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This paper explores the possibility of enhancing consensus achievement of decentralized sensors by establishing cooperative
behavior between sensor agents. To these ends, a novel particle swarm optimization framework to achieve robust consensus of
decentralized sensors is devised to distribute sensing information via local fusing with neighbors rather than through centralized
control; the new framework showed a 16.5 percent improvement in consensus achievement as compared to the classic majority
rule method. Noteworthy enhancements in consensus achievement are also pertinent to the comparable situation of decentralized
sensor systems.

1. Introduction

The distributed deployment of multiple sensors is designed
to establish cooperative behavior between sensors, thus pro-
viding sufficient local information with different focuses and
from different viewpoints relative to a given environment. In
such a deployment, peer-to-peer communications between
adjacent sensors are enabled to avoid the communication
bottlenecks possible in a centralized network [1]. In a decen-
tralized sensor system, sensing information of neighbors
is fused locally rather than via central control as enabled
by a distribution of intelligent agents with some degree of
decision-making autonomy. A major research objective is
to establish cooperative behavior between sensors with no
external supervision.

Where each sensing mechanism among multiple sensor
agents concurrently perceives environmental changes, each
can derive an opinion in accordance with the sensing results.
For example, when a user gives a speech command to the
sensor agent, as shown in Figure 1, decentralizedmicrophone
of multiple sensor agents runs their speech recognition
engines and derives an opinion. Furthermore, these opinions

are shared with neighbors and are spread. As the technology
has developed to date, when a conflict of nominal opinion
arises and a central system cannot intervene, the system
is unable to execute any service for the user. To address
that failure, this paper proposes a scheme for consensus
achievement of decentralized sensors (CADS) based on the
particle swarm optimization (PSO) framework for decision-
making among decentralized multiple sensor agents.

The rest of the paper is organized as follows. Section 2
discusses about the decision problem and precedentmethods
to solve it. We then introduce the scheme of consensus
achievement using decentralized sensors based on the PSO
frameworkin Section 3.Section 4describes howperformance
evaluation is progressed for validating the proposed method
with the independent simulations. Section 5 concludes the
research and describes the possibilities for future work.

2. Decision Problem and Multiple-Agent
Perception Capability

2.1. Collective Decision-Making in a Decentralized Sensor
System. As another way to deploy a set of sensors into the
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Figure 1: User speech recognition on decentralized sensor system.

environment, this section discusses a decentralized sensor
system. As shown in Figure 1, that approach treats sensors
in the network as distributed intelligent agents capable of
autonomous decision-making. A major research objective
is to establish cooperative behavior between sensors with
no external supervision. The three criteria for contrasting
collective and small group behaviors were revealed in [2].
In the first, psychological criterion, large groups convey a
sense of transcending power that serves to reinforce or sup-
press individual activity. In collective behaviors, the second
criterion, new forms of communications and interactions
arise, such as uncontrolled circular reactions related to
crowd psychology or one-way communication of the mass
media. How participants are mobilized for action is the
third criterion, with larger groups using such new devices as
incitation, agitation, and morale development to that end.

Meanwhile, collective behaviors, especially in the field
of collective robotics, have been classified into several

main categories: spatially organizing behaviors, navigation
behaviors, and collective decision-making [3]. The first area
focuses on how to organize and distribute robots in space
via the following approaches: aggregation, pattern forma-
tion, chain formation, and self-assembly andmorphogenesis.
Navigation behaviors include collective exploration, coor-
dinated motion, and collective transport, while collective
decision-making denotes collective behavior in which a
swarm of robots collectively makes a decision. In addi-
tion, two key processes underlie most collective behaviors:
agreement and specialization. The former denotes consensus
achievement that converges toward a single decision among
possible alternatives, whereas the latter denotes task allo-
cation to distribute the roles of participating agents over
various possible tasks to maximize overall performance.
This paper explores the collective decision-making under-
lying consensus achievement in a decentralized sensor sys-
tem.
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Figure 2: Example of an undirected graph used in this paper.

2.2. Approaches to Achieving Linear Consensus. Computer
scientists have long studied consensus problems, especially
in such areas as pervasive computing [4, 5], sensor network
systems [6, 7], and multiagent systems [8, 9]. Olfati-Saber et
al. [10] defined consensus and consensus algorithmas follows:
consensus is a process to reach an agreement regarding a
certain quantity of interest that depends on the state of all
agents, whereas the consensus algorithm is an interaction rule
specifying the information exchange between an agent and all
of its neighbors on the network. A communication topology
of interactions can be represented by a directed graph based
on graph theory [10, 11].

As shown in Figure 2, given an undirected graph, which
can be viewed as a special case of a directed graph, the set
of nodes in the graph can exchange information with their
neighbors 𝐺 = (𝑉, 𝐸) with vertices𝑉 and edges 𝐸, where𝑉 =
{1, 2, . . . , 𝑛} and (𝑖, 𝑗) ∈ 𝐸. In this graph the adjacency matrix
𝐴 is defined as (1), where the weight 𝑎

𝑖𝑗
= 1 of the edge (𝑖, 𝑗)

denotes that node 𝑗 can obtain information from node 𝑖:

𝐴 =
[
[

[

𝑎
11
⋅ ⋅ ⋅ 𝑎
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... d
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1𝑗
⋅ ⋅ ⋅ 𝑎
𝑖𝑗

]
]

]
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(1)

A convergence toward collective decision-making
through local interactions among nodes is defined as (2) in
[10, 11]. A diagonal matrix, meaning the degree matrix 𝐷, is
defined as (3) where diagonal elements are calculated by the
row sum of the adjacency matrix. Then, node consensus can
be asymptotically converged with the set of neighbors of a
node 𝑖 and the Laplacian graph given as (4). Figure 3 shows
an application of a consensus algorithm in a continuous-time
system. For instance, the initial condition of nodes is given
as x = {1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1}; thus, it is shown that
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Figure 3: Results for the example undirected graph under the
consensus algorithm.

the consensus graph asymptotically converges, as shown in
Figure 3. Consider

𝑥̇
𝑖
= 𝑢
𝑖
=

𝑛

∑
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, where 𝑑
𝑖
=

𝑛

∑

𝑗

𝑎
𝑖𝑗
, (3)

ẋ = − (𝐷 − 𝐴) x = −𝐿x. (4)

Recently, a gossip protocol inspired by the form of gossip
seen in social networks is emerging as an alternative approach
to the above Laplacian-based consensus algorithm [12]. The
concept of the gossip-based consensus algorithm can be
illustrated by the analogy of spreading rumors. In [13], the
goal of gossiping is described as for the 𝑛 agents to reach a
consensus in the sense that all 𝑛 gossip variables ultimately
reach the same value at the average of the initial values: x
in the limit as 𝑡 → ∞. As an application of the algorithm,
Lu et al. [14] proposed a pairwise equalizing as a gossip-style
distributed asynchronous iterative algorithm for achieving
convex consensus optimization over undirected networks.

2.3. Majority Rule Approach. Such historical decision rules
as unanimous agreement and unanimous consent minus one
or two votes have long existed. The main scheme of the
majority rule (MR)model [15], originally proposed to achieve
consensus formation in public debates, is shown in Figure 4.
At the first stage each agent has an opinion, and these agents
are distributed randomly in a series of groups. Then, each
group elects a representative according to majority rule. As
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this process is repeated until a single group remains, the
hierarchy presidents thus elected constitute one upper level.

In statistics, the mode of a set of data, or its most frequent
value [16], can be a way of expressing important information
about a random variable. Unlike the arithmetic mean and
median, the mode is not necessarily unique, and a set with
more than twomodesmay be described asmultimodal. Given
the above example dataset x, the mode is 1.

In the statistical physics community, the bounded con-
fidence models have recently received much attention from
the community [17]. When the possible opinion states are
more than two, one can introduce bounded confidence to
each other. In [18] the effects of agents’ confidence have
been analyzed in conflict resolution of a multiagent system.
The proposed confidence model used the confidence and
reputation of the agent, which depends on past experiences,
and could be used to determine the best strategy for conflict
resolution. Table 1 shows a comparison of the three represen-
tative methods and the result of convergences toward a single
decision among the possible alternatives.

2.4. Decision Problem in Conflict of Opinion. Our study uses
the number of statistical modes as alternative decisions. For
example, given the opinion of dataset x = {1, 1, 0, 0, 1, 0, 1, 0,
1, 1, 0, 1, 0, 0}, the mode of the dataset is not unique so that
it may be said to be bimodal or in a tie. In this case, the
number of statistical modes is two, and the mode values are
M = {0, 1}. The previous consensus algorithm, the standard
average consensus algorithm [10, 11], finds nearly the mean
value among the dataset shown in Figure 5(a). However,
general majority rule could not work in the collision state as
shown in Figure 5(b) because there exists the same number of
instances of 0 and 1. In such a tie case, Galam’s model [15, 19–
21] used “local bias” bywhich the group adopts one or another
opinion with respective probabilities 𝑘 and (1 − 𝑘). The value
of 𝑘 accounts for the average of individual biases driven by the

existence of heterogeneous beliefs within the corresponding
class.

3. Proposed PSO CADS Mechanism

3.1. Particle SwarmOptimization. ThePSO is an evolutionary
computation algorithm proposed by Kennedy and Eberhart
in 1995 [22], and it has been used in the simulations of bird
flocking and fish schooling and swarming. The main idea of
PSO is to use particles which are randomly located in a search
space that can converge toward the global best position at
every iteration [22]. PSO utilizes individual particles moving
around the search space according to (5) and (6) over
their velocity and position [23–27]. Each particle position
is adjusted to the best position found and is updated as
better positions are found by other particles. As the model
is iterated, the particles can ascertain the best position found
thus far. Consider

V
𝑖 [𝑛] = 𝜒 ⋅

{{

{{

{

𝜔 ⋅ V
𝑖 [𝑛 − 1]

+ 𝑐
1
⋅ rand

1
⋅ (𝑝
𝑖best
[𝑛 − 1] − 𝑥𝑖 [𝑛 − 1])

+ 𝑐
2
⋅ rand

2
⋅ (𝑔best [𝑛 − 1] − 𝑥𝑖 [𝑛 − 1])

}}

}}

}

,

(5)

𝑥
𝑖 [𝑛] = 𝑥𝑖 [𝑛 − 1] + V𝑖 [𝑛] . (6)

3.2. Proposed CADS Algorithm. The proposed CADS is
based on the two main concepts of PSO: to match nearest-
neighbor velocity (acceleration) and to weigh acceleration
using a random term (craziness). Under the former con-
cept, individual opinion moves toward a matching nearest-
neighbor consensus. Under the latter concept, swarmopinion
converges from alternatives, accelerating toward a better
decision. As the model iterates, individual opinions conspire
to achieve optimal consensus. Figure 6 details the process
of PSO-based consensus achievement. First, each sensor
agent requests neighbors’ opinions via a static or dynamic
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Figure 5: Example of consensus achievement based on (a) the average consensus algorithm and (b) the majority rule among the bimodal
opinions.

Table 1: Comparison of the three methods.

Initial condition Methods
Consensus algorithm Majority rule Statistic mode

x = {1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1} 0.86 1 1

adjacent link, the individual opinions gathered are coordi-
nated, and swarm particles thus are initiated according to
these opinions and statistical mode values are extracted as
alternative decisions. Second, swarm particles move follow-
ing the two main concepts. Third, swarm particles move
toward a consensus position and ascertain better decision.
Fourth, all particles converge at an optimum consensus and
the collective decision-making is underlying CADS. Finally,
the above consensus process iterates until it meets the stop
conditions.

To detail this process concretely, let the opinion of node 𝑖
be 𝑥
𝑖
, 1 ≤ 𝑖 ≤ 𝑛, and the length of vectors 𝑥

𝑖
and V
𝑖
equal the

dimensionality of the opinion. In addition, let the alternative
set among the opinions beM = {𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑗
}, 1 ≤ 𝑗 ≤ 𝑘,

where statistical mode values are extracted as alternatives
values. The swarm size can be determined as the number of
nodes multiplied by the number of alternatives. The terms
𝑐
1
and 𝑐

2
are cognitive and social constants, respectively,

changing the velocity of particles toward the previous best
position and the global best position. The velocity of the 𝑖th
particle at iteration 𝑡 is followed to (5) and its next position
is determined by (6), where uniform random numbers rand

1

and rand
2
are stochastic variables, called “craziness,” to avoid

the unfortunate state of all particles quickly settling into a
unanimous, unchanging direction. This paper defines the
cost function for the previous best position, cost pbest(), for
moving toward the center of the swarm as (7), where the
difference from particle 𝑥

𝑖
to all particles X is calculated,
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and derives the previous best position, 𝑝
𝑖best

, through the
cost function for its own previous best positions as in (8).
Consider

cost
𝑝best(𝑥𝑖) ≡ √

𝑛

∑

𝑙=1

(𝑥
𝑙
− 𝑥
𝑖
)
2
, (𝑙 = 1, . . . , 𝑛) , (7)

𝑝
𝑖best
[𝑡] =

{{

{{

{

𝑥
𝑖 [𝑡] if cost 𝑝best (𝑥

𝑖 [𝑡])

≤ cost 𝑝best (𝑝
𝑖best
[𝑡 − 1])

𝑝
𝑖best
[𝑡 − 1] otherwise.

(8)

The cost function for the global best position,
cost 𝑔best(), for ascertaining the best decision is (9), where
the minimum of square error compared to each alternative is
calculated, and the global best position, 𝑔best, is determined
by (10). Finally, a consensus is derived by (11), where the

closest alternative to the global best position is selected as
the final consensus. Consider

cost
𝑔best(𝑝𝑖best )

≡ min
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑖best
− 𝑚
𝑗

󵄨󵄨󵄨󵄨󵄨
, (𝑗 = 1, . . . , 𝑘) , (9)

𝑔best [𝑡] = arg min
𝑝𝑖best

cost 𝑔best (𝑝
𝑖best
) , (𝑖 = 1, . . . , 𝑛) ,

(10)

consensus [𝑡] = arg min
𝑚𝑗

(𝑔best [𝑡] − 𝑚𝑗)
2

, (𝑗 = 1, . . . , 𝑘) .

(11)

The algorithm is implemented as in Algorithm 1. In
addition to the use of the algorithm, line 12 of the algorithm
is used to decide when to stop consensus achieving; for this
the norm value of swarm velocity is less than a predefined
minimum value of velocity. On the other hand, if the algo-
rithm could not find an optimum consensus, the statistical
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Figure 8: Initial opinions in the 46-sensor agent example.

mode𝑚 for which the difference between swarm particle and
alternative set attains its smallest value is selected as arbitrated
consensus, as shown in the line 18 of the algorithm.

4. Evaluation

4.1. Predefined Network Topology. Our study used the num-
ber of statistical modes as alternative decisions. For example,
given a predefined network of 46 nodes and 347 links, as
shown in Figure 7, and given the initial opinion of dataset

X = {32, 42, 42, 35, 39, 2, 15, 31, 13, 22, 22, 36, 8, 14, 12, 19,
21, 7, 38, 25, 41, 38, 37, 36, 10, 2, 44, 20, 8, 3, 22, 3, 33, 39, 10,
37, 32, 22, 6, 36, 19, 36, 28, 14, 16, 40} the mode of the dataset
is not unique and may be said to be bimodal, as illustrated in
Figure 8. In this case, the number of statistical modes is two
and the mode values are 22 and 36; thus,M = {22, 36}.

The previous consensus algorithm, the standard average
consensus algorithm [10, 11], derives a value near the mean
value from the dataset, as shown in Figure 9(a). By compari-
son, the proposed framework is able to reach a decision using
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Figure 10: Example of consensus achievement with decentralized sensors of multiple sensor agents.

global knowledge and centralized communication given a
conflict of opinion, as shown in Figure 9(b). As shown in
Figure 10, the results of the two CADS simulations among
multiple sensor agents use no global knowledge or centralized
communication but rely solely on local interaction with

neighbors. Figure 11 shows that the majority rule based on
statistical modes cannot advance the process, given a conflict
of opinions.

On the other hand, it also shows that the proposed
PSO-based CADS can make a decision only through local
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Figure 11: Majority rule cannot further the process in a conflict of opinions.

Table 2: Parameters of PSO-based consensus achievement.

Parameters Value
Swarm size (Zk) Size(input data) × number of alternatives
Initial global best position 0
Initial particle position Input data
Minimum position (min pos) (−max(input data) + 3 ×min(input data))/2
Maximum position (max pos) (3 ×max(input data) – min(input data))/2
Minimum norm of velocity (max pos −min pos)/100
Inertial constant (𝜔) 1
Cognitive constant (𝑐

1
) 2.05

Social constant (𝑐
2
) 2.05

Use constriction factor True
Clip the particle position True
Maximum initial velocity 1
Maximum iteration 10
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Figure 12: The proposed PSO-based CADS can make a decision using only local interactions.
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Figure 13: The information for randomly generated networks in 1000 independent trials. (a) The histogram of the number of links. (b) The
histogram of the number of alternatives (= the number of statistic mode values).
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Figure 14:The histogram of each iteration successfully finding consensus in 1000 independent trials. (a)Themajority rule approach. (b)The
proposed PSO-based CADS approach.

interactions absent from a conflict of opinions, as shown
in Figure 12. Table 2 shows the parameters of PSO-based
consensus achievement.

4.2. Randomly Generated Network Topology. Additional ex-
periments applied two approaches for simulating experi-
mental network topologies for 46 sensor agents randomly
generated 1000 times. Figure 13 shows the histogram for the
number of links and the number of alternatives, respec-
tively. In this experiment, the success indicates when final
consensus belongs to the initial alternatives found by the
global consensus with global knowledge and centralized
communication. Figure 14 shows that traditional majority
rule using the statistical mode achieved consensus in 748

of the 1000 independent trials, while the proposed PSO-
based CADS approach achieved consensus in 872 of 1000
independent trials.Therefore, the baseline for the comparison
is 748; then the percent improvement is (872 − 748)/748 =
16.577%.

5. Conclusion

This paper has explored a possible new way to enhance
the decision-making capability of a decentralized sensor
system through a consensus mechanism that distributes
sensing information through local fusing with neighbors
rather than through centralized control. For that purpose,
this dissertation has proposed a novel PSO framework to
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Algorithm [𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠] = PSO ConsensusFunction(opinion set of itself and its adjacent nodes)
(1) SetM as alternative set extracted as statistical mode value from the opinion set
(2) Place initial particles x at individual opinion of each node
(3) for 𝑡:= 1 to𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
(4) for 𝑖:= 1 to the number of 𝑠𝑤𝑎𝑟𝑚 𝑠𝑖𝑧𝑒 (= number of nodes × number of alternatives)
(5) Find pbest(𝑥

𝑖
) by (18)

(6) end
(7) for 𝑖 := 1 to the number of 𝑠𝑤𝑎𝑟𝑚 𝑠𝑖𝑧𝑒 (= number of nodes × number of alternatives)
(8) Find gbest(pbest(𝑥

𝑖
)) by (10)

(9) end
(10) Calculate 𝑠𝑤𝑎𝑟𝑚 V𝑒𝑙𝑜𝑐𝑖𝑡𝑦 by ordinary PSO algorithm as (5)
(11) Update 𝑠𝑤𝑎𝑟𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 by ordinary PSO algorithm as (6)
(12) if ‖swarm velocity‖2 < 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 V𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑛𝑜𝑟𝑚
(13) Optimum consensus is selected by (11)
(14) Stop iteration and exit the function
(15) end
(16) end
(17) if optimum consensus is not selected
(18) return 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑡𝑒𝑑 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 := argmin

𝑚∈M√∑
𝑛

𝑖=1
(𝑥
𝑖
− 𝑚)
2

(19) end

Algorithm 1: PSO-based consensus achievement algorithm.

achieve robust consensus of decentralized sensors. The new
framework shows about 16.5 percent improvement in con-
sensus achievement as compared to the general majority rule
method. Therefore, a system using the proposed framework
is expected to offer little or no delay in executing user
service requests. The method will help establish cooperative
behavior between sensor agents with no external supervision
and may be expected to occasion remarkable enhancements
in consensus achievement that are also pertinent to the
comparable situation of decentralized sensor systems.
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