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Abstract

In this paper, for a quantitative assessment of non-structural cracking in an RC wall, an improved analytical model is proposed. First of all, to
quantitatively calculate the cracking potential, an analytical model that can estimate the post-cracking behavior in an RC tension member is
proposed. Unlike conventional approaches that use the bond–slip relationship or the assumed bond stress distribution, in our proposed approach
the tensile strength of concrete at the post-cracking stage is quantified on the basis of polynomial strain distribution functions of steel and concrete.
Predictions of cracking loads and elongations of reinforcing steel in RC tension members using the proposed model show good agreement with
results from previous analytical studies and from experimental data. Subsequent comparisons of analytical results with test results verify that the
combined use of both the approach in this paper as well as the approach previously introduced in the companion paper to this research make it
possible to accurately predict the cracking behavior of RC walls. Additionally, the influence of changes in the material properties and construction
conditions on the cracking in RC walls is investigated theoretically, using the numerical model proposed in this paper.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Non-structural cracks frequently occur either on the surface
or through the depth in concrete structures. These cracks
accelerate corrosion of the embedded reinforcing steel and lead
to deterioration of the concrete. Since these cracks shorten the
service life and increase the maintenance costs of concrete
structures, minimizing these cracks is essential. In reinforced
concrete (RC) wall structures under construction, cracks usually
occur due to the restraint of volume change induced by
shrinkage and hydration heat. Since the bottom face of wall
structures is restrained by the foundation, tensile stresses
develop along the restraint direction and cracks form perpen-
dicular to the restraint at uniform intervals along the structure
when the tensile stress is greater than the tensile strength of
concrete at an arbitrary time tn.

To estimate volume change cracking in RC walls, many
crack spacing and width-predicting formulas have been
proposed [1–4]. In particular, Rawi et al. [4] carried out
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important experimental works to study cracking due to the
volume change of RC walls and suggested a formula based on
the experimental data. In spite of extensive research and the
proposal of numerous formulas, several problems remain in the
prediction of non-structural cracking behavior of RC walls. For
example, the formula proposed by Hughes [1] cannot detect the
variation of crack width with height, the formula proposed by
Stoffers [2] does not consider the effect of reinforcement in
calculating crack spacing. Additionally, most of the previously
proposed formulas [1–3] cannot predict the occurrence of a
secondary crack or its propagation height. Moreover, all the
previous numerical models [1–4] imperfectly predict the
cracking behavior of RC walls because the models are based
on assumptions of average volume change and full restraint of
the bottom face of walls. Accordingly, to overcome these
shortcomings for an accurate prediction of the cracking
behavior in RC walls, an improved analytical approach that
can determine crack spaces and widths on the basis of
polynomial strain distribution functions of steel and concrete
is introduced in this paper.

In a cracked cross-section, all tensile forces are balanced
only by the steel encased in the concrete matrix. However,
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Fig. 1. Tensile force versus strain diagram.
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between adjacent cracks, tensile forces are transmitted from the
steel to the surrounding concrete by bond forces. This effect is
called the tension stiffening effect. As shown in Fig. 1, a
partially cracked RC member represents the structural response
located in a region bounded by the two limit states of the
uncracked and fully cracked states. Several methods have been
used to determine the stiffening effect of the concrete between
cracks. These can be broadly classified into two types of
approach. The first, as adopted in the CEB-FIP Code [5], is
based on the average strain in the member. The second, as
adopted in the ACI 224 [6], uses the effective area of concrete,
which is similar to the effective moment of inertia concept for
the evaluation of deflections [7].
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Recently, with the increased use of the modified com-
pression field theory (MCFT) [8] and softened truss model
theory (STMT) [9], both of which employ average
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Table 2
Comparison of crack loads for Specimen 1 (unit: kN)

No. of cracks Gerstle [15] Chan [18] This study

1 30.1 30.1 30.1
2 30.3 30.6 30.6
4 32.2 34.1 34.8
8 56.5 49.8 50.7

1 kN=0.225 kips.
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constitutive relationships of cracked concrete and reinforcing
steel in there formulations [8,10], there has been a renewed
interest in the characterization of the average stress–strain
behavior of tension members. Even though its calculation
procedure is simple and effective [11], the direct application
of an approach that uses the effective area of concrete, as in
the ACI 224, may be inappropriate for determining the
tension stiffening effect in the average stress–strain relation.
This method is not suitable because of its relatively weak
theoretical background and the difficulty involved in
constructing the material matrix.

Accordingly, the model introduced in this paper is based
on an average strain concept with assumed strain distribution
function because it has greater ease of application and
convenience in terms of the axial problem. The following
basic assumptions are adopted: (1) at the fully cracked state
(STATE II in Fig. 1), the reinforcing steel maintains the load
carrying capacity for both tensile and compressive forces
while the concrete resists the compressive force only; (2) at
the uncracked state (STATE I in Fig. 1), the reinforcing steel
and concrete can resist both the applied tensile and
compressive forces; and (3) at the post-cracking state, the
stiffness of an RC member is gradually reduced due to
progressive cracking.

The validity of the proposed approach is established by
comparing the analytical predictions for RC tension members
with results from experiments and from previous analytical
studies. Moreover, numerical analyses for the cracking behavior
of two typical RC walls tested by Kheder [12] are conducted to
verify the validity of the proposed analytical model.

2. Bond–slip behavior of tension member

A section of an RC member subjected to uniaxial tension
is shown in Fig. 2. When the axial load N is applied, from
the basic assumptions adopted, the far ends represent the
fully cracked state with a steel strain of εs2 (see Fig. 1). In
addition, the tensile force N is transferred from the steel bar
to the concrete by bond stress, and the value of the bond
stress is zero at the inner end of the transfer length lt. This
means that there is no bond–slip within the central region
bounded by the transfer length. Moreover, it can be
assumed that the strains in steel and concrete are equal to
each other at x= lt, and that the strain value corresponds to
εs1 (see Fig. 1).

From the strain distribution, the local slip w(x) can be defined
as the total difference in elongations between the reinforcement
and the concrete matrix measured over the length between the
Table 1
Material properties used in applications

Specimens Ec (GPa) Es (GPa) ft (MPa) ds (mm)

1 24.8 199.9 1.38 25.4
2 23.8 199.9 2.12 25.4
3 30.1 195.8 2.34 25.4

1 mm=0.0394 in., 1 MPa=0.145 ksi.
distance x from a crack face and the center of the segment (x= s/
2). That is

wðxÞ ¼
Z s=2

x
ðesðxÞ � ecðxÞÞdx ð1Þ

where s is the length between two adjacent cracks, which is
equivalent to the crack spacing, and εs(x) and εc(x) are the strain
distributions of steel and concrete, respectively.

On the basis of the force equilibrium and the relation of Eq.
(1), the following familiar governing differential equation for
the bond–slip can be obtained [13].

d2wðxÞ
dx2

� ð1þ nqÞRo

EsAs
fb xð Þ ¼ 0 ð2Þ

where n=Es/Ec, the steel ratio ρ=As/Ac, Σo is the perimeter of
the steel bar, fb is the bond stress at the steel interface, and Es

and As are Young's modulus and the sectional area of steel,
respectively.

The general solution of Eq. (2) is obtained in previous
studies by applying the boundary conditions at the crack face
and at the center of the cracked region based on an assumed
bond stress distribution [11,13,14]. After obtaining the general
solution for the bond–slip, the strain distributions of steel and
concrete and the corresponding bond stress along the steel
axis are successively calculated using the force equilibrium
and the compatibility condition at an arbitrary location
[11,13,14]. However, this approach has some limitations in
estimating the cracking behavior of RC axial members
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Fig. 5. Steel stress-elongation relation of Specimen 1 (1 mm=0.0394 in.,
1 MPa=0.145 ksi).
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because it requires a series of complex integration and
derivation procedures and the calculated location representing
the maximum bond stress value is not coincident with that
obtained from experimental studies. To solve these limita-
tions, an analytical approach on the basis of the assumed
strain distribution function of concrete is introduced in this
paper.

3. Proposed analytical approach

3.1. Strain distribution functions

When the applied axial load N1 is relatively small, the small
strains in steel and concrete maintain a uniform distribution with
εs1=N1/(AsEs+AcEc) along the length. As the axial load N2

gradually increases, the strains in steel and concrete represent
different distributions in the region from the crack face to the
inner end of the transfer length (see Fig. 3). Moreover, from the
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basic assumptions adopted, the steel strain εs2 at the crack face
and εs1 at the center of the segment become εs2=N2/AsEs and
εs1=N2/(AsEs+AcEc), respectively.

From Fig. 3, the concrete strain distribution εc(x) is
approximated with a general nth order polynomial function,
and the steel strain distribution εs(x) can also be expressed in
terms of the concrete strain distribution function from the force
equilibrium of N2=εs2AsEs=εs1(AsEs+AcEc) and the relation of
εs1=εc1. The strain distributions lead to

ec xð Þ ¼ es1 1� 1� x
lt

� �nc� �

es xð Þ ¼ es2 � 1
nq

ec xð Þ
0V xV lt ð3Þ

ecðxÞ ¼ esðxÞ ¼ es1 lt V xV s=2 ð4Þ
where the area parameter nρ is in the range of 0.02–0.5 [15].
Moreover, the transfer length lt can be determined by the
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following linear relationship proposed by Somayaji et al. [14]
on the basis of extensive experimental data for the pull-out tests:

lt ¼ Kp
Nc

Ro
ð5Þ

where Nc is the transfer load equal to Nc=AcEcεs1=N/(1+nρ),
and Kp is a constant determined from the pull-out test. The
experimental study by Mirza et al. [16] indicates that the value
of Kp is in the range of 0.20–0.55 mm2/N (1/714–1/266 in.2/lb).
Therefore, an average value of 0.38 mm2/N (1/385 in.2/lb) is
used in this paper.

The strain distribution of the reinforcing bar changes from
the uniform distribution εs1 along the segment before cracking
to the assumed polynomial distribution with the strain εs2 at the
crack face and εs1 at the inner end of the transfer length after
cracking (see Fig. 3). Based on energy conservation just before
and after cracking at the same axial load N, the assumed
polynomial order nc can be determined because all the internal
strain energy components can be represented in terms of the
concrete strain with the assumed polynomial order nc, while
there is no additional external work by the axial load N just at
cracking. The strain difference of steel εs(x)−εs1 represents an
increase of the strain energy at the reinforcing steel, ΔUs, and
that of concrete, ΔUc corresponds to a decrease of the strain
energy at the concrete, εs1−εc(x). Moreover, the difference
between ΔUs and ΔUc represents the energy loss caused by the
bond–slip, ΔUb. Therefore, the energy conservation can be
written as

DUs � DUc ¼ DUb ð6Þ
Table 3
Comparison of steel stress at crack loads for Specimen 2 (unit: MPa)

No. of cracks Khouzam [20] Chan [18] This study

1 113.8 100.0 106.2
2 131.0 144.8 159.3

1 MPa=0.145 ksi.
where

DUs ¼ AsEs

Z lt

0
ðes xð Þ � es1Þ2dx ¼ AsEse2s1lt

n2q2ð2nc þ 1Þ ð7Þ

DUc ¼ AcEc

Z lt

0
ðes1 � ec xð ÞÞ2dx ¼ AcEce2s1lt

2nc þ 1
ð8Þ

DUb ¼
Z lt

0
sb xð ÞRow xð Þdx

¼ Rosmax

wa
1

eð1þaÞ
s2 lð1þaÞ

t lt

ðnc þ 1Þð1þaÞððnc þ 1Þð1þ aÞ þ 1Þ
: ð9Þ

While calculating the bond energy variationΔUb, the relation of
Eq. (1) and the following nonlinear bond stress–slip relation [5]
are used:

sb ¼ smaxðw=w1Þa ð10Þ
where τmax is the maximum bond stress of concrete, and w1

and α have the values of 1 mm and 0.4, respectively, when
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Fig. 9. Steel stress-elongation relation of Specimen 2 (1 mm=0.0394 in.,
1 MPa=0.145 ksi).



Table 4
Comparison of steel stress at crack loads for Specimen 3 (unit: MPa)

Dimensions No. of cracks Chan [18] This study

50.8 mm×50.8 mm 1 20.7 24.8
2 24.8 25.5
4 29.0 28.3

101.6 mm×101.6 mm 1 66.2 73.8
2 99.3 115.1

152.4 mm×152.4 mm 1 194.4 224.8

1 mm=0.0394 in., 1 MPa=0.145 ksi.
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very good bonding conditions are maintained in a confined
concrete [5].

As shown in Eqs. (7)–(9), all the strain energy variations are
expressed with the assumed polynomial order nc. Consequently,
the order nc can be determined through successive iterations
until Eq. (6) is satisfied. After the first cracking, however, there
is no guarantee that a direct application of Eq. (6) will give a
lower order nc as subsequent cracks occur. To prevent
unexpected calculations of the order nc, the following lower
boundary for nc is defined in this paper.

As shown in Fig. 1, the tension stiffening effect corres-
ponding to an applied axial load Nm can be defined with a strain
difference between εs2 and εsm (εTS=εs2−εsm). Moreover, the
average steel strain can be represented by εsm=εs2−1/nρ·εcm
from Eq. (3), and the average concrete strain can also be
expressed by εcm=nc/(nc+1)·εs1 within the transfer length range
when the strain distribution of εc(x) is defined with a nc-th order
polynomial function. Accordingly, the strain difference
corresponding to the tension stiffening effect can finally be ex-
pressed by εTS=εs2−εsm=εs2− (εs2−1/nρ·εcm)=1/nρ·εcm=1/
nρ·nc/(nc+1)·εs1. On the other hand, the strain difference εTS
must be gradually decreased as the applied axial load N
increases. Namely, the strain difference at the first cracking
(εTS

cr ) must always be greater than that at an arbitrary axial load
N(εTS

N ), and this condition induces the following inequality
condition of

nc
nc þ 1

� �N

V
nc

nc þ 1

� �crecrs1
eNs1

: ð11Þ

Consequently, successive iterations of Eq. (6) must be
continued in the range of nc, which satisfies the inequality
condition of Eq. (11).
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3.2. Crack strength

Due to the actual non-uniform distribution of concrete
stress in the transverse and longitudinal directions in an RC
tension member, many researchers [14,17] have observed that
the crack strength f̄ t of an RC member is different from the
tensile strength ft of plain concrete. The latter is a physical
characteristic for plain concrete while the former is defined
here as the stress level of concrete at which cracking takes
place in an RC member. The crack strength of an RC member
increases with a decrease of the ratio of length of segment to
cross-sectional area and with an increase of the strain gradient
in the transverse or longitudinal directions. To consider the
change in the tensile strength of concrete according to the
loading history, Chan et al. [18] introduced the following
relation:

f̄ t ¼ aft
rc;max

rc;ave

� �b

ð12Þ

where σc,max is the maximum stress of concrete and σc,ave is
the average stress of concrete along the length. α and β are
material constants to be determined from the test data and
are in the range of 0.86–0.98 and 0.8–0.9, respectively [18].
The average values of α=0.92 and β=0.85 are used in this
paper. However, α and β may depend on the size of
specimens. When a large specimen is used, the average
stress of concrete may give a relatively small value.
Nevertheless, the existing literature does not specify any
criteria for considering the variation of tensile strength due
to specimen length. If logical and specific criteria for this
determination are established by experimental studies and
analytical approaches, improved numerical results can be
expected.

In this paper, the tensile strength of plain concrete is used
as the crack strength until the first crack forms at the center of
the specimen. The crack strength as calculated by Eq. (12) is
applied when a subsequent crack forms, in order to reflect an
increase of the crack strength with a decrease in the length of
the segment. Moreover, the maximum stress of concrete σc,

max can be calculated by εs1Ec (see Fig. 3), and for the
average stress of concrete σc,ave=εcmEc, the average strain of
concrete εcm may be calculated by

ecm ¼ 2
s

Z s=2

0
ec xð Þdx: ð13Þ

Since the number of cracks will increase with an increase
of the applied axial force N, the crack spacing s will
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decrease, which will be accompanied by a decrease of
the average strain of concrete. Consequently, a decrease
in the average stress of concrete σc,ave and an increase in
crack strength f̄ t will emerge as the number of cracks
increases.

After determination of the crack spacing s and of the
corresponding steel stress fs using the introduced analytical
approach, the crack width can also be predicted by using
the Gergely-Lutz equation adopted in the ACI 207 [19].
Many previous studies [19] have observed that the crack
spacing in unreinforced concrete walls is one to two times
the wall height, and that the crack spacing in base-restrained
walls is determined by the combined effects of the
restraining base and the horizontal steel reinforcement
provided in the wall. Based on these observations, many
crack spacing and width-predicting formulas have been
proposed [1–4]. Therefore, to establish the validity of the
proposed analytical model, we compare the numerical
results predicted by the proposed analytical model with
those predicted by other formulas [1–4] and with experi-
mental data [12].

4. Solution procedure

For each load increment, successive numerical estimations
of cracking behavior in an RC tension member are
conducted from the determination of the assumed polynomial
order nc (see Eq. (3)) to the calculation of the crack strength
(see Eq. (12)). These steps are presented in detail in the flow
diagram of Fig. 4.
As previously mentioned, conventional approaches based
on assumed bond stress distribution determine the slip
distribution, which is the general solution of the governing
differential equation (see Eq. (2)), and then a series of
repeated complex integrations and derivations at each nodal
point along the specimen must be performed to determine
the deformation states of concrete and steel. Because an
analytical approach based on assumed concrete strain
distribution functions does not require these additional
calculations, this type of approach is more effective than
conventional bond stress approaches in predicting the
cracking behavior of a tension member. In the proposed



Table 5
Comparison of crack width wmax and crack space S

Crack comp. Wall level Hughes [1] Stoffers [2] Harrison [3] Al Rawi et al. [4] This study Observed [12]

wmax (mm) Upper 0.398 0.448 −0.024 – – –
Middle 0.398 0.448 0.035 0.100 0.135 0.14
Lower 0.398 0.339 0.112 0.280 0.245 0.25

S (m) 0.21–0.42 2.0–3.0 0.21–0.42 0.48–0.97 0.50 0.34–0.89
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method, the deformation states of each material can be
determined through the following calculation:

DL ¼
Z L

0
esðxÞdx ð14Þ

NcðxÞ ¼ ecðxÞEcAc ð15Þ
NsðxÞ ¼ esðxÞEsAs: ð16Þ

5. Experimental verification for RC tension members

In order to test the proposed approach, the cracking
responses of tension members subjected to direct tensile force
are analyzed. Three kinds of tension members are selected, and
each specimen is modeled with elements measuring 25.4 mm
(1 in.) length. The material properties of the test specimens are
summarized in Table 1.

The first tension pull-out test specimen (Specimen 1) is a
circular specimen with the following dimensions: the diameter
of the concrete section, D, is 152.4 mm (6 in.), and the length of
the specimen, L, is 1828.8 mm (72 in.). This specimen was
previously tested and analyzed by Gerstle et al. [15] using a
complex, large-scale computer program employing the fracture
mechanics approach and the discrete crack model. It was also
analyzed by Chan et al. [18] using assumed bond stress
distribution.
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Fig. 13. Speci
The first crack forms at a load of 30.1 kN (6.77 kips), and
subsequent cracks are formed as follows: two cracks form at a
load of 30.6 kN (6.87 kips), four cracks at a load of 34.8 kN
(7.83 kips), and eight cracks at a load of 50.7 kN (11.4 kips). The
ultimate crack spacing reaches s=1828.8 mm/24=114.3 mm
(4.5 in.). As shown in Table 2, the crack loads obtained by the
proposed method agree well with those obtained analytically by
other researchers using other methods.

Comparisons of the experimental and analytical steel stress-
elongation relation of the specimen are shown in Fig. 5. The
prediction agrees well with the test results and with previous
analytical results, and the proposed approach actually predicts
the cracking behavior of Specimen 1 better through all the
loading steps than previous methods. The slope of the steel
stress-elongation relation converges to that of a free bar, and
crack loads, corresponding to steel stresses of 59.3 MPa
(8.6 ksi), 60.0 MPa (8.7 ksi), 68.3 MPa (9.9 ksi), and 100.0 MPa
(14.5 ksi), accompany a relatively large elongation that is not
proportional to the applied load. It seems to be caused by an
immediate increase of bond–slip at each cracking.

After cracking, variation in the strain distribution of steel
appears larger than that of concrete as the applied load
increases. The steel strain has a maximum value at the crack
face because at this location the steel alone must resist the
applied load without the benefit of any additional tension
stiffening from the concrete (see Fig. 6).
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Fig. 7 illustrates the manner in which the axial load is shared
between the concrete matrix and the reinforcing steel and shows
how this load sharing is influenced by the formation of cracks.
As shown in Fig. 7, the force carried by concrete gradually
decreases as the number of cracks increases. Before the first
cracking, the force carried by concrete reaches 72% of the
applied axial force. However, at the fully cracked stage, the
portion of the force carried by the concrete is reduced to just
5%. In addition, as the applied load increases, the crack spacing
converges to the section width of the specimen with an increase
of the total of all the transfer lengths and the bond–slips at the
crack faces (see Fig. 8).

The second example (Specimen 2) is a rectangular tension
member measuring 205.74 mm×88.9 mm (8.1 in.×3.5 in.). The
specimen was previously analyzed by Khouzam [20] using the
discrete crack model, and by Chan et al. [18] using assumed
bond stress distribution. In this analysis, the first crack forms at
a steel stress of 106.2 MPa (15.4 ksi) while subsequent cracks
appear at a steel stress of 159.3 MPa (23.1 ksi). The ultimate
crack spacing reaches 209.55 mm (8.25 in.), which is very close
to the section width of the specimen. Comparisons of the
analytical results with the test results and with the previous
analytical results are shown in Table 3 and Fig. 9.

The third example (Specimen 3) is an analysis of four pull-
out tests with different cross-sections previously tested by Mirza
et al. [16] and analyzed by Chan et al. [18]. The specimen length
is 406.4 mm (16 in.). All the obtained steel stresses at each
cracking stage can be found in Table 4 and comparisons of the
experimental and analytical steel stress-elongation relation of
the specimen are shown in Fig. 10. The analytical results agree
well with the experimental results.
Table 6
Comparison of crack width wmax and crack space S

Crack comp. Wall level Hughes [1] Stoffers [2] Ha

wmax (mm) Upper 0.419 0.448
Middle 0.419 0.448
Lower 0.419 0.272

S (m) 0.21–0.42 1.5–2.3 0.2
The three preceding examples prove the validity of analyzing
a reinforced concrete member under tensile loading using the
proposed approach. The predictions of crack loads and crack
spacing, and of the stress-elongation relation, are satisfactory
when compared with test results and with previous numerical
results.

6. Experimental verification for RC walls

To verify the applicability of the proposed analytical model
to wall structures, two typical walls with different length (L) to
height (H) ratios, tested by Kheder [12], are selected because the
crack widths, spacings, and lengths in the walls strongly depend
on the length to height ratio, L/H. After the casting of the
concrete base, these walls were cast on an RC restraining base
after an interval of 2 months to allow enough time for the
volume change of the base to occur. A mortar mix with a 1:2
ratio of cement to sand and with a w/c ratio of 0.45 was used for
casting the experimental walls. This mortar mix was used rather
than a concrete mix in casting these walls because of its high
and rapid drying shrinkage. The walls were reinforced with steel
ρ=0.8%, were water-cured for a 7-day period, and were then
exposed to the natural drying conditions of a hot and dry
summer. More details related to the experimental walls can be
found elsewhere [12], and the material properties used in the
heat transfer and moisture diffusion analyses are listed in Fig.
11, as is the geometric configuration of the first specimen, 1E2.

As shown in Fig. 11(b), cracking analyses were conducted
for three center sections located at 0.4 m, 1.0 m, and 1.6 m from
the bottom face of wall, and Aeff (L), Aeff (M), and Aeff (U)
represent the average effective concrete area at each location to
calculate the average tensile force P ¼ R

Aeff
rxdA from the heat

transfer and moisture diffusion analyses compared in advance
with the cracking load N from the crack model (see Fig. 2).
Calculation of the number of cracks through a comparison of
both force components of P and Nmakes it possible to calculate
the average crack spacing and to determine the crack width by
using the Gergely-Lutz equation [19]. Fig. 12 represents the
variation of the two force components of P and N and shows,
with time, that the possibilities for cracking at all sections do not
coincide. The first crack occurred at a lower section after 12.3
days, and the second and third cracks occurred at 13.9 days and
20.3 days, respectively. In addition, the first and second cracks
propagate to the middle section at 37.9 days and 54.3 days,
respectively, but do not reach the upper section.

If it is assumed that, after cracking, all of the resisting force
carried by the concrete is delivered to the reinforcing steel, then
the steel stresses at the lower and middle sections after 60 days
rrison [3] Al Rawi et al. [4] This study Observed [12]
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become 236 MPa and 129 MPa, and the crack widths are
calculated as 0.245 mm and 0.135 mm, respectively. Table 5
compares the maximum crack width and corresponding crack
space obtained using the present method and the methods
proposed by many previous researchers. From this comparison,
it is clear that the results obtained using the proposed method
are close to the observed experimental values. Unlike previous
analytical models, excepting the one proposed by Rawi, the
proposed method is able to predict the occurrence of the
secondary crack and its propagation height in 1E2.

The second specimen, 2E2 [12], has L/H=3, and all the
analysis conditions, except for the geometric configuration
that is given in Fig. 13, are the same as those mentioned in
RC wall

z
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23c

 (a) Geometric configuration

Fig. 16. Description of
the section covering the first specimen, 1E2. The obtained
numerical result in Fig. 14 shows that the first cracking starts
at 7.5 days from the lower section and subsequent cracks
occur sequentially at very short time intervals (the second and
third cracks occur at 8.0 days and 9.8 days, respectively).
Unlike the previous specimen with L/H=2, the first and
second cracks have the possibility for propagation to the
upper section; their occurrence is estimated to be at 28.2 days
and 37.1 days, respectively. Moreover, since the cracks occur
three times at the bottom and middle sections along the length
of L=4.5 m, the expected final crack spacing becomes 4.5 m/
23=0.56 m. Maintaining the same assumptions as in the
previous example, we estimate that after 60 days the
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calculated steel stresses at the lower, middle, and upper
sections will be 375 MPa, 234 MPa, and 136 MPa,
respectively, and their corresponding crack widths will be
0.383 mm, 0.239 mm, and 0.139 mm, respectively. Table 6
gives the results with the experimental data and the other
numerical results.

All the previous numerical models for analyzing the
cracking of wall structures determined the crack width by
considering only the wall's average volume change, calculat-
ed on the assumption that the shrinkage deformation would
be identical at every location. However, it is found that this
deformation is strongly affected by heat transfer and moisture
diffusion. As shown in Fig. 15, the relative humidity across
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performed on a concrete foundation that is not fully hardened
and that shrinks continuously. Accordingly, since the
proposed numerical model takes all of these factors into
account, it can widely be used in numerical analyses and
yields more accurate predictions concerning the cracking
behavior of RC walls.

7. Application to RC walls

To evaluate how design parameters influence wall
cracking, the geometry and cross-section dimensions of a
sample structure, shown in Fig. 16, are selected because they
represent the most common wall structure constructed in
practice. A steel ratio of 0.5% in both directions is assumed.
Taking advantage of the symmetry in geometry and the
boundary condition, the finite element discretization in Fig.
17 represents only half of the structure in the x–z plan. A
total of 4000 concrete elements and 4680 rock elements are
used. The material properties used in the heat transfer and
moisture diffusion analyses are given in Fig. 17, and the
boundary conditions are the same as those used for the RC
wall structure in the companion paper.
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7.1. Quantitative evaluation of cracks

Since the maximum tensile stress due to shrinkage and
hydration heat usually occurs on the surface of the center
section C–C in Fig. 16(b), corresponding to point A1 in Fig. 18,
quantitative cracking behavior such as the cracking space and
the corresponding crack width is analyzed on the basis of the
tensile stresses that occur around point A1. In particular, since
determination of the crack width using the Gergely-Lutz
equation requires the calculation of the average effective
concrete area Aeff, the square area represented by the hatching
lines in Fig. 18 is assumed in this paper.

The average tensile force P can be determined from P ¼R
Aeff

rxdA and is compared, in advance, with the axial force N in
Fig. 2, representing the cracking load in the introduced
analytical approach. As shown in Fig. 19, which represents
the variation with time of the two force components, P and N,
the first crack in this example structure occurs at about 15 days
after the concrete is poured, and the second and third cracks
occur at 18 days and 47 days, respectively. The final crack
spacing appears to be 3.75 m. In addition, if it is assumed that
the axial force N is fully sustained by a reinforcing bar
embedded after the cracking occurs, the tensile stress in the
reinforcing bar reaches 201 MPa after the third cracks occur.
Accordingly, the crack width, as determined using the ACI 207
[19], is 0.25 mm.

On the other hand, when the cracking behavior is estimated
by Rawi's relation [4] proposed on the basis of the experimental
data, the maximum and minimum crack spaces have values of
3.190 m and 1.595 m, respectively, and the crack width at the
final cracking stage reaches 0.22 mm. These results show that
the calculation of the axial force N using the introduced
analytical model and the application of the ACI 207 to calculate
the crack width give a reasonable result.

7.2. Effect of casting temperature

To investigate the cracking behavior according to the casting
temperature of concrete, two different temperatures, 28 °C and
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Fig. 21. Total stress when the casting temperature T=10 °C.
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10 °C, are considered. The lower temperature of 10 °C is
achieved through a pre-cooling method, and the maximum
temperature rise and reaction rate influenced by the casting
temperature are assumed to be 56.6 °C and 0.68 day−1,
respectively. The remaining assumed material properties and
boundary conditions are the same as in the preceding example
(see Fig. 17).

The variations of total stresses at the cross-section C–C (see
Fig. 18) are shown in Figs. 20 and 21). As shown in these
figures, the total stresses caused by the differential drying
shrinkage and hydration heat represent a similar tendency
regardless of differences in the casting temperature of concrete.
However, the values themselves increase or decrease in
proportion to the casting temperature because the stresses
induced from the hydration heat decrease or increase depending
on the casting temperature of concrete. On the other hand, the
other stress components caused by the differential drying
shrinkage maintain almost constant values regardless of the
casting temperature. Since the example structure is relatively
thin (t=50 cm), it is expected that the hydration heat will cause
small stresses, and also that the severity of the total stresses will
not be affected by the casting temperature of the concrete.
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Fig. 22. Axial force distributions when the casting temperature T=10 °C.
Unexpectedly, however, Fig. 22 shows that a decrease of the
casting temperature actually greatly contributes to the preven-
tion of cracking in RC walls. That is, cracking in RC walls can
be minimized by decreasing the casting temperature of the
concrete, even in relatively thin RC walls.

7.3. Effect of casting length

As previously mentioned, a uniform distribution of vertical
cracks develops in newly constructed RC walls along the entire
span of the structure. These cracks are non-structural cracks and
occur because of the restraint of volume change. Essentially, the
restraints in an RC wall can be divided into two kinds of
restraint: external and internal. Unlike internal restraint, which
is generated as a result of a non-uniform distribution of
movement across the wall thickness due to factors such as
temperature and moisture, external restraint is generated by the
foundation, the concrete of which is more mature and stable
than the young concrete of the RC wall. Since a wall structure
represents a high length to height ratio, which causes relatively
large restraints, significant stresses can therefore result from
external restraints. Accordingly, a parametric study for the effect
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Fig. 23. Axial force distributions at Aeff when the casting length is 20 m.
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Table 7
Cracking behavior of an RC wall

Steel ratio (%) Crack space (m) Crack width (mm)

0.36 3.75 0.36
0.50 3.75 0.25
0.70 3.75 0.18
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of casting length of an RC wall is conducted in this paper by
changing the casting lengths.

A decrease in the casting length accompanies the reduction
of tensile stress. The relative rate of decrease is significantly
larger in the upper region (see points A3 and B3 in Fig. 18) than
in the lower region (see points A1 and B1 in Fig. 18), where the
volume change is directly restrained because a larger variation
to the relative restraint level appears at the upper region [19].
Figs. 23 and 24 compare the axial force distribution at Aeff in
Fig. 18. When the casting length is 20 m, the first crack occurs
at 20 days after casting and, at 38 days after casting, subsequent
cracks develop and the crack spacing reaches 5 m. In contrast,
Fig. 24 shows that the first crack occurs at 29 days after casting
and that no more cracks occur. Even though the final crack
spacings are the same for both cases, the crack widths as
calculated by the ACI 207 differ because the average tensile
force P decreases in proportion to the casting length.
Comparison of the obtained results with those in Fig. 19,
which represent the results for a casting length of 30 m, shows
that closer cracks with a larger crack width occur as the casting
length increases.
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Fig. 25. Axial force distributions at Aeff when the steel ratio ρ=0.36%.
7.4. Effect of steel ratio

Properly placed reinforcement, used in adequate amounts,
will prevent unsightly cracking. By distributing non-mechanical
strains along the reinforcement through bond stresses, the
cracks are distributed in such a way that a larger number of very
fine cracks occur instead of a few wide cracks. The minimum
amount and spacing of reinforcement to be used in walls are
given in the ACI 318 [7]. Accordingly, a parametric study to
determine the effect of reinforcing steel in the wall is conducted
in this study.

Fig. 25 represents the axial force distributions at Aeff in Fig.
18. Since there are no changes in the temperature history and
moisture distribution, a relatively minor influence on the stress
variation is expected. Nevertheless, as mentioned with regard to
the cracking behavior of an axial member, the steel ratio is still
one of the most important influencing factors on the cracking
behavior of concrete walls. As shown in Fig. 25, when the steel
ratio decreases to 0.36%, the first crack occurs 12 days after
pouring the concrete, and the second and third cracks occur at
16 days and 56 days, respectively. Specifically, the average
crack space converges to 3.75 m, and the corresponding crack
width by the ACI 207 is calculated as 0.36 mm. A comparison
of the numerical results obtained with those presented in Fig. 19
shows that a decrease of the steel ratio results in an increase of
the crack width and a reduction of the cracking time.

Similar analyses have been conducted for RC walls with
steel ratios of 0.36%, 0.50% and 0.70%, and the obtained results
are compared in Table 7. As shown in this table, the crack width
gradually reduces from 0.36 mm to 0.18 mm as the steel ratio
increases from 0.36% to 0.70%. The ACI 207 introduces a
guide for the calculation of the steel ratio to maintain crack
width within the allowable limit. For example, if the crack width
needs to be maintained under 0.23 mm for a 30-m long RC wall,
the steel ratio for the temperature and shrinkage must be greater
than 0.62%. Table 7 suggests that the ACI 207 provides a
reasonable guide to control cracking in RC walls and that it can
be used with the proposed analytical model to evaluate the
cracking of RC walls at an arbitrary time.

8. Conclusions

In this paper, an improved analytical model for a quantitative
assessment of non-structural cracking in an RC wall is
proposed. Firstly, to quantitatively calculate the cracking
potential, an analytical model that can estimate the post-
cracking behavior in an RC tension member is developed.
Instead of using the assumed bond stress distribution, the
concrete strain distribution with an nth order polynomial
function is assumed and the polynomial order is determined
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on the basis of energy equilibrium just before and after cracking.
By adopting both the approach introduced in the companion
paper as well as the one proposed in this paper, an improved
analysis of the cracking behavior in RC walls can be performed.

Correlation studies between analytical and experimental
results and the associated parametric studies for RC walls lead
to the following conclusions: (1) in a tension member, the crack
spacing converges to the section width of a specimen as the
applied load increases; (2) the crack strength gradually increases
as the number of cracks increases; (3) in an RC wall, the
concrete temperature at casting greatly affects cracking and
needs to be kept as low as possible; (4) closer cracks with a
larger crack width occur as the casting length increases; (5) a
decrease of the steel ratio results in wide cracks that appear
relatively quickly.

Since the cracking of concrete depends on many design
parameters, including the cement content, the slump, and the
ratio of sand to aggregate, and also is influenced by the
construction conditions discussed in this paper, the analytical
model introduced in this paper can be effectively used to
estimate the cracking potential. This is possible because this
model takes changes in design parameters, as mentioned above,
into consideration while calculating the stress caused by
hydration heat and drying shrinkage of concrete. However, to
reach a more precise approach for conducting a quantitative
analysis for the cracking, extensive studies for reliability
assessment, including more correlation studies between analyt-
ical and experimental results, still need to be done.
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