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Abstract We present a novel object detection strategy using depth cue which is robust to 

small-sized objects. In practical cases, the target objects that we want to detect often appear in 

very small portion of the input images and most of previous object recognition and detection ap-

proaches aiming to achieve high accuracy for several object databases are not applicable. Adopt-

ing the depth cue as a prior removes the scale ambiguity and allows us to use adaptive scales for 

all candidate regions even when the object is seen at small size. The depth cue can be easily ob-

tained by a Laser Range Finder (LRF) or a stereo camera which have become common for many 

camera-based configurations. By using our proposed method in combination with any other object 

detection/recognition method, we can expect a substantial improvement of success rate when an 

insufficient appearance of object causes trouble. We designed an experiment with a scenario in 

which an indoor mobile robot tries to find several target objects in general environment. The expe-

rimental result demonstrates that the proposed method is effective to improve the success rate of 

small object detection tasks.  

1 Introduction 

For intelligent robot, object detection is crucial for 

various tasks. However, the object detection has a lot 

of difficulties in practical cases since target object in 

natural scene is usually too small. This insufficient 

appearance of object often hinder extracting scale or 

affine invariant features that widely conducted for 

various object detecting tasks [1][7][8][9][10][12]. In 

addition, another approach - shape matching for target 

object detection also gives us a burden due to ignor-

ance of accurate scale of target objects. 

In this paper, we present a novel approach for the 

object detection with handling above difficulties. We 

reduce the scale ambiguity using the depth cue that 

comes from a LRF or a stereo camera. From a dense 

depth map, we can generate depth cues for every can-

didate region in the input image and resolve the scale 

ambiguity. To find a location of target object in the 

input image, we describe adaptive scale candidate re-

gions into a descriptor consisting of an orientation 

histogram and a hue histogram [6][12]. Chang and 

Krumm also proposed a similar approach [11]. Chang 

modeled an object as a color histogram and a geome-

tric information mixture. However, his approach needs 

Fig. 1: Left input image is captured by our intelli-

gent robot. When the robot asked to detect milk 

pack (though milk is small in input image), utiliz-

ing our approach (right image) shows appropriate 

object detection result - the correct location and 

orientation. 
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various viewpoints of target object images to model 

objects. His approach can be burdensome when regis-

tered number of object is large. On the other hand, our 

approach is based on adaptive patches decided by the 

depth cue. Therefore what we need to prepare is as 

simple as a small patch of target object as shown in 

Figure 1. In experimental results, we demonstrate our 

approach by testing our method on a dataset including 

250 images. For each input image, we set target object 

with various poses: affine and similarity transforma-

tion. Also we set various depth conditions to demon-

strate the advantage of our approach. The experimen-

tal result is presented in chapter 5. 

On the other hand, for practical applications, we 

embedded our approach on our intelligent robot and 

tested in robot contest named ‘Grand challenge 2009’. 

With our method the robot successfully found exact 

location of target object. 

2 Reducing Scale Ambiguity 

2.1 Acquiring Depth Cue 

To get a depth cue, we can consider two configura-

tions. One is a stereo camera and the other is a com-

bination of a camera and a range finder (laser or sonar 

sensor). In the case of the stereo camera, we can esti-

mate the depth of objects using triangulation of cor-

responding points. As in general approaches, depth 

cues are calculated from disparity. In our case we used 

Yoon’s method [4][5] for dense matching between two 

stereo images. If we have a strictly rectified stereo 

camera like Bumblebee we can estimate depth much 

easier. Figure 3 (c) shows that the applied stereo me-

thod provides a high quality disparity map from a ste-

reo image pair. In the latter configuration including a 

single camera and a range finder, a range finder can 

directly provides depth information in metric for us.  

2.2 Determination of Patch Size from Depth Cue 

We can apply the camera geometry to both of the 

above cases. Therefore, we can simply use Zhang’s 

method [2] to calibrate the camera. Then we assume 

that the camera coordinates and the world coordinates 

are the same. From this assumption, we can get intrin-

sic camera matrix K and P = K[I | 0]  which de-

scribes relationships between 
3X  and 

2x  

as shown in Figure 2. However, we cannot obtain the 

exact X  from 
1

K x  but a ray that passes through 

camera center. Therefore, we use depth cue d  from 

the object to a camera center. The following process 

describes how we can determine X using depth cue 

d . 

First, we assume that we know the real height H of 

the object. Then, we can approximate two 

3-dimesional points 
3

1 2, X X  on top and bottom 

of the object respectively (Figure 2). Therefore, in 

homogeneous coordinates, 1X  and 
2X  would have 

the following vector forms. 
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After this process, 1X  and 
2X are projected onto 

an image plane   using P = K[I | 0]  and 

x = PX [3], and we get new points 
2

1 2, x x  in 

the image plane  . Now we can get the projected 

height h  of the object in the image as a value using 

(1) 

Fig. 2: Projected height ( h ) can be acquired by 

approximate depth from range finder and 

known real height ( H ). 
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the L2-norm equation 

1 2h  x x  

where h  is in pixel units. For the above two 

hardware configurations, even if inaccurate depths are 

present, those depths does not affect the object detec-

tion as significantly since mis-sized patch usually 

yields lower matching cost to the template patch. 

3 Adaptive Patch for Corresponding Depth 

Cue 

Figure 3 shows applicability of a stereo camera 

configuration. Since we have depth cue, we can have 

varying template size for each depth. In other words, 

we calculate patch size h  for each pixel since we 

have depth for every pixel. Template matching is 

conducted between the patch of each pixel with the 

template patch of the target object. This procedure is 

shown in Figure 3 (d) and Figure 4. Due to the con-

sideration of depth, the patch  is smaller than patch 

. In addition, we have described a patch as a de-

scriptor of fixed-length vector, which will be dis-

cussed more in detail in chapter 4, and this allows us 

to compute vector-to-vector distance (cost) for each 

pixel in the input image (Figure 3 (d)). 

4 Patch Description and Matching 

In our approach, a patch of any arbitrary size from 

the input image or the template image is described as 

a descriptor of fixed-length vector. We have used 

geometric cue and chromatic cue of each patch, 

meaning the oriented histogram and hue histogram. 

For describing oriented histogram, we adopt SIFT [6] 

key point description method where image pyramid is 

skipped since we do not need to release the scale am-

biguity. In addition, normalization process clips vector 

elements larger than 0.2 and re-normalize it as intro-

duced in [6]. We also manipulated the hue histogram 

in addition to the gradient histogram for the robust 

object detection. Similar to the previous description 

method, 44 hue histograms have 8 hue bins respec-

tively. Therefore, the geometric cue and chromatic cue 

have the equivalent length of descriptor vectors. When 

we are binning a   bin, the magnitude value is 

( )

( ) ( ) ( )
H p

Hist S p V p p X





  
 

(3) 

Fig. 4: (Top) top figure shows how the patch 

size is various in one image. The patch size is 

enlarged when depth cue value is small. (Bot-

tom) the second image explains how one patch 

described as fixed-length descriptor vector. We 

used histogram of oriented gradients and hue 

histogram 

(a) 

(b) (c) 

(d) (e) 

Fig. 3: Object detection using depth cue (a) 

original input image (b) dense disparity (c) 

depth map (d) matching cost with adaptive size  

of target object patch (e) final result; the red 

box located on global minimum position. 

(2) 
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where X is one sub-region of a patch and is a set of 

its pixels p. S and V are the corresponding HSV coor-

dinate values for each pixel. Eq (3) allows us to put 

more weights on the pixel with larger S and V values. 

After description process for every patch in one in-

put image, we can detect object position and orienta-

tion by finding global minimum using L-2 norm. Em-

pirical experiment concludes that L-1 norm often re-

leases unreliable results due to image noise. 

5 Experimental Results 

We evaluated object detection accuracy using our 

250 test images which was captured by a calibrated 

camera mounted on our intelligent robot. In each test 

image the target object placed on various poses and 

depths. In addition, for general matching conditions 

we also placed additional objects together on the table. 

Thus the test set has lots of clutters. Detecting result 

(True positive) is presented in Figure 6. Figure 5 

shows true positive ratio graphs within moderate ro-

tate and affine transformation. For validating our ap-

proach, if the global minimum of vector-to-vector 

Fig. 6: Object detection results. The test images 

have lots of clutters and challenging color or 

orientation distribution. The template patch also 

presented. 

Fig. 7: Object detection results using SIFT de-

scriptor. (a) shows initial matching result, (b) 

shows outlier rejection result (RANSAC with fun-

damental matrix). As seen above, SIFT approach 

shows non plausible matching result since small 

number of features extracted from template image. 

 

(a) (b) 

Fig. 5: Experimental result. First and second graph 

shows our approach works under affine and simi-

larity transform. For various depth our approach 

shows true positive ratio larger than 0.6 when dis-

tance to object size ratio is 11.43. 
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distance is located on specified ground truth region we 

determine this case as true positive. For SIFT match-

ing, we determine true positive when arbitrary propor-

tion of matching pairs are located on ground truth re-

gion. Experimental result shows that about 60% of 

true positive percentage when camera-to-object dis-

tance is 11 times larger than object size. To be specific, 

if the target object’s height is 7cm, projected region’s 

height was 40 pixel in 640480 input image. Figure 7 

shows SIFT matching result. SIFT matching with no 

depth cue yields too many outliers in initial matching. 

These outliers are not fixed even we run RANSAC 

using epipolar constraints (right image in Figure 7). 

In addition, for a practical application we applied 

our method to our intelligent robot. The robot has a 

laser range finder and set of cameras. So we easily 

embedded our method and gave some tasks to the ro-

bot; finding target object on the table. Each trial 

showed that the robot finds correct location of object. 

This approach applied to robot contest named ‘grand 

challenge 2009’ held in Pohang, Korea.  

6 Conclusion 

In this paper, we proposed an efficient object detec-

tion approach by using depth cue. With the depth cue, 

we alleviated scale ambiguity and used adaptive scales 

for candidate region. Our approach successfully de-

tected small target objects in the natural scene. To 

handle various poses of target object, all the candidate 

regions are described as one fixed length descriptor 

vector. 

Experimental result shows that detection perfor-

mance is reliable under the affine and similarity 

transformation. The result shows about 60% of true 

positive percentage when the camera-to-object dis-

tance is 11 times longer than the height of objects.  

Our approach is applicable to practical object de-

tection tasks for an indoor service robot on which a 

stereo camera or LRF is commonly equipped, and this 

is an additional contribution of the proposed method. 
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