A Real-Time Prefetching Method for Continuous Media Playback

Sungchae Lim and Myoung Ho Kim

Dept. of Computer Science
Korea Advanced Institute of Science and Technology
373-1, Kusung-dong, Yusung-gu, Taejon, 305-701, Korea

{sclim,mhkim} @dbserver.kaist.ac.kr
FAX: +82-42-869-3510

Abstract

Continuous media(CM) such as digital-coded videos and
sounds impose time constraints on multimedia systems to
prevent hiccups. In this paper we propose a new CM play-
back method that is suitable for handling CM streams with
various playback rates and rather short duration of play-
back. Our proposed method is aimed at providing both good
response times and high disk utilization. For better disk
utilization, the SCAN algorithm is employed for retrieving
CM data and then real-time bulk-scan is conducted. Along
with this bulk-scan, we propose an EDF-style algorithm
with priority-driven property. Owing to flexibility in our
disk scanning, our method is able to provide good response
time as well as high disk utilization. Through experimental
comparisons over our method and the earlier round-style
methods, we show the performance advantages.

Key words: multimedia, continuous media, real-time disk
scheduling

1. Introduction

Recent advances in network technologies and the com-
puting power enable the information system that delivers
multimedia data to remote clients in online mode. To
establish such a multimedia system, it is required to de-
velop an efficient disk scheduling method that fulfills tem-
poral requirements of continuous media(CM) objects such
as digital-coded videos and sounds. The CM object imposes
temporal requirements on multimedia systems to prevent
undesirable interruptions of playback, called hiccups. To
fulfill this requirement, it is crucial to develop an efficient
CM playback method consisting of real-time disk schedul-
ing and an adequate strategy for admitting CM streams
within the limitation of system resource.

0-7695-0281-4/99 $10.00 © 1999 IEEE

889

To this end, [2, 3, 4, 5] have proposed the round-style
method that fixes a constant period and performs disk
scheduling based on the constant period. The round-style
method prefetches CM data of all served streams during a
period and makes the prefetched data be consumed for the
next period. As the round-style method, schemes Sweep
and Fixed-Stretch are popularly accepted. The two schemes
use different disk scheduling policies for data prefetch, i.e.,
the former uses the elevator-SCAN algorithm and the lat-
ter moves the disk head freely retrieving data in a fixed or-
der of streams. Although the round-style methods can en-
sure timely prefetch in a simple manner, they have some
shortcomings from inflexibility in disk usage. Because
the round-style methods assign channels to streams in a
static fashion from period to period, they cannot efficiently
serve CM streams with rather short playback time and low
playback rates, e.g., low-quality videos and MPEG-coded
sounds. To solve the problem, we make each stream have
its own prefetch period and perform channel assignment
based on the earliest-deadline-first(EDF) algorithm. Ow-
ing to disk scheduling efficiency, our method provides good
performance

2. Backgrounds
2.1. CM Data Organization

A simple clustering method for CM data is likely to store
all of each CM data continuously on the disk. This cluster-
ing tends to cause disk space fragmentations and makes up-
date operations on CM data hard. Instead, it is more reason-
able that CM data are clustered in the unit of a disk track as
in literature[1, 2, 4]. In this paper we also assume that CM
data consist of segments that are equal-sized and made up of
multiple tracks on the same disk cylinder. Since each seg-
ment is continuously stored, its retrieval incurs one time of

disk seeking. For easy updates, segments of any CM stream
can be freely located on the disk. In addition, A CM stream
issues requests for data with respect to its data assumption
rate, called playback rate. A request for data contains the lo-
cation information, i.e., ids of the beginning and last tracks
of an associated segment.

2.2. Real-time Disk Scheduling

To prevent interruptions of CM playback, streams’ re-

quests have to be served in time. Thus some real-time disk
, scheduling schemes have been proposed for timely data re-

trieval.

A. Scheme Scan-EDF

When requests for data are issued by streams, the
earliest-deadline-first(EDF) algorithm can be applied for
choosing the next request to be served. Although this al-
gorithm is very useful for scheduling real-time tasks[9], it
suffers from excessive seeking overhead, while serving re-
quests according to deadline order. To prevent such a prob-
lem, Scan-EDF has been proposed as an integration of the
EDF algorithm with the SCAN algorithm. In Scan-EDF, re-
quests with the same deadline are grouped into a set R, and
then requests in R are served through the Elevator-SCAN
algorithm. If such R contains too small numbers of re-
quests, Scan-EDF will produce a disk scheduling result sim-
ilar to that done by scheme EDF; in contrast, if R contains
so many requests, Scan-EDF amounts to scheme Scan. For
performance gains in Scan-EDF, deadlines of requests must
be appropriately arranged for seek-time optimization.

But, since in most cases deadline arrangement for seek
optimization cannot be easily done, performance advantage
is not guaranteed if streams with various playback rates
have to be served. In addition, since Scan-EDF does not
provides an efficient admission strategy preventing play-
back hiccups, Scan-EDF cannot efficiently handle a situa-
tion where CM streams are frequently constructed and dis-
appears over time. Thus, round-style schemes are widely
used for timely data retrieval of CM streams[2, 3].

B. Round-S$tyle Schemes
In the round-style methods, all streams request their disk
bandwidth based on a given time period, called round. For
. example, suppose the length of round is fixed as 2 seconds.
And then, a stream of playback rate b (Kbps) will issue re-
quests for data of size 2b (Kbits) with period 2 seconds. Be-
cause disk scheduling can be repeatedly performed across
rounds and requests are issued with the same period, the
round-style methods can easily prevent hiccups of playback.
These methods can be categorized into two schemes Fixed-
Stretch and Sweep depending on the used disk scheduling
mechanism. The former serves requests in a fixed order of
streams and has the round length including the worst-case
seek time. Meanwhile, the latter employs the Scan algo-

890

rithm for better seek optimization. A stream in Sweep can
be served at the beginning of round ¢ and next served at the
end of round ¢ + 1 depending on request’s disk positions.
So, the maximum retrieval latency of Sweep is two times
longer than that of Fixed-Stretch.

At admission time, each stream requires disk bandwidth
based on a constant round period. Note that round length
is fixed for performance consideration, rather than varying
it over time[3]. This may cause a problem called band-
width fragmentation. To illustrate, suppose that a segment
is D in size and a round is L in length. Then, a stream
requests disk bandwidth of size nD/ L, where n is the num-
ber of segments requested in a round. So, the average of
bandwidth fragmentations is a half of D/L. Disk wastes
from bandwidth fragmentation can be considerable, if many
streams are concurrently scheduled. If we make L be large
for smaller fragmentation, it will always increase response
time that is defined as time elapsed between request point
and starting point of playback[2, 3].

3. Proposed Method for CM Playback

Although the Scan algorithm is likely to provide good
disk utilization owing to its seek optimization feature, this
algorithm has difficulty in serving real-time requests. First,
time taken to read a given segment depends on its relative
position to other segments being served through the same
disk scan. Thus, it is difficult to guarantee both of timely
retrieval and reasonable seek optimization; such a problem
is found in Scan-EDF. Next, the Scan algorithm cannot effi-
ciently serve a specific request with service urgency. This is
because service delay can be quite long if requested data is
located behind current movement of the disk head. There-
fore, in scan-based schemes response time is longer than
the average duration of the disk scan; in Sweep, the aver-
age response time is longer than a round period. This re-
sults in performance degradation if playback of streams are
frequently started and finished over time. To resolve these
problems of the Scan algorithm, we propose a flexible disk
scan method that guarantees high disk utilization and good
response time.

3.1. Basic Mechanism

To obtain seek optimization, we choose an integral num-
ber k£ and enable streams to issue requests for data so that
k or more segments can be retrieved by a single disk scan
while meeting deadlines of requests. We call the disk scan
that retrieves multiple segments in batch fashion as bulk-
scan, and say that bulk-scan has parameter k, if each bulk-
scan reads at least k£ segments in the presence of intensive
datarequests. For bulk-scan with parameter k&, we first make

deadlines of requests arise with time intervals that are suffi-
cient for scanning any k or more segments. Then, the EDF
policy is applied to choose requests to be served by each
bulk-scan. v
As rotational delay can bé ignored for reading the seg-
ment that is organized in the unit of the disk track[6], the
bulk-scan time depends on only the amount and positions
of the retrieved segments without effects of rotational de-
lay. Let seek_time(d) be the function that gives seek-time
, for relocating the disk head on a target disk track across d
cylinders. According to [5], total seek-time for reading mul-
tiple segments by a disk scan is maximized when the target
segments are evenly scattered over the disk cylinders. Thus,
if one segment consists of X tracks and the total cylinder
number of the disk is N¢y;, the upper bound of bulk-scan
time for reading k segments is as follows:

BT(k)

k- X - Revolution_Time +
cy!

k+1])

We let T = BT(k) and make request period of each
stream be any one of 27", 3T',.., max_pT, where mazx_p
is an integer constant chosen by our proposed CM server.
Within this range, request period of a certain stream is deter-
mined so that bandwidth fragmentation can be minimized.
For example, consider a situation where a stream with play-
_back rate b is newly admitted. At this time, disk bandwidth
used by the stream is specified by a pair of request period
and the number of requested segments. So the stream will
have candidate pairs such as (¢, y;}(2 < ¢ < maz_p) sat-
isfying M < b < y%; here, ?"i’—TQ is the amount of
disk bandw1dth used by this stream. Among the pairs, we
choose any one with the smallest bandwidth fragmentation.
We call this chosen pair as a data request pattern(DRP) and
let {p;, n;} be DRP of stream S; from now on.

To illustrate how requests are issued by streams accord-
ing to their DRPs, suppose that a stream S; with DRP (5, 4).
We first fetch four segments of the head data of this stream
and then begin playback of 5;, where data retrieval per-
formed before playback start is called initial prefetch. If
initial prefetch is completed between interval (T;_;,7j],
stream .S5; can be played back from time T; in our method
and issues four requests before T 15,(n = 0,1,..). In this
case, four requests in each period have the same deadline
Tj+5,,(n = 1, 2, ..)

In turn, we describe how to serve requests through bulk-
scan with parameter k. When beginning a bulk-scan at time
t € (Tj-1, T;], our CM server first computes the maximum
number of segments able to be scanned within time Tj 4.
This is given by using (1), i.e., the maximum number is the
largest integer k’ satisfying BT'(k') < Tj41 —t. And then,
we choose requests to be served by usmg the following steps
within the maximum number.

(k+1)-seek tzme([1)

891

(1) Suppose the latest deadline of currently issued re-
quests is Tj4,. Let G1, G2,.., Gn be sets of re-
quests with deadlines 741,749, ..., Tj4n, respec-
tively. Choose the largest integer ¢ such that |G =
GlUuG2U.. UGi| < k. If i = n, return G; otherwise,
g0 to the next step.

(2) Define the cylinder distance between the outermost
and innermost segments retrieved by a bulk-scan as
scan distance of the bulk-scan. Select a request r from
G'i41 such that bulk-scan for serving G U {r} has the
smallest scan distance, and input this request into G. If

|G| = &', return G; otherwise, repeat this step.

To obtain high space locality among retrieved segments,
we carefully choose segments through step (2). Here, we
refer to a bulk-scan that starts at interval (7 _1, 7;] and ends
before Tj41 as SCAN;. Since any SCAN; has at least
time 7" as a duration time, our bulk-scan with parameter k
provides disk bandwidth of at least £ D /T (Kbps). If we can
properly admit new streams, our mechanism consisting of
bulk-scan and the EDF policy can guarantee non-hiccuped
playback.

For an admission mechanism, we apply the schedula-
bility test of the preemptive EDF scheduler for periodic
tasks[9]. That is, we associate a stream S; having DRP
{pi, n;) with a virtual periodic task having period p; T and
computation time £ + ;. Here, serving of arequest for data is
considered the occupatlon of time slot with size ¢+ T . In this
context, bandwidth reservation of S; is computed as ﬁ':
and the total reservation is defined as Ryseq = Zf=l T
where £ is the number of the admitted streams. Thus, we ad-
mit a new stream only while current R, ;.4 plus bandwidth
reservation of the newly assigned DRP does not exceed 1.
If there is no DRP satisfying such condition, admission of
the stream will be refused and its admission is delayed until
the end of playback of any other streams. The correctness
proof is omitted for the space limitation.

Let A™¢¥ be the set of streams that do not finish the ini-
tial prefetch phase, and A™°* be the set of other streams
that already begin playback. If we favorably serve requests
of initial prefetch, the response time can be reduced. For
this, our CM server computes the minimum number of re-
quests has to be served for A’s smooth playback, and serve
only the minimum requests for A. Such computation is
performed at the beginning of each bulk-scan. Consider
a stream S; that requires » segments at the beginning of
SCAN;. If deadline of the requests is T} 1, ratio of disk
bandwidth for S; amounts to ;= since those requests can
be served from SCAN; to SCAN, ;1. With this ob-
servation, the minimum request number can be computed
as [k - 3_ gra=5y] Here, notations r; and d; indicate that
stream S; has r; requests has to be served until Tg,. There-
fore, in SCAN;, N'* requests can be served for fast

prefetch of A™¢¥:

N k- Y

Si€eA

ri

di —

D>

Si€

d

J
2
Before beginning SCANj;, we choose up to N*** re-
quests of A™¢” in a FIFO manner, and let them be Go. By
assigning the highest priority to G at the step (1) above, all
requests in GO will be served by SCAN;. Figure 1 illus-
trates how the bulk-scan is performed in our method. Fig-
ure 1.(a) show a situation where SCAN;_, ends at time
T; — T’ and playback of a stream S; is newly requested
during SCAN;_;. If n; > NI'°Y, initial prefetch for S;
will be corapleted through SCAN; as in Figure 1.(b). In
our bulk-scan method, duration of a bulk-scan dynamically
varies according to workload of issued requests. This prop-
erty makes our disk scheduling method reclaim efficiently
disk times that may be left over without flexible bulk-scans.

- T

playback start of Si

SCAN. T T . SCAN.A1 SC}\Nj
1 ey ¥
t — i W"—’,
'
T T T; Tim T, T; Tin

tnew

(a) playback request of Si at time tnew (b) initial prefetch of Si through SCAN;

Figure 1. Bulk-scan for shortening time of ini-
tial prefetch

3.2. Implementing the Proposed Method

For implementation, we need to give adequate values to
parameters 7' and maz_p. The size of T must be chosen
by considering trade-offs between seek optimization and re-
sponse time. While the greater T provides better seek opti-
mization in general, it may hurt the average response time
since waiting time until the beginning of the next disk scan
is enlarged. In our research, T" is chosen as a value between
2 second and 3 second within which ratio of seek time to the
total scan time becomes less than 20%. After choosing T,
we determine maz _p so that total bandwidth fragmentation
is made below a given level. In our method a single stream
has bandwidth fragmentation of at maximum 51%47’1" By
adjusting maz_p, total bandwidth fragmentations is made
below 5% of kD/T.

Based on 7" and maz_p, buffer memory is pre-allocated
so that our CM server does not reject admission of a stream
because of memory space shortage. We make the buffer

memory be shared among served steams to minimize mem- -

ory space requirement. In this case, memory size required
by a strearn S; is the same as the amount of data con-
sumed during its one request period, i.e. D - n;[8]. Thus,

892

the minimum memory size for our CM server is equal to
D -k - maz_p (Kbits).
The followings are the steps for our proposed CM server.

Step 0: {Initialization phase} A «— A"*¥ — §; R,., —
0.0; serial — 1.

Step 1: {Adjusting parameter R,,.q4} For each stream S;
that finishes playback, decrease Ryscq by kﬂ;:; admit
new streams while Ry, ;.q4 < 1.

Step 2: {Choosing requests to be served} Select up to
N2, number of requests from A™°*; select the re-
main requests from A within k. serve selected

requests through SCANrial.

serial?

Step 3: {Manipulation of streams} Play back streams
in A™®% that have completed initial prefetch from
Tseriai+1; make streams in A whose request period
ends at Ty.riqi4+1 issue requests for the next period.

Step 4: {Synchronization phase} Let serial = serial +
1; wait until Tyeriai—1 if SCANgeriar ends before
Tserial—1; go to Step 1.

4. Experimental Results

We perform some experiments to briefly show perfor-
mance advantages of our proposed method. For this, we
analyze efficiencies of disk usage between our proposed
method and the earlier schemes such as schemes Sweep and
Fixed-Stretch, by using the HP 97560 disk drive in [6]. In
the experiment, we assume that playback rates and periods
of playback are uniformly distributed over ranges [20 Kbps,
500 Kbps] and [2 minutes, 4 minutes], respectively. The
disk track has the size of 36 KBytes, and buffer memory is
allocated up to 60 MBytes.

We first examine the response time which is elapsed time
from playback request to playback start. In the experiment,
playback requests are maintained in the waiting queue un-
til disk bandwidth is available for admission, and served in
a FIFO manner. Figure 2 shows how the average response
time varies with arrival rate of playback requests; here, we
use the segment composed of two disk tracks. We experi-
ment with schemes Fixed-Stretch and Sweep with periods
of 3 and 10 seconds. In case of our method, we set pa-
rameter T as 2.5 seconds and 3 seconds, which is denoted
by EDF*-T in the figure. With these values of T', EDF*-
3 and EDF*-2.5 have maz_pt of 10 and 12, respectively.
Although sweep Fixed-Stretch provides the best response
time in a range of low arrival rates of requests, this scheme
is so quickly overloaded owing to its heavy losses of disk
bandwidth. Meanwhile, scheme Sweep works better for the
situation where workload is somewhat high, compared with
scheme Fixed-Stretch. But, this scheme gives poor response
times. In contrast to these schemes, our method provides

better response time than scheme Sweep, and work well in
the range of high arrival rates.

35

30 F

ES i H »

20

Average Response Time(in sec)

"
10 12 14 16
Arrival Rate{per minite)

Figure 2. Comparisons of the average re-
sponse times

To see more clearly throughput of each method, we reject
playback requests that cannot be immediately admitted for
insufficient disk bandwidth, rather than keeping them in the
queue. Then, we calculate ratio of the rejected requests with
respect to all of playback requests. In this experiment, the
smaller rejection ratio indicates that the better throughput is
achieved by the method. To clearly show the results of this
experiment, we calculate the rejection ratio for high arrival
rates. As known from Figure 3, our proposed method guar-
antees the best throughput due to its flexible channel usage
and low bandwidth fragmentation.

Yy .
0.8 |
06 |

o4} *

Ratio of Rejected Requests

02

5 30 40 45
Arrival Rate(per minute)

Figure 3. Ratio of the rejected playback re-
quests to overall requests

5. Conclusion

In this paper we have proposed a CM playback method
that is based on the bulk-scan and the well-known EDF al-

893

gorithm. To guarantee reasonable seek optimization, we
enable the bulk-scan to retrieve k& or greater number of
segments while meeting deadlines of requests for data.
For this, we developed an admission control strategy us-
ing the schedulability test method of the preemptive EDF
server. For fast response time, we compute the maximum
disk bandwidth that can be used for prefetch of head data
of newly admitted streams. Owing to minimized band-
width fragmentations and flexible disk scans, our proposed
method can efficiently support CM streams with a variety
of playback rates.

References

[1] Gin-Kou Ma, Chiung-Shien Wu, Mei-Chian Liu and
Bao-Shuh P. Lin, ”Efficient Real-time Data Retrieval
through Scalable Multimedia Storage,” Proceedings of
ACM Multimedia, 1997.

[2] Huang-Jen Chen and Thomas D.C. Little, ”Storage
Allocation Policies for Time-Dependent Multimedia
Data,” IEEE Trans. Knowledge and Data Engineering,

Vol. 8, Oct. 1996.

[3] Edward Chang and Hector Garcia-Molina, "Effective
Memory Use in a Media Server,” Proceedings of the

VLDB Conference, 1997.

[4] P. Venkat Rangan and Harrick M. Vin, “Efficient Stor-
age Techniques for Digital Continuous Multimedia,”
IEEE Trans. Knowledge and Data Engineering, Aug.

1993.

[5] Yen-Jen Oyang, et al. , "Design of Multimedia Stor-
age Systems,” IEEE Data Engineering, pp. 457-465,

1995.
(6]

Chris Ruemmler and John Wilkes, ”An Introductionto
Disk Drive Modeling,” IEEE Computer, March 1994.

[7] Antoine N. Mourad, "Issues in the Design of a Stor-
age Server for Video-on-Demand,” Multimedia Sys-
tems, pp. 70-86, 1996.

[8] Edward Chang and Yi-Yen Chen, "Minimizing Mem-
ory Requirements in Media Servers,” Stanford Techni-

cal Report SIDL-WP-1990-0050, Oct. 1996.

[9] C.L. Liu and J. W. Layland, ”Scheduling Algorithms
for Multiprogramming in a Hard Real-Time Environ-

ment,” Journal of ACM, Vol. 20, No. 1, Jan. 1973.

[10] Houssine Chetto and Maryline Chetto, ”Some Results
of the Earliest Deadline Scheduling Algorithm,” IEEE
Trans. Software Engineering,” Vol. 15, No. 10, Oct.

1989.

