MESOPOROUS TITANIA WITH ANATASE FRAMEWORK SYNTHESIZED USING POLYPHENOLIC STRUCTURE-DIRECTING AGENT

Hye Sun Shin¹, Changbum Jo², Seung Hyeon Ko² and Ryong Ryoo^{1,2,*}

¹Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea. ²Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 305-701, Republic of Korea.

Crystalline mesoporous titania (TiO₂) has attracted considerable attention due to its high-potential applications in sensors, dye-sensitized solar cells, lithium-ion battery technologies, photocatalysis, and heterogeneous catalysis.^{1, 2} The versatile applicability of TiO₂ is attributed to its high surface area, large pore volume, and uniform mesopores, which promote a facile diffusion of reactants and products as well as an increased accessibility of active sites through the mesopores.

In the present work, crystalline anatase TiO₂ with a nanosponge-like morphology was solvothermally synthesized using a random copolymer of 4-vinylphenol and methylmethacrylate as a structure-directing agent. In this polymer-directed crystallization process,³ the polymer equipped with phenolic groups strongly bound to the titania precursor leading to the formation of the crystalline nanosponge materials (Fig. 1). The pores in the TiO₂ nanosponge became fully accessible after the removal of the polymer through calcination. The resulting TiO₂ nanosponge possessed mesopores with a narrow distribution of diameters, which could be systematically controlled by changing the synthetic gel composition, calcination atmosphere (e.g. O₂ or ozone), and temperature. Furthermore, the synthesis domain for highly mesoporous TiO₂ nanosponge was established over a wide range of synthetic gel compositions. The mesoporous TiO2 supporting Pt catalyst (1 wt.%) exhibited high dispersion of Pt nanoparticles (averagely 1.4 nm) on the nanosponge surface (Fig. 2). In alcohol-toaldehyde partial oxidation reaction, Pt/TiO₂ nanosponge exhibits a higher conversion of benzyl alcohol (50%, with 100% selectivity towards benzaldehyde) in comparison to Pt/commercial-TiO₂ catalyst (33% conversion, with 100% selectivity).

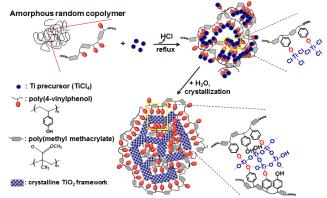
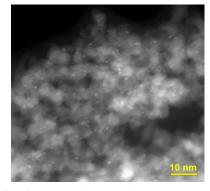



Fig. 1 Schematic illustration of the formation of ${\rm TiO_2}$ nanosponage.

Fig. 2 STEM image of 1 wt% Pt/TiO_2 nanosponge.

References:

¹Li, W.; Wu, Z.; Wang, J.; Elzatahry, A. A.; Zhao, D. Chem. Mater. **2014**, 26, 287-298.

² Bagheri, S.; Julkapli, N. M.; Hamid, S. B. A. Sci. World J. **2014**, 2014, 1-21.

³ Jo, C.; Seo, Y.; Cho, K.; Kim, J.; Shin, H. S.; Lee, M.; Kim, J. -C.; Kim, S. O.; Lee, J. Y.; Ihee, H.; Ryoo, R. Angew. Chem. Int. Ed. **2014**, 53, 5117-5121.