cruz et al. [8] introduced a nonlinear
analysis method for the calculation of the ultimate

strength of bridges. Articles on the design, analysis and

construction of segmental bridges have been published

by many researchers, and detailed comparisons have

been made between analytical results and responses

measured in actual structures [11,12,17,20].

Moreover, development of sophisticated computer

programs for the analysis of segmental bridges consid-
ering the time-dependent deformation of concrete has

been followed [10]. Most analysis programs, however,

have some limitations on wide use because of com-

plexities in practice applications. Consequently, a simple

formula for estimating the internal moment redistribu-

tion due to creep and shrinkage of concrete, which is

appropriate for use by a design engineer in the primary

design of bridges, has been continuously required. Trost
and Wolff [22] introduced a simple formula which can

simulate internal moment redistribution with a super-

position of the elastic moments occurring at each con-

struction step. A similar approach has been presented by

the Prestressed Concrete Institute (PCI) and the Post-

Tensioning Institute (PTI) on the basis of the force

equilibrium and the rotation compatibility at the con-

necting point [4]; however, these formulas do not ade-
quately address the changing structural system because

of several adopted simplifying assumptions.

In this paper, simple, but effective, formulas are in-

troduced which can calculate the internal moment re-

distribution in segmental bridges after completion of

construction. With previously developed computer

programs [13–17], many parametric studies for bridges

erected by the FCM are conducted, and correlation
studies between the obtained numerical results with

those by the introduced formulas are included to verify

the applicability of the introduced formulas. Finally, a

reasonable guideline to determine the internal design

moments, which are essential in selecting a proper initial

section, is proposed.
2. Construction sequence analysis

2.1. Construction sequences

Every nonlinear analysis algorithm consists of four

basic steps: the formulation of the current stiffness ma-

trix, the solution of the equilibrium equations for the

displacement increments, the stress determination of all
elements in the model, and the convergence check. The

preceding papers [13–17] presented an analytical model

to predict the time-dependent behavior of bridge struc-
tures. Experimental verification and correlation studies

between analytical and field testing results were con-

ducted to verify the efficiency of the proposed numerical

model. The rigorous time dependent analyses in this

paper are performed with the introduced analytical
model. Details of the analytical model can be found in

the preceding papers [13–17]. In advance, all the mate-

rial properties related to a tendon, from the definition of

stress–strain relation to the formulation of relaxation,

can also be found elsewhere [13,14].

Balanced cantilever construction is the term for when

a phased construction of a bridge superstructure starts

from previously constructed piers cantilevering out to
both sides using the cantilever tendons. Each cantile-

vered part of the superstructure is tied to a previous one

by concreting a key segment and post-tensioning ten-

dons. The same erection process is repeated until the

structure is completed. After continuing all spans in the

structure, the continuous tendons are finally installed

along the spans; consequently the internal moment is

continuously changed according to the construction se-
quence and the changing structural system during con-

struction. This means that the cantilever tendons and

the dead load dominantly affect the internal moment

variation because these two force components accom-

pany the secondary moments caused by the concrete

creep deformation with the changing structural system.

On these backgrounds, to review structural responses

due to changes in the construction sequence, three dif-
ferent cases, FCM1, FCM2 and FCM3, shown in Fig. 1,

are selected for this paper.

For time-dependent analysis of bridges that considers

the construction sequence, a five-span continuous bridge

is selected as an example structure. This bridge has a

total length of 150 m with an equal span length of 30 m,

and maintains a prismatic box-girder section along the

span length. The assumed material and sectional prop-
erties are taken from a real bridge and are summarized

in Table 1, and the tendon properties are also presented

in Table 2. The creep deformation of concrete is con-

sidered on the basis of the ACI model with an ultimate

creep coefficient of /1
cr ¼ 2:35 [2].

As shown in Fig. 1, the time interval between each

construction step is assumed to be 50 days. FCM 1 is

designed to describe the construction sequence in
which construction of all the cantilever parts of the

superstructure is finished first at the reference time

t ¼ 0 day. The continuity of the far end spans and

center span follows at t ¼ 50 days, and then the con-

struction of the superstructure is finally finished at

t ¼ 100 days by concreting the key segments at the

midspans of the second and fourth spans. FCM 2

describes the continuity process marching from the far
end spans to the center span, and FCM 3 describes the

step-by-step continuity of the proceeding spans from a

far end span.



Fig. 1. Construction sequences in balanced cantilever bridges (a) Construction sequence of FCM 1: (i) construction of each cantilever part (t ¼ 0

day); (ii) continuity of far end spans and center span (t ¼ 50 days); (iii) completion of superstructure (t ¼ 100 days). (b) Construction sequence of

FCM 2: (i) construction of each cantilever part (t ¼ 0 day); (ii) continuity of far end spans (t ¼ 50 days); (iii) continuity of the 2nd and 4th spans

(t ¼ 100 days); (iv) completion of superstructure (t ¼ 150 days); (c) Construction sequence of FCM 3. (i) construction of the 1st cantilever part (t ¼ 0

day); (ii) continuity of the 1st span and construction of next span (t ¼ 50 days); (iii) continuity of the 2nd span (t ¼ 100 days); (iv) continuity of the

3rd span (t ¼ 150 days); (v) continuity of the other far end span (t ¼ 200 days); (vi) completion of superstructure (t ¼ 250 days).
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Table 2

Tendon properties used in application

Pi e AP fpy l k

117 ton 1.3 m 10 cm2 14,765 kg/cm2 0.25 0.13� 104

Table 1

Material and sectional properties used in application

AC qsc ¼ qst WD f 0
c fsy ES

4.5 m2 0.62 % 10.3 ton/m 400 kg/cm2 4000 kg/cm2 2.1� 106 kg/cm2
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2.2. Dead load moment variation

The dead load moments corresponding to each con-

struction sequence at typical construction steps are

shown in Figs. 2–4, where total structure (TS) means

that all the spans are constructed at once at the reference

time t ¼ 0 day. After construction of each cantilever

part, the negative moment at each pier reaches
M ¼ wl2=8 ¼ 1160 tonm, (l ¼ 30 m), and this value is

maintained until the structural system changes by the

connection of an adjacent span. The connection of an

adjacent span, however, causes an elastic moment re-

distribution because the structural system moves from

the cantilevered state to the over-hanging simply sup-

ported structure (see Fig. 1(a)). Nevertheless, there is no

internal moment redistribution by creep deformation of
concrete in a span if the structural system maintains the

statically determinate structure. As shown in Fig. 1, the

statically indeterminate structure begins at t ¼ 100 days

in all the structural systems (FCM 1, FCM 2, FCM 3).

Therefore, it is expected that the dead load bending

moments in the structures start the time dependent

moment redistribution after t ¼ 100 days.

Comparing the obtained numerical results in Figs. 2–
4, the following can be inferred: (1) the time-dependent

moment redistribution causes a reduction of negative
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Fig. 2. Moment redistribution in FCM 1.
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Fig. 4. Moment redistribution in FCM 3.
moments near the supports and an increase of positive

moments at the points of closure at the midspans; (2) the

final moment at an arbitrary time t after completing the

construction converges to a value within the region

bounded by two moment envelopes for the final stati-

cally determinate stage at t ¼ 100 days and for the ini-

tially completed five-span continuous structure (TS in
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Figs. 2–4); and (3) the final moments in the structure

depend on the order that the joints are closed in the

structures, which means that the magnitude of the mo-

ment redistribution due to concrete creep may depend

on the construction sequence, even in balanced cantile-
ver bridges.

Under dead load as originally built, elastic displace-

ment and rotation at the cantilever tips occur. If the

midspan is not closed, these deformations increase over

time due to concrete creep without any increase in the

internal moment. On the other hand, as the central

joints are closed, the rotations at the cantilever tips are

restrained while introducing the restraint moments.
Moreover, this restraint moment causes a time-depen-

dent shift or redistribution of the internal force distri-

bution in a span. If the closure of the central joints is

made at the reference time t ¼ 0 day, then the final

moments Mt will converge with the elastic moment of

the total structure (TS in Figs. 2–4). However, the ex-

ample structure maintains the statically determinate

structure which does not cause internal moment redis-
tribution until t ¼ 100 days, so that only the creep de-

formation after t ¼ 100 days, which is a relatively small

quantity of time, affects the time-dependent redistribu-

tion of the internal moment. Therefore, the moment

distribution at time t represents a difference from that of

the total structure. In particular, as shown in Figs. 2–4,

the difference is relatively large at the internal spans.

This means that the moment redistribution caused in
proportion to the elastic moment difference between the

statically determinate state and the five-span continuous

structure will be concentrated at the internal spans.

Fig. 5, which represents the creep moment distribution

of FCM 1 bridge, shows that the creep moments at the

center span are about 3.5 times for the negative moment

and about 7.0 times for the positive moment larger than

those of the end spans.
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Fig. 5. Creep moment distribution of FCM 1 bridge.
Fig. 6 shows the final dead load moment distribution

of the example structures constructed by FCM 1, FCM

2 and FCM 3 at t ¼ 100 years. As this figure shows, the

difference in construction steps does not have a great

influence on the final moment distributions, but there is
remarkable difference in the final dead load moments

between the initially completed continuous bridge (TS in

Figs. 2–4 and 6) and the balanced cantilever bridges.

Balanced cantilever bridges represent relatively smaller

values for the positive moments and larger values for the

negative moments than those of a five-span continuous

structure (see Figs. 2–4 and 6). This difference is induced

from no contribution of the creep deformation of con-
crete up to t ¼ 100 days at which the structural system is

changed to the statically indeterminate state.

2.3. Cantilever tendon moment variation

The same example structures are also reanalyzed by

considering the cantilever tendons, as shown inFig. 7.The

time interval for the continuity of each segment is as-
sumed to be seven days, and each cantilevered part of the

superstructure is assumed to be tied to a previous one by

concreting a key segment after 50 days, as mentioned in

Fig. 1. The bending moments due to the cantilever ten-

dons and self-weight are shown in Figs. 8–10.

As shown in these figures, the negative moments at

the first interior support dramatically decrease from the

value of MD ¼ 1160 tonm when only the dead load acts
(see Figs. 2–4) to the value of M ffi 480 tonm (see Figs.

8–10) because of the positive moments by the cantilever

tendons located at the upper flange of a section. This

means that an optimum layout of cantilever tendons can

give an effective moment distribution in a structure with

an increase of the positive moments at mid-spans and a

decrease of the negative moments at interior supports.

In advance, for the same reasons mentioned in the case
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Fig. 6. Internal moment distribution at t ¼ 100 years.
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of the dead load moment, the moment distribution at

time t represents a difference from that of the total

structure (TS in Figs. 8–10), but the difference in con-

struction steps does not have a great influence on the

final moment distribution. Specifically, the internal
moments by the cantilever tendons are also affected by

the construction sequence as in the case of the dead load
moment. However, differently from the creep effect of

concrete in the case of the dead load moments which

represent an increase of the positive moments at mid-

span and a decrease of the negative moments at interior

supports with time, the moment variations by the can-

tilever tendon seem to be dominantly governed by the

relaxation which accompanies a decrease of both the

positive and negative moments with time.
From the results obtained for the time-dependent

behavior of balanced cantilever bridges, it can be con-

cluded that the prediction of more exact positive and

negative design moments requires the use of sophisti-

cated time dependant analysis programs [5,10,15,17],

which can consider the moment variations according to

the construction sequence. To be familiar with those

programs in practice, however, is time consuming and
has many restrictions caused by complexity and diffi-

culty in use because the adopted algorithms, theoretical

backgrounds and the styles of input files are different

from each other. Accordingly, the introduction of sim-

ple but effective relations, which can estimate design

moments on the basis of elastic analysis results without

any time-dependent analysis, are highly demanded in the

preliminary design stage of balanced cantilever bridges.
3. Determination of design moments

3.1. Calculation of creep moment

Unlike temporary loads such as live loads, impact

loads and seismic loads, permanent loads such as the
dead load and prestressing force are deeply related to

the long-term behavior of a concrete structure, and it is

these loads that govern the time-dependent behavior of

a structure. Of these two, it is the dead load that includes

the self-weight continuously acting on a structure during
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construction. Thus the moment and deflection varia-

tions arising from changes in the structural system are

heavily influenced by the dead load. The design mo-

ments of a structure can finally be calculated by the

linear combination of the factored dead and live load
moments. Since the dead load moment depends on the

construction method because of the creep deformation

of concrete, determination of the dead load moment

through time-dependent analysis that considers the

construction sequence must be accomplished to obtain

an exact design moment.

The time-dependent behavior of a balanced cantilever

bridge can be described using a double cantilever with
an open joint at the point B, as in Fig. 11. When the

uniformly distributed load of q is applied on the struc-

ture, the elastic deflection of d ¼ ql4=8EI and the rota-

tion angle of a ¼ ql3=6EI occurs at the ends of the

cantilevers (see Fig. 11(b)), where l and EI refer to the

length of the cantilever and the bending stiffness, re-

spectively. If the joint remains open, then the deflection

at time t will increase to d � ð1þ /tÞ and the rotation
angle to a � ð1þ /tÞ, where /t is the creep factor at time

t. However, if the joint at the point B is closed after

application of the load, an increase in the rotation angle

a � /t is restrained, and this restraint will develop the

moment Mt, as shown in Fig. 11(c). The moment Mt, if

acting in the cantilever, causes the elastic rotation at

point B, defined as b ¼ Mtl=EI , and also accompanies

the creep deformation. Since the creep factor increases
by d/t during a time interval dt, the variations in the

angles of rotation will be a � d/t and db (the elastic de-
q q

A B C

L

l l

(a) Configuration of Cantilever

δ

α

(b) Elastic Deformations in a Cantilever

f
Mt

A C

(c) Restraint Moment Mt after Closure  

Fig. 11. Deformation of cantilevers before and after closure: (a) con-

figuration of cantilever; (b) elastic deformations in a cantilever;

(c) restraint moment Mt after closure.
formation) +b � d/t (the creep deformation) for a and b,
respectively.

From these relations and the fact that there is no net

increase in discontinuity after the joint is closed, the

compatibility condition for the angular deformation
ða � d/t ¼ dbþ b � d/tÞ can be constructed. The inte-

gration of this relation with respect to /t gives the re-

straint moment Mt [4]:

Mt ¼ ql2
ð1� e�/tÞ

6
¼ qL2 ð1� e�/tÞ

24
; ð1Þ

where /t means the creep factor at time t and L ¼ 2l.
From Eq. (1), it can be found that for a large value of

/t, the restraint moment converges to Mt ¼ qL2=24,
which is the same moment that would have been ob-
tained if the joint at the point B had been closed before

the load q was applied. This illustrates the fact that

moment redistribution due to concrete creep following a

change in the structural system tends to approach the

moment distribution that relates to the structural system

obtained after the change.

Referring to Fig. 12, which shows the moment dis-

tribution over time, the following general relationship
may be stated [4]:

Mcr ¼ MIII �MI ¼ ðMII �MIÞð1� e�/tÞ; ð2Þ
where Mcr is the creep moment resulting from change in

the structural system, MI the moment due to loads be-

fore a change of structural system, MII the moment due

to the same loads applied on the changed structural

system, and MIII is the restraint moment Mt.
The derivation of Eq. (2) is possible under the basic

assumption that the creep deformation of concrete starts

from the reference time, t ¼ 0 day. If it is assumed that

the joint is closed after a certain time, t ¼ C days, while

maintaining the same assumptions adopted in the deri-

vation of Eq. (2), then the structure can be analyzed by

means of the rate-of-creep method (RCM) [9], and the

obtained creep moments in Fig. 12 can be represented
by the following expression [21]:

Mcr ¼ ðMII �MIÞð1� e�ð/t�/CÞÞ: ð3Þ
Mcr

ql

ql
MII

ql
MI

Mcr

MI

MIII
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2

2
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Fig. 12. Moment distribution over time.
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Specifically, in balanced cantilever bridges, the re-

straint moment grows continuously from the time at

which the structural system is changed (t ¼ C days), and

its magnitude is proportional to (1� e�ð/t�/CÞ) [4,9,21].
Generally, construction of a multi-span continuous

bridge starts at one end and proceeds continuously to

the other end. Therefore, change in the structural system

is repeated whenever each cantilever part is tied by

concreting a key-segment at the midspan. Moreover, the

influence of the newly connected span will be delivered

into the previously connected spans so that there are

some limitations in direct applications of Eq. (3) to

calculate the restraint moment at each span because of
the many different connecting times of t ¼ C days. To

solve this problem and for a sufficiently exact calculation

of the final time-dependent moments, Trost and Wolff

[22] proposed a relation on the basis of the combination

of elastic moments (
P

MS;i; equivalent to MI in Eq. (3))

occurring at each construction step (see Fig. 13), and the

moment obtained by assuming that the entire structure

is constructed at the same point in time (ME; equivalent
to MII in Eq. (3))

MT ¼
X

MS;i þ ME �
X

MS;i

� � /t

1þ q/t
; ð4Þ

where /t and q represent the creep factor and corre-

sponding relaxation factor, respectively.

This relation has been broadly used in practice
because of its simplicity. In particular, the exactness

and efficiency of this relation can be expected in a

bridge constructed by incremental launching method

(ILM) or movable scaffolding system (MSS), that is,
Fig. 13. Combination of MS;i.
in a span-by-span constructed bridge. However, there

are still limitations in direct applications of Eq. (4) to

balanced cantilever bridges because this equation ex-

cludes the proportional ratio, ð1� e�ð/t�/CÞÞ in Eq.

(3), which represents the distinguishing characteristic
of the FCM.
3.2. A Proposed relation for dead load moment

The difference in the internal moments (ME �
P

MS;i)

in Eq. (4), which is equivalent to MII �MI in Eq. (3)) is

not recovered immediately after connection of all the

spans but gradually over time, and the occurred internal
restraint moments at time t also decrease with time be-

cause of relaxation accompanied by creep deformation.

From this fact, it may be inferred that Eq. (4) considers

the variation of the internal restraint moments on the

basis of a relaxation phenomenon. When a constant

stress r0 is applied at time t0, this stress will be decreased
to rðtÞ at time t (see Fig. 14). Considering the stress

variation with the effective modulus method (EMM), the
strain eðtÞ corresponding to the stress rðtÞ can be ex-

pressed by eðtÞ ¼ r0=E0 � ð1þ /tÞ. Moreover, the stress

ratio becomes rðtÞ=r0 ¼ 1=ð1þ /tÞ and the stress vari-

ation DrðtÞ ¼ /t=ð1þ /tÞ � r0. That is, the stress varia-

tion is proportional to /t=ð1þ /tÞ. If the age adjusted

effective modulus method (AEMM) is based on calcu-

lation to allow the influence of aging due to change of

stress, the stress variation can be expressed by
DrðtÞ ¼ v/t=ð1þ v/tÞ � r0, where v is the aging

coefficient [19].

With the background for the time-dependent behav-

ior of a cantilever beam effectively describing the inter-

nal moment variation in balanced cantilever bridges,

and by maintaining the basic form of Eq. (4) suggested

by Trost and Wolff [22] considering the construction

sequence while calculating the internal moments at an
arbitrary time t, the following relation is introduced in

this paper

MT ¼
X

MS;i þ ME �
X

MS;i

� �
ð1� e�ð/t�/CÞÞ � f ð/tÞ;

ð5Þ
Fig. 14. Stress variation due to relaxation.
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Fig. 15. Moment variations of FCM 1 bridge: (a) after 1 year; (b) after

10 years; (c) after 100 years.
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where f ð/tÞ ¼ v/t=ð1þ v/tÞ. v is the concrete aging

coefficient which accounts for the effect of aging on the

ultimate value of creep for stress increments or decre-

ments occurring gradually after application of the ori-

ginal load. It was found that in previous studies [5,15,16]
an average value of v ¼ 0:82 can be used for most

practical problems where the creep coefficient lies be-

tween 1.5 and 3.0. An approximate value of v ¼ 0:82 is

adopted in this paper. In addition, if the creep factor /t

is calculated on the basis of the ACI model [2],

f ð/tÞ ¼ v/t=ð1þ v/tÞ has the values of 0.62, 0.64 and

0.65 at 1, 10 and 100 years, respectively.

Comparing this equation (Eq. (5)) with Eq. (4), the
following differences can be found: (1) to simulate the

cantilevered construction, a term, (1� e�ð/t�/CÞ) de-

scribing the creep behavior of a cantilevered beam is

added in Eq. (5) (see Eq. (3)); and (2) the term /t=
ð1þ q/tÞ in Eq. (4) is replaced by f ð/tÞ ¼ v/t=ð1þ v/tÞ
in Eq. (5) on the basis of the relaxation phenomenon.

To verify the effectiveness of the introduced relation,

the internal moment variations in FCM 1, FCM 2 and
FCM 3 bridges (see Fig. 1), which were obtained

through rigorous time-dependent analyses, are com-

pared with those by the introduced relation. The effect

of creep in the rigorous numerical model was studied

in accordance with the first-order algorithm based on

the expansion of a degenerate kernel of compliance

function [13–17]. Figs. 15–17, representing the ob-

tained results at t ¼ 1, 10 and 100 years after com-
pletion of construction, show that the relation of Eq.

(4) proposed by Trost and Wolff gives slightly con-

servative positive moments even though they are still

acceptable in the preliminary design stage. On the

other hand, the relation introduced in Eq. (5) effec-

tively simulates the internal moment variation over

time regardless of the construction sequence and gives

slightly larger positive moments than those obtained
by the rigorous analysis along the spans. Hence, the

use of Eq. (5) in determining the positive design mo-

ments will lead to more reasonable designs of balanced

cantilever bridges. Besides, the underestimation of the

negative moments, which represents magnitudes

equivalent to the overestimation of the positive mo-

ments, will be induced. The negative design moments,

however, must be determined on the basis of the
cantilevered state because it has the maximum value in

all the construction steps as mentioned in Fig. 2. This

means that the negative design moment has a constant

value of M ¼ 1160 ton. m in this example structure

and is calculated directly from the elastic moment of a

cantilevered beam.

3.3. A Proposed relation for cantilever tendon moment

As mentioned before, post-tensioning cantilever ten-

dons are installed to connect each segment during con-
struction, and the prestressing forces introduced will

also be redistributed from the cantilevered structural

system to the completed structural system due to con-
crete creep and the relaxation of tendons. Therefore, a

simple equation to determine the cantilever tendon
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Fig. 16. Moment variations of FCM 2 bridge: (a) after 1 year; (b) after

10 years; (c) after 100 years.
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moment needs to be introduced as in the case of the
dead load moment. If the equation is constructed on the

basis of the tendon moments calculated by subtracting

the dead load moments from the total moments pro-

duced by both the cantilever tendons and the dead load,

then the design moment required in the preliminary
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design stage to determine an initial section can be cal-

culated through the superposition of moments by both

simple equations for the dead load moment and the

cantilever tendon moment.

Figs. 18–20 show the cantilever tendon moments for
the three structural systems of FCM 1, FCM 2 and

FCM 3 from Fig. 1. These moment distributions are

determined by subtracting the dead load moments from

the total moments calculated from a sophisticated time

dependent analysis program [10,13,14] by considering

the dead load and the cantilever tendons. These figures

show that the cantilever tendon moments represent a

remarkable difference between the initially completed
continuous bridge (TS in Figs. 18–20) and the balanced

cantilever bridges. This difference seems to be induced

without the contribution of the creep deformation of

concrete for up to t ¼ 100 days at which the structural

system is changed, as mentioned in the case of the dead

load moment. Differently from the case of the dead load

moment, however, the cantilever tendons also accom-

pany the stress relaxation from t ¼ 0 day regardless of
the construction sequence. This means that relatively

larger moment differences between the initially com-

pleted continuous bridge and the balanced cantilever

bridge and more complex time-dependent behavior may

be caused in the case of cantilever tendon moments.

The cantilever tendons also accompany the moment

decrease due to stress relaxation even in a structure

without any change in the structural system, as well as
the moment variation according to changes in the

structural system. Based on this aspect, the combination

of elastic moments
P

MS;i mentioned in Eq. (5) repre-

senting the dead load moment distribution needs to be

revised by
P

MS;i � RðtÞ in the case of the cantilever

tendons to take into account the relaxation of the can-

tilever tendon force. In advance, the stress variation

caused by changes in the structural system is affected by
the creep deformation of concrete and also influenced by
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Fig. 18. Cantilever tendon moment redistributed in FCM 1 bridge.
the relaxation of the concrete stress itself. Considering
these factors, the two terms of ð1� e�ð/t�/CÞÞ and

f ð/tÞ ¼ v/t=ð1þ v/tÞ were implemented in Eq. (5).

However, the cantilever tendon moment distribution has

been basically determined by subtracting the dead load

moments from the total moments by both the cantilever

tendons and the dead load in this paper. Consequently,

the cantilever tendon moment variation at time t due to

the relaxation of concrete stress may be influenced by
1� v/t=ð1þ v/tÞ ¼ 1=ð1þ v/tÞ instead of f ð/tÞ ¼
v/t=ð1þ v/tÞ in Eq. (5). In the light of these issues, the

cantilever tendon moment distribution can be inferred

from Eqs. (4) and (5) as

MT ¼
X

MS;i � RðtÞ þ ME �
X

MS;i � RðtÞ
� �

ð1� e�ð/t�/CÞÞ � 1

1þ v/t
; ð6Þ

where RðtÞ means the relaxation of tendon force with

time and can be calculated by the relaxation proposed

by Magura et al. [18].
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To verify the effectiveness of the introduced relation,

the internal moment variations by the cantilever tendons

in FCM 1, FCM 2 and FCM 3 bridges, which were ob-

tained by subtracting the dead load moments from the

total moments determined through rigorous time-
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Fig. 21. Cantilever tendon moments in FCM 1 bridge: (a) after 1 year;

(b) after 10 years; (c) after 100 years.
dependent analyses, are compared with those by the in-

troduced relation of Eq. (6) in Figs. 21–23. As shown in

these figures, the numerical results by the rigorous anal-

ysis represent little difference from those by Eq. (6).

Generally, the prestressing losses due to the relaxation of
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Fig. 22. Cantilever tendon moments in FCM 2 bridge: (a) after 1 year;

(b) after 10 years; (c) after 100 years.
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Fig. 23. Cantilever tendon moments in FCM 3 bridge: (a) after 1 year;

(b) after 10 years; (c) after 100 years.
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tendons and the prestressing force itself also influence the

moment variation by the changes in the structural system

because all these force components contribute to the

moment variation basically caused by the creep defor-

mation of concrete. Nevertheless, the prestressing losses
are not taken into consideration in describing themoment

variation in terms of the creep deformation. Only the re-

laxation phenomenon is considered in Eq. (6). The dif-

ferences in numerical results, therefore, seem to be caused

by ignoring the creep deformation of concrete induced by
the prestressing losses. The differences in the maximum

and minimum moments, however, still maintain accept-

able ranges for use in the preliminary design stage as in the

case of the dead load moment.
4. Conclusions

Simple, but effective, relations which can simulate the

internal moment variation due to the creep deformation

of concrete, relaxation of cantilever tendons, and the

changes in the structural system during construction are

proposed, and a new guideline to determine the design

moments is introduced in this paper. The positive design

moment for a dead load can be determined by the in-

troduced relation, while the negative design moment for
a dead load must be calculated directly from the elastic

moment of a cantilevered beam in balanced cantilever

bridges. In advance, if the cantilever tendons, which may

affect the internal moment redistribution during con-

struction, need to be considered in calculating the in-

ternal moments and the corresponding normal stresses

at an arbitrary section, it may be achieved by Eq. (6),

even though, the calculated results represent slightly
conservative values.

Moreover, since the internal moments by other loads,

except the dead load and the cantilever tendon force, are

not affected by the construction sequence, these can be

calculated on the basis of the complete continuous

structure, and the calculation of the final factored design

moment can also be followed by the linear combination

of moments for each load. In addition, if a rigorous time
dependent analysis is conducted with the initial section

determined on the basis of the initial design moments

obtained by using Eqs. (5) and (6), then a more effective

design of balanced cantilever bridges can be expected.
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