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CONNECTED SUMS OF SIMPLICIAL COMPLEXES AND EQUIVARIANT COH OMOLOGY

TOMOO MATSUMURA AND W. FRANK MOORE

Abstract. In this paper, we discuss theconnected sum K1 #ZK2 of simplicial complexesK1 and K2, as well as
define the notion of astrongconnected sum. Geometrically, the connected sum is motivated by Lerman’s symplec-
tic cut applied to a toric orbifold, and algebraically, it ismotivated by the connected sum of rings introduced by
Ananthnarayan-Avramov-Moore [1].

We show that the Stanley-Reisner ring of a connected sumK1 #ZK2 is the connected sum of the Stanley-Reisner
rings of K1 andK2 along the Stanley-Reisner ring ofK1 ∩ K2. The strong connected sumK1 #ZK2 is defined in
such a way that whenK1,K2 are Gorenstein, andZ is a suitable subset ofK1 ∩ K2, then the Stanley-Reisner ring
of K1 #ZK2 is Gorenstein, by work appearing in [1]. These algebraic computations can be interpreted in terms of
the equivariant cohomology of moment angle complexes and wedescribe the symplectic cut of a toric orbifold in
terms of moment angle complexes.

1. Introduction

The moment angle complexZK associated to a simplicial complexK was introduced by Buchstaber and
Panov in [4] as a disc-circle decomposition of the Davis-Januszkiewicz universal space. It has been actively
studied intoric topologyand its connections to symplectic and algebraic geometry, and combinatorics. The
original aim of introducing such a space is to generalize symplectic or algebraic toric manifolds to topological
toric manifolds that are now calledquasi-toric manifoldsintroduced in [6].

The goals of this paper are to introduce a notion of theconnected sum of simplicial complexesby understand-
ing the combinatorial aspect of Lerman’s symplectic cut [12] of a symplectic toric orbifold, and to understand
the algebra structure of the (equivariant) cohomology of the corresponding moment angle complex in the frame-
work of theconnected sum of ringsintroduced by Ananthnarayan-Avramov-Moore [1]. The connected sum of
simplicial complexes introduced in this paper is a more general operation than just the connected sum along a
facet.

In the first part of this paper (Section 2), we study a symplectic cut of a toric orbifold in terms of moment
angle complexes and describe the (equivariant) cohomologyring of the toric orbifold in terms of the ones of
the cut pieces, using the notion of the connected sum of rings:

Theorem 1.1 (Theorem 2.15). Let X+ andX− be the toric orbifold defined by a symplectic cut of a toric
orbifold X. Letg± : Xo ֒→ X± be the toric sub-orbifold corresponding to the section of the cut. Let# denote
the connected sum of rings (See Definition 4.1) which is defined using the pushforward and pullback mapsg±∗
andg∗±. We have

H∗R(X;Z) � H∗R(X+,Z) #
H∗R(Xo;Z)
H∗R(Xo;Z)H

∗
R(X−;Z)

Furhter more this descends to the non-equivariant cohomology overQ:

H∗(X;Q) � H∗(X+;Q) #H∗(Xo;Q)
H∗(Xo;Q)H

∗(X−;Q).

This holds overZ-coefficients if all of the cohomology rings are concentrated in even degrees.

Our method is to identify the toric orbifolds as quotient stacks of moment angle complexes by a torus action
and we regard the (equivariant) cohomology of toric orbifolds as the (equivariant) cohomology of moment
angle complexes with appropriate torus actions. We also give a description of the cohomology ring ofX−
in terms ofX+ andX in a similar fashion (Theorem 2.17), which can be interpreted as a special case of the
work previously done by Hausmann-Knutson [10]. This description is also useful, since the cutting process
sometimes creates more complicated yet interesting examples.
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In the second part, we introduce theconnected sum of simplicial complexes(Section 3) for general simplicial
complexes, abstracting the combinatorial aspect of cutting polytope by a generic hyperplane. Namely, letK1

andK2 be simplicial complexes on [m] and letZ ⊂ K1∩K2 be a subset. We define the connected sumK1 #ZK2

of K1 andK2 by

K1 #ZK2 := DelZ(K1 ∪ K2) (Definitions 2.1 and 3.1).

Furthermore, we introduce thestrongconnected sum ofK1 andK2 by assuming

(⋆) Z = K1\(K1\W) = K2\(K2\W)

whereW := K1∩K2. We show that if∆+ and∆− are simple polytopes obtained by cutting a simple polytope∆
with a generic hyperplaneHo, then the simplicial complexK associated to∆ is a strong connected sum of the
simplicial complexesK± associated to∆±. Interestingly,K− is also a strong connected sum ofK+ andK.

In Section 4, we show that (Theorem 4.4) the Stanley-Reisnerring Z[K1 #ZK2] of a connected sumK1 #ZK2

is the connected sum of Stanley-Reisner ringsZ[K1] andZ[K2] of K1 andK2 respectively, in the sense of [1].
More explicitly, letgi : Z[Ki] → Z[W] and fi : Z[K1 ∪ K2] → Z[Ki] be the natural quotient maps of Stanley-
Reisner rings associated to the corresponding inclusions of simplicial complexes. LetIZ be the ideal inZ[W]
generated by the monomials corresponding to elements ofZ. Then

Z[K1♯
ZK2] �

ker(g1 − g2 : Z[K1] × Z[K2] → Z[W])
(f1, f2)(IZ)

.

The extra assumption (⋆) required for the strong connected sum is motivated by the algebraic facts (see Corol-
lary 4.8) that ifK1 and K2 are Gorenstein andW is Cohen-Macaulay, then the assumption (⋆) implies that
the idealIZ is a canonical module ofZ[W]. As a consequence, by the work of [1], we can show purely al-
gebraically that ifK1 #ZK2 is a strong connected sum,K1 andK2 are Gorenstein,W is Cohen-Macaulay, then
K1 #ZK2 is Gorenstein.

In the last section, we discuss how these algebraic structures behave if we take the torsion module of the
Stanley-Reisner ring. Let [m] = {1, · · · ,m} be the common vertex set ofK1,K2 and K so that the corre-
sponding Stanley-Reisner rings are the quotients ofZ[x1, · · · , xm] by monomials given by non-faces. Let
B = (Bi j ) ∈ Matn,m(Z) be an integral matrix of rankn, then we have a polynomial ringZ[u] := Z[u1, · · · , un]

sitting inside of= Z[x1, · · · , xm] whereui =
∑m

j=1 Bi j . In Section 4.3, we observe that if Tor
Z[u]
1 (Z[L],Z) = 0 for

L = K,K1,K2,W, then Tor
Z[u]
∗ (Z[K1♯

ZK2],Z) is again a connected sum of the Torsion algebras Tor
Z[u]
∗ (Z[K1],Z)

and Tor
Z[u]
∗ (Z[K2],Z). Those torsion algebras correspond to the (equivariant) cohomology of moment angle

complexes (c.f. [3], [14]). The connected sum of simplicialcomplexes can be used to construct interesting
spaces (c.f. [8]) and the techniques developed in this papercan be used to compute the (equivariant) cohomo-
logical invariants of these spaces.

Acknowledgements.The authors want to thank M. Franz, T. Holm, Y. Karshon, A. Knutson, T. Ohmoto, K.
Ono, D. Suh for important advice and useful conversations. The first author is particularly indebted to K. Ono
for providing him an excellent environment at Hokkaido University where he had spent significant time for this
paper in July and August 2011. The first author would like to show his gratitude to the Algebraic Structure
and its Application Research Center (ASARC) at KAIST for itsconstant support starting 2011 September. The
first author is also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea
government (MEST) (No. 2012-0000795, 2011-0001181).

2. Symplectic cut of toric orbifolds

In this section, we will first review the construction of moment angle complexes and their cohomology rings.
Then we describe the symplectic cut of a toric orbifold in terms of moment angle complexes and show the main
theorem (Theorem 2.15) of the first part of this paper.
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2.1. Moment Angle Complex. In this section, we review the basic construction of the moment angle com-
plexes for polytopes and general simplicial complexes. Forthe details, we refer to [3] or [15].

Definition 2.1 (c.f. p.25 [3]). A simplicial comlex on the vertex setS is a collectionK of subsets (calledfaces)
of S such that ifσ ∈ K, then all subsets including the empty∅ of σ are in K. A simplicial complexK is
calledpure if all its maximal faces have the same dimension where the dimension of a faceσ ∈ K is |σ| − 1. A
maximal face is also called afacet. The set of all facets is denoted byF (K). A vertexx is called aghost vertex
if {x} < K. Let Z be a subset of a simplicial complexK such that∅ < Z. Theclosureof Z in K is the smallest
subcomplex containingZ. Theopen neighborhoodof Z in K is the set of allσ ∈ K such thatσ contains some
τ ∈ Z. Note thatOK(Z) = Z if and only if K\Z is a subcomplex ofK. Thestar of Z in K and thedeletionof Z
from K are the subcomplexes defined by starK(Z) := OK(Z) and DelZ(K) := K\OK(Z) respectively. IfK1 and
K2 are simplicial complexes on the same vertex setS, then we can naturally take the intersectionK1 ∩ K2 and
the unionK1 ∪ K2 that are also simplicial complexes onS.

Definition 2.2. Throughout this paper, we use the following notation for convenience. LetX be a set andY,Z
subsets ofX. Letσ ⊂ [m] be a subset. ThenYσ × Z[m]\σ ⊂ Xm denotes the direct product ofY andZ’s where
i-th component isY if i ∈ σ andZ if i ∈ [m]\σ.

Definition 2.3 (Moment Angle Complexes). Let K be a simplicial complex on the vertex set [m] := {1, · · · ,m}
(with possible ghost vertices). Define themoment angle complexZK,[m] ⊂ C

m by

ZK,[m] :=
⋃

σ∈K

Dσ × ∂D[m]\σ
=

⋃

σ∈F (K)

Dσ × ∂D[m]\σ

whereD = {z ∈ C | |z| ≤ 1} and∂D = {z ∈ C | |z| = 1}. The standard action ofT := U(1)m on Cm can be
restricted to the one onZK,[m].

Definition 2.4 (Moment Angle Manifolds). Let ∆ be a rationaln-dimensional simple polytope inRn given by
the inequalities:

∆ = {~x ∈ Rn | 〈~x, λi〉 + ηi ≥ 0, i = 1, · · · ,m}, λi ∈ Z
n, ηi ∈ Z (2.1)

We allow this description to be “reducible”, i.e. some of theinequalities may be redundant. Or equivalently, let
Hi := ∆ ∩ {〈~x, λi〉 + ηi = 0} andHi is a facet or empty. We call such an emptyHi a ghost facet. The associated
simplicial complexK∆,[m] is a simplicial complex on [m] andσ ∈ K∆,[m] if and only if ∩i∈σHi , ∅. Here a
ghost facet corresponds to a ghost vertex. LetB := [λ1, · · · , λm] and η = (η1, · · · , ηm) and define an affine
embeddingιB,η : Rn→ Rm by

ιB,η := B∗(~x) + η. (2.2)

Define themoment angle manifoldZ∆,B,η for ∆ given in (2.1) by the following fiber diagram:

Z∆,B,η
⊂ //

��

Cm

µT

��
∆

ιB,η|∆

// Rm

whereµT(~z) = (|z1|
2, · · · , |zm|

2) is the standard moment map of the action ofT := U(1)m onCm. It is indeed a
smooth manifold (Construction 6.8 and Lemma 6.2 [3]) and thestandardT-action onCm can be restricted to a
T-action onZ∆,B,η.

It is also possible to defineZ∆,B,η as a quotient space. Namely, letTσ := U(1)σ × {1}[m]\σ ⊂ T for a subset
σ ⊂ [m]. Then there is aT-equivariant homeomorphismZ∆,B,η � (T × ∆)/∼, where (t, p) ∼ (s, q) if and only if
p = q andts−1 ∈ Tσ with p ∈ ∩i∈σHi .

Remark 2.5 (II.1 [15] or Section 6.1 [3]). There is aT-equivariant homeomorphism

Θ∆,B,η : Z∆,B,η � ZK∆,[m] . (2.3)
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Namely, consider a cubical subdivision of∆ defined in Construction 4.5 [3] and the corresponding decomposi-
tion ofZ∆,B,η:

∆ =

⋃

σ∈F (K∆)

Cσ, Z∆,B,η =
⋃

σ∈F (K∆)

Bσ.

whereBσ := µ−1
T (ιB,η(Cσ)). EachBσ is T-equivariantly homeomorphic toDσ × (∂D)[m]\σ and these homeomor-

phisms are patched together to defineΘ∆,B,η.

Remark 2.6. We describe the parts ofZK∆,[m] corresponding to a vertex and a facet of∆ throughΘ∆,B,η. For
σ ∈ F (K∆), let v := ∩i∈σHi be a vertex of∆. Then

Θ∆,B,η(µ
−1
T (ιB,η(v))) = {0}σ × (∂D)[m]\σ.

For a facetHi of ∆, we have

Θ∆,B,η(µ
−1
T (ιB,η(Hi))) =

⋃

i∈σ∈F (K∆)

{0}{i} × Dσ\{i} × (∂D)[m]\σ.

Definition 2.7. For a simplicial complexK on [m], theStanley-Reisner ringis defined by

Z[K] :=
Z[x1, · · · , xm]
〈xσ, σ < K〉

wherexσ :=
∏

i∈σ xi. We identifyZ[x1, · · · , xm] with the cohomology of the classifying space ofT, Z[T∗] :=
H∗(BT,Z). Therefore we set degxi := 2.

The basic fact about theT-equivariant cohomology ring ofZK,[m] is

Theorem 2.8(Davis-Januszkiewicz [6]). There is an isomorphism of graded ringsZ[K] � H∗T(ZK,[m];Z). This
isomorphism is natural in a sense that, for a subcomplex W⊂ K, we have the commutative diagram of short
exact sequences

0 // IK\W
//

�

��

Z[K]

�

��

// Z[W]

�

��

// 0

0 // H∗T(ZK,[m] ,ZW,[m];Z) // H∗T(ZK,[m];Z) // H∗T(ZW,[m];Z) // 0

whereIK\W is the ideal inZ[K] generated by monomials xσ, σ ∈ K\W and H∗T(ZK,[m] ,ZW,[m];Z) is the relative
equivariant cohomology forZW,[m] ⊂ ZK,[m] . The vertical isomorphism on the left is induced from the other
two isomorphisms and the short exactness of rows.

2.2. Symplectic Cutting of a Toric Orbifold. In this section, to fixed the notation, we recall the construction
of toric orbifolds from labeled polytopes [13] and the symplectic cut [12] applied to a toric orbifold.

A labeled polytope(∆, b) is ann-dimensional rational simple polytope∆ in Rn where each facetHi , i =
1, · · · ,m is labeled by a positive integerbi . Here, we assume that theHi are not ghost facets. LetT := U(1)m

andR := U(1)n andt andr their Lie algebras. We identifyt∗ = Rm andr∗ = Rn. Suppose that∆ is described as

∆ = {~x ∈ r∗ | 〈biβi , ~x〉 + ηi ≥ 0, i = 1, · · · ,m} (2.4)

whereβi is the primitive inward normal vector to each facetHi. We regardη := (η1, · · · , ηm) is an element of
t∗. Let B be the integern×mmatrix defined byB := [b1β1, · · · , bmβm] and regard it as the linear mapB : t→ r
and also as the induced map on toriB : T → R. The surjectivity ofB : T → R follows from the simplicity of
∆. The kernelG of B : T → R is connected if and only ifB : Zm → Zn is surjective. LetA : G → T be the
inclusion and letA : g→ t be the induced map on the Lie algebras (A∗ : t∗ → g∗).

Thesymplectic toric (effective) orbifoldX for (∆, b) is given by reducingCm by the standard action ofG at
the regular valueA∗(η). Namely, ifµT : Cm → t∗ is the standard moment map, then the moment map for the
G-action onCm is given byµG := A∗ ◦ µT andX is defined as a quotient stack

X := [M/G], where M := µ−1
G (A∗(η)).



CONNECTED SUMS OF SIMPLICIAL COMPLEXES AND EQUIVARIANT COHOMOLOGY 5

Using the affine embeddingιB,η : r∗ → t∗ defined at (2.2), the moment mapµR for the residualR-action

on X is given byµR : M
µT
−→ ιB,η(r∗)

ι−1
B,η
−→ r∗. Note thatµ−1

T (ιB,η(∆)) = M since (A∗)−1(η) = ιB,η(r∗) and
ιB,η(∆) = ιB,η(r∗) ∩ t∗≥0 wheret∗

≥0 := µT(Cm).
The symplectic cut ofX with respect to the action of a 1-dimensional subtorusL ⊂ R produces two toric

orbifoldsX+ andX− with corresponding polytopes∆+ and∆− that are obtained by cutting the polytope∆ by a
generic rational hyperplaneH . Let γ ∈ r be an integral primitive normal vector toH and findξ ∈ Z to write

H =
{
~x ∈ r∗ | 〈γ, ~x〉 + ξ = 0

}

∆+ =
{
~x ∈ r∗ | 〈γ, ~x〉 + ξ ≥ 0

}
∩ ∆

∆− =
{
~x ∈ r∗ | 〈γ, ~x〉 + ξ ≤ 0

}
∩ ∆.

The elementγ ∈ r defines 1-dimensional subtorusL := Rγ/Zγ ⊂ R and its Lie algebral := Rγ ⊂ r. With
the natural identificationl = R, let µ : C → l∗ be the standard moment mapw 7→ |w|2 and letµ : C →
l∗ (w 7→ −|w|2) be the moment map for the standardL-action onC with the opposite symplectic structure. The
symplectic cutis to reduceX × C andX × C with respect to the anti-diagonal action ofL at the regular value
−ξ. Namely, letd : L ֒→ R × L be the anti-diagonal map sendingl 7→ (l, l−1) and consider the moment map

ϕ+ : M × C
(µR,µ)
−→ r∗ ⊕ l∗

d∗
−→ l∗ (~z,w) 7→ µL(~z) − |w|2

ϕ− : M × C
(µR,µ)
−→ r∗ ⊕ l∗

d∗
−→ l∗ (~z,w) 7→ µL(~z) + |w|2.

Then−ξ is a regular value for bothϕ+ andϕ−. Thus we define

M+ := ϕ−1
+ (−ξ), M− := ϕ−1

− (−ξ) and X+ := [M+/G̃], X− := [M−/G̃],

whereG̃ is the preimage ofd(L) ⊂ R × L under the map (B, id) : T × L→ R × L.
Let α : R × L → R be defined byα(r, l) := rl so that kerα = Im d. Define an affine embeddingια,ξ : r∗ →

r∗ ⊕ l∗ by ια,ξ(~x) := α∗(~x) + (~0, ξ) = (~x, 〈~x, γ〉 + ξ) so thatια,ξ(r∗) = (d∗)−1(−ξ). Then we have

M+ = (µR, µ)
−1(ια,ξ(∆+)) and M− = (µR, µ)

−1(ια,ξ(∆−)).

Thus the moment map for theR-action onX+ andX− are given by

µR,+ : M+
(µR,µ)
−→ ια,ξ(r

∗)
ι−1
α,ξ

−→ r∗ and µR,− : M−
(µR,µ)
−→ ια,ξ(r

∗)
ι−1
α,ξ

−→ r∗.

2.3. M± as Quotients of Moment Angle Complexes bỹG. We use the notation from the previous section.
Consider the integraln × (m+ 1) matrix B̃ := [b1β1, · · · , bmβm, γ] regarded as a map of torĩB : T × L → R.
Then we have the commutative diagram of surjective maps

T × L

(B,id) $$■
■■

■■
■■

■■
B̃ // R

R × L

α

<<②②②②②②②②

Since kerα = d(L), we have ker̃B = G̃. Let Ã : G̃ → T × L be the inclusion. We also denote the map on Lie
algebras byÃ : g̃→ t ⊕ l.

Lemma 2.9. X+ andX− are obtained by reducingCm× C andCm× C by the action ofG̃ at the regular value
Ã∗(η̃) ∈ g̃ whereη̃ = (η1, · · · , ηm, ξ). More precisely, consider the moment maps

µG̃,+ : Cm× C
(µT,µ)
−→ t∗ ⊕ l∗

Ã∗
→ g̃∗ and µG̃,− : Cm× C

(µT,µ)
−→ t∗ ⊕ l∗

Ã∗
→ g̃∗.

Then we have
M+ = µ

−1
G̃,+

(Ã∗(η̃)) and M− = µ
−1
G̃,−

(Ã∗(η̃)).
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Proof. Define the affine embeddingιB̃,η̃ : r∗ → t∗ ⊕ l∗ by ιB̃,η̃(~x) := B̃∗(~x) + η̃ similarly as in (2.2) so that
(Ã∗)−1(Ã∗(η̃)) = ιB̃,η̃(r

∗). We observe thatιB̃,η̃ = (ιB,η, id) ◦ ια,ξ. Indeed,

ιB̃,η̃(~x) = B̃∗(~x) + η̃ = (B∗(~x) + η, 〈~x, γ〉 + ξ) = (ιB,η(~x), 〈~x, γ〉 + ξ) = (ιB,η, id) ◦ ια,ξ(~x).

Now consider the fiber diagrams:

M+

µR,+

��

⊂
// M∆,b × C

(µR,µ)
��

⊂
// Cm× C

(µT,µ)
��

r∗
ια,ξ

//

ιB̃,η̃

66r∗ ⊕ l∗
(ιB,η̃,id)

// t∗ ⊕ l∗

and M−

µR,−

��

⊂
// M∆,b × C

(µR,µ)
��

⊂
// Cm× C

(µT,µ)
��

r∗
ια,ξ

//

ιB̃,η̃

66r∗ ⊕ l∗
(ιB,η̃,id)

// t∗ ⊕ l∗

Since the outer circuit of each diagram is also a fiber diagram, we obtainM+ = (µT, µ)−1(ιB̃,η̃(r
∗)) = µ−1

G̃,+
(Ã∗(η̃))

andM− = (µT, µ)−1(ιB̃,η̃(r
∗)) = µ−1

G̃,−
(Ã∗(η̃)). �

Let K+ andK− be the simplicial complexed associated to∆+ and∆− respectively. Here the common vertex
set ofK± is [̃m] := [m] ∪ {o}.

Corollary 2.10. SinceB̃ and η̃ defines∆+ as in (2.4), we have M+ = Z∆+,B̃,η̃ as in Definition 2.4. Therefore
there is aT × L-equivariant homeomorphismΘ

∆+,B̃,η : M+ →ZK+,[̃m] defined at (2.3).

Corollary 2.11. There is a canonicalT × L-equivariant homeomorphismΨ : M− � ZK−,[̃m].

Proof. The mapJ : Cm × C → Cm × C (~z,w) 7→ (~z,w) is a T × L-equivariant homeomorphism with respect
to the involutionj : T × L → T × L, (t, l) 7→ (t, l−1). The imageJ(M−) is naturallyZ

∆−,B̃′,η̃′ where B̃′ :=
[b1β1, · · · , bmβm,−γ] and η̃′ := (η1, · · · , ηm,−ξ). SinceJ also induces aT× L-equivariant involution ofZK−,[̃m]
with respect toj : T × L→ T × L, we have an honestT × L-equivariant homeomorphism:

Ψ : M−
J
−→ J(M−) = Z∆−,B̃′,η̃′

Θ
∆−,B̃′ ,η̃′

−→ ZK−,[̃m]

J
−→ ZK−,[̃m] .

�

Corollary 2.12. TopologicallyX+ � [ZK+,[̃m]/G̃] andX− � [ZK−,[̃m]/G̃]

2.4. Gluing along the toric suborbifold. Let Ho = ∆+ ∩ ∆− ⊂ r
∗. Consider the obvious inclusionsh+ :

Cm × {0} → Cm × C and h− : Cm × {0} → Cm × C. Let M+o := (µT, µ)−1(ιB̃,η̃(Ho)) ⊂ Im h+ and M−o :=
(µT, µ)−1(ιB̃,η̃(Ho)) ⊂ Im h−. Define the suborbifold corresponding toH0 in X+ andX− by

Xo := [Mo/G̃] whereMo := h−1
+ (M+o ) = h−1

− (M−o ).

together with the embeddingh+ : Mo ֒→ M+ andh− : Mo ֒→ M−. We obtained the spaceM+ ∪Mo M− which
is given by gluingM+ andM− alongMo with respect toh+ andh−.

On the other hand, sinceK+ andK− have the common vertex set̃[m], we can naturally glue them to obtain
a simplicial complexK+ ∪ K− whereW := K+ ∩ K− = starK+(o) = starK−(o) where starK±(o) is the smallest
simplicial complex containing all faces inK± that containo. It follows from Definition 2.3 thatZK+∪K− =

ZK+ ∪ ZK− andZW = ZK+ ∩ ZK− where we suppressed the vertex set̃[m]. The image ofMo underΘ∆+,B̃,η̃
andΨ coincide with

Z◦W :=
⋃

o∈σ∈F (K+)

{0}{o} × Dσ\{o} × (∂D)[̃m]\σ
= {0}{o} ×


⋃

o∈σ∈F (K+)

Dσ\{o} × D[̃m]\σ

 .

It is a subspace of

ZW =

⋃

σ∈F (W)

Dσ × (∂D)[̃m]\σ
= D{o} ×


⋃

o∈σ∈F (W)

Dσ\{o} × D[̃m]\σ

 .
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Therefore thẽT-equivariant homeomorphismΘ+ := Θ∆+,B̃,η̃ andΨ induces ãT-equivariant map

Φ : M+ ∪Mo M− →ZK+∪K− .

Lemma 2.13. For any subgroupQ ⊂ T̃, the pullbackΦ∗ : H∗Q(ZK+∪K− ,Z) → H∗Q(M+ ∪Mo M−,Z) is an
isomorphism.

Proof. We observe that there is aT̃-equivariant deformation retract fromZW toZ◦W, thereforeΦ|∗Mo
: H∗Q(ZW) �

H∗Q(Mo). The claim follows from the diagram of the Mayer-Vietoris sequences and the Five Lemma:

H∗−1
Q (M+)⊕H∗−1

Q (M−)
h∗+−h∗− // H∗−1

Q (Mo) // H∗Q(M+ ∪Mo M−) // H∗Q(M+)⊕H∗Q(M−)
h∗+−h∗− // H∗Q(Mo)

H∗−1
Q (ZK+)⊕H∗−1

Q (ZK−)

�(Θ∗+,Ψ
∗)

OO

// H∗−1
Q (ZW) //

�

OO

H∗Q(ZK+∪K−)

Φ
∗

OO

// H∗Q(ZK+)⊕H∗Q(ZK−)

�(Θ∗+,Ψ
∗)

OO

// H∗Q(ZW)

�

OO

�

Lemma 2.14.

2.5. Computing the Cohomology ofX. The original toric orbifoldX can also be defined by adding one more
trivial inequality for∆:

〈~x, γ〉 + ξ′ ≥ 0, ξ′ ≫ 0.

Let η̃′ := (η1, · · · , ηm, ξ′) and reduceCm× C by the action ofG̃ at the regular valuẽA∗(η̃′). We have

X = [M′/G̃] where M′ := µ−1
G̃

(Ã∗(η̃′)).

ThenM′ = Z∆,B̃,η̃′ and so we have thẽT-equivariant homeomorphismΘ := Θ∆,B̃,η̃′ : M′ → ZK∆,[̃m]. Thus we

can identifyX � [ZK∆,[̃m]/G̃].

Now for any subgroupQ ⊂ T̃, there are two long exact sequences to compute the (equivariant) cohomology
of M′ � ZK∆,[̃m]. One is the Mayer-Vietoris Sequence as in the proof of Lemma 2.13 and the other is the
relative cohomology sequence

· · · // H∗Q(ZK+∪K− ,ZK∆) r∗1

// H∗Q(ZK+∪K−) r∗2

// H∗Q(ZK∆) // · · · (2.5)

Note that there is an isomorphismT : H∗−2
Q (ZW)→ H∗Q(ZK+∪K− ,ZK) defined through the Thom isomorphism

forZ◦W ⊂ ZW and obvious pullback maps:

H∗−2
Q (ZW)

�

// H∗−2
Q (Z◦W)

�

Thom // H∗Q(ZW,ZW\Z
◦
W)

�

// H∗Q(ZW,ZDelo W) H∗Q(ZK+∪K− ,ZK∆).�

oo

Furthermore, we also have the natural mapsT± : H∗−2
Q (ZW) → H∗Q(ZK±) given as a composition ofT and

obvious pullback maps:

T± : H∗−2
Q (ZW)

T

�

// H∗Q(ZK+∪K− ,ZK∆) r∗1

// H∗Q(ZK+∪K−) // H∗Q(ZK±).

If the Mayer-Vietoris sequence and the relative cohomologysequence split into short exact sequences, more
precisely, if the odd degrees of the cohomology ofZW,ZK± andZK∆ vanish, thenH∗Q(ZK∆) is isomorphic to
the quotient of the kernel ofH∗Q(ZK+∪K− )→ H∗Q(ZK+)⊕H∗Q(ZK−) by the image of (T+,T−). SinceT± can be
identified with the pushforward mapsh±+ respectively, we also have thatH∗Q(M′) is isomorphic to the quotient
of the kernel ofh∗+ − h∗− by the image of (h+∗, h−∗). We state this result for the case that we are interested in:

Theorem 2.15.Recall the embeddingh± : Mo→ M±. We have

H∗
T̃
(M′;Z) �

ker
(
h∗+ − h∗− : H∗

T̃
(M+;Z) ⊕ H∗

T̃
(M−;Z)→ H∗

T̃
(Mo;Z)

)

Im
(
(h+∗, h−∗) : H∗

T̃
(Mo;Z)→ H∗

T̃
(M+;Z) ⊕ H∗

T̃
(M−;Z)

)
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Furthermore

H∗
G̃

(M′;Q) �
ker

(
h∗+ − h∗− : H∗

G̃
(M+;Q) ⊕ H∗

G̃
(M−;Q)→ H∗

G̃
(Mo;Q)

)

Im
(
(h+∗, h−∗) : H∗

G̃
(Mo;Q)→ H∗

G̃
(M+;Q) ⊕ H∗

G̃
(M−;Q)

) ,

which is also true overZ-coefficients if the cohomology rings of Mo,M±,M′ are concentrated in even degrees.

Proof. The first claim follows, since the odd degree ofT̃-equivariant cohomology vanishes. The second claim
follows from the fact that the odd degree of rational ordinary cohomology of toric orbifolds vanishes [5, 11].�

Remark 2.16. Let T act onM and suppose the action ofG ⊂ T is locally free. This defines anR := T/G-
action on an orbifold [M/G]. The cohomologyH∗([M/G]; Z) is defined to beH∗G(M;Z) and the equivariant
cohomologyH∗R([M/G]; Z) is defined to beH∗T(M;Z). We refer to Edidin [7] for the details. With the notation
of the connected sum of rings which is explained in Definition4.1, Theorem 2.15 is exactly our main theorem
described in the introduction.

2.6. Computing Cohomology ofX−. Similarly we can consider the following two long exact sequences in
terms of moment angle complexes and interpret them in terms of level sets of moment maps. Again we suppress
the vertex set̃[m] from the notation of moment angle complexes. LetK̃ := K+ ∪ K− = K ∪ K+. We have the
Mayer-Vietoris Sequence

· · · → H∗−1
Q (ZK+∩K)→ H∗Q(ZK̃)→ H∗Q(ZK+) ⊕ H∗Q(ZK)→ H∗Q(ZK+∩K)→ H∗+1

Q (ZK̃)→ · · · ; (2.6)

and the relative cohomology sequence

· · · → H∗−1
Q (ZK−)→ H∗Q(ZK̃,ZK−)→ H∗Q(ZK̃)→ H∗Q(ZK−)→ H∗+1

Q (ZK̃,ZK)→ · · · . (2.7)

Let B̃, η̃′ and M′ be the ones defined in Section 2.5. LetN+ := (µT, µ)−1(ιB̃,η̃′(∆+)). Since∆+ ⊂ ∆, we have
the obvious inclusionf : N+ ⊂ M′. We can choose a cubic subdivision of∆ in such a way thatΘ∆,B̃,η̃′(N+) =
ZK∩K+. Let g+ : N+ → M+ be the natural inclusion defined byN+ � ZK∩K+ ֒→ ZK+ � M+. Thus the map
H∗Q(ZK+) ⊕ H∗Q(ZK)→ H∗Q(ZK+∩K) in (2.6) can be replaced by

H∗Q(M+) ⊕ H∗Q(M′)
g∗+−f∗

−→ H∗Q(N+);

On the other hand, observe that the inclusions of pairs (K,K ∩ K−) ⊂ (K̃,K−) ⊃ (K+,W) ⊃ (K+ ∩ K,W∩ K)
induces isomorphism by pullback on relative cohomology:

H∗Q(ZK̃ ,ZK−) � H∗Q(ZK ,ZK∩K−) � H∗Q(ZK+ ,ZW) � H∗Q(ZK+∩K ,ZW∩K).

Let N− := (µT, µ)−1(ιB̃,η̃′(∆−)) and No := (µT, µ)−1(ιB̃,η̃′(H0)) so that, with the same cubic subdivision of∆
used above, we haveΘ

∆,B̃,η̃′(N−) = ZK∩K− andΘ
∆,B̃,η̃′(No) = ZK∩W. Then by the functoriality, the map

H∗Q(ZK̃,ZK−)→ H∗Q(ZK̃)→ H∗Q(ZK+) ⊕ H∗Q(ZK) can be replaced by the following map:

δ : H∗Q(N+,No)
diag
−→ H∗Q(N+,No) ⊕ H∗Q(N+,No) � H∗Q(M+,Θ

−1
∆+,B̃,η̃

(ZW)) ⊕ H∗Q(M,N−)→ H∗Q(M+) ⊕ H∗Q(M).

Thus similarly to Theorem 2.15, we obtain the following theorem:

Proposition 2.17(c.f. [10]). We have

H∗
T̃
(M−;Z) �

ker
(
(g∗+,−f∗) : H∗

T̃
(M+;Z) ⊕ H∗

T̃
(M;Z)→ H∗

T̃
(N+;Z)

)

Im
(
δ : H∗

T̃
(N+,No;Z)→ H∗

T̃
(M+;Z) ⊕ H∗

T̃
(M;Z)

) .

Furthermore, if H∗
G̃

(M;Z)→ H∗
G̃

(N+;Z) or H∗
G̃

(M+;Z)→ H∗
G̃

(N+;Z) is surjective, then

H∗
G̃

(M−;Z) �
ker

(
(g∗+,−f∗) : H∗

G̃
(M+;Z) ⊕ H∗

G̃
(M;Z)→ H∗

G̃
(N+;Z)

)

Im
(
δ : H∗

G̃
(N+,No;Z)→ H∗

G̃
(M+;Z) ⊕ H∗

G̃
(M;Z)

)
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Remark 2.18. The above proposition is a special case of what is proved by Hausmann-Knutson [10] for more
general symplectic cuts. They used the projectionp : N+ → M+ by quotienting the boundary ofN+ by a circle
action, instead of the inclusiong+ : N+ ֒→ M+ in our case. It is actually easy to see thatp andg+ are homotopy
equivalent. Namely,

N+ � ZK∩K+,[̃m] = (∂D){o} ×ZK∩K+,[m] .

is a deformation retract of

N•+ � Z
•

K∩K+,[̃m]
= (D\

1
2

D){o} ×ZK∩K+,[m]

whereD\1
2D = {z∈ C | 1

2 ≤ |z| ≤ 1}. Defineht : N•+ → ZK+,[̃m] , 0 ≤ t ≤ 1 by sendingD\1
2D→ D via

re2πiθ 7→

(
1

1+ t

) (
r −

1
2

)
e2πiθ.

3. Connected sum of simplicial complexes

In this section, we define the (strong) connected sumK1 #ZK2 of simplicial complexesK1 andK2 on a vertex
set [m]. It is motivated by the simplicial complexes of the polytopes obtained by the symplectic cut of a toric
orbifold. We show that the case of the cutting polytope defines a strong connected sum of simplicial complexes.

3.1. (Strong) Connected Sums.

Definition 3.1 (Connected Sum). Recall our notation from Definition 2.1. LetK1 andK2 be simplicial com-
plexes on [m]. Let Z ⊂ K1∩K2 be a subset not containing the empty set and suppose thatOK1∪K2(Z) ⊂ K1∩K2.
Theconnected sum K1 #ZK2 of K1 andK2 alongZ is defined by

K1 #ZK2 := DelZ(K1 ∪ K2).

Note that sinceOK(Z) ⊂ K1 ∩ K2 andK1 ∩ K2 is a subcomplex, starK(Z) = OK(Z) ⊂ K1 ∩ K2.

Example 3.2(Connected sum along a facet p.24 [3]). Let K1 andK2 be two pure simplicial complexes. Let
σi ∈ F (Ki). If we identify the vertex sets ofσ1 andσ2, we haveK1 ∩ K2 = σ where we denoteσ = σ1 = σ2.
Let Z := {σ} and thenOK1∪K2(Z) = {σ} ⊂ K1 ∩ K2. The connected sumK1 #σK2 := K1 ∪ K2\{σ} is exactly the
“connected sum” defined in [3].

Example 3.3. Let v(K1) = {a, b, c, d} andv(K2) = {a, b, c, e}. LetF (K1) = {abc, bcd} andF (K2) = {abc, ace}.
ThenF (W) = {abc} and letZ = {abc} = OK(Z). This is a connected sum which is a connected sum in the sense
of [3]. The result is not pure.

Thestrong connected sumis a connected sum with an extra condition on the partZ we delete from the union
K1 ∪ K2. The algebraic justification comes in the later section and here we show the following lemma.

Lemma 3.4. Let W be a subcomplex of a simplicial complex K. Let

Z := {τ ∈ K | τ ∪ σ < K,∀σ ∈ K\W}. (3.1)

Then OK(Z) = Z and Z=W\(K\W).

Proof. By definition, if τ ∈ OK(Z), then there isτ′ ∈ Z such thatτ′ ⊂ τ. Thus for allσ ∈ K\W, σ ∪ τ < K,
because if otherwiseσ ∪ τ′ ∈ K. This showsOK(Z) = Z. To showZ = W\(K\W), first observe thatZ ⊂ W.
Indeed, ifτ ∈ K\W, thenτ ∪ τ = τ ∈ K and soτ < Z. If τ ∈ K\W, then there isσ ∈ K\W such that
τ ⊂ σ and soτ ∪ σ = σ ∈ K. ThusZ ⊂ W\(K\W). On the other hand, letτ ∈ W\K\W. If τ < Z, then
there isσ ∈ K\W such thatτ ∪ σ ∈ W. This meansτ ∈ starK(K\W). However, recall from Definition
2.1 that starK(K\W) = OK(K\W) = K\W. Thusτ ∈ K\W which is a constradiction. Thusτ ∈ Z and so
W\K\W ⊂ Z. �

Definition 3.5 (Strong connected sum). A connected sumK1 #ZK2 is calledstrong if K1,K2 andK1 ∩ K2 are
pure with the same dimension and

Z =W\(K1\W) =W\(K2\W)

Algebraic justification of the following definition will be explained in Section 4.2.
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3.2. Polytope cutting and connected sum.

Definition 3.6 (c.f. Section 1.1 [3]). A polytope∆ is defined to be the convex hull of a finite set of points in
Rn. Suppose that

∆ = {~x ∈ Rn | 〈~x, λi〉 + ηi ≥ 0, i = 1, · · · ,m}.

for someλi ∈ (Rn)∗ andλi ∈ R. A polytope∆ is simpleif the bounding hyperplanes̃Hi := {〈~x, λi〉 + ηi = 0}
are in general position, i.e. if the dimension of∆ is r, then there are exactlyr hyperplanesH̃i meeting at each
vertex of∆. We callHi := ∆ ∩ H̃i a facetfor eachi = 1, · · · ,m. Note thatHi is r − 1 dimensional or empty. If
Hi is empty, we call it aghost facet.

For a simple polytope∆ with facetsHi , i = 1, · · · ,m, the associated simplicial complexK∆ is a simplicial
complex on [m] defined by

σ ⊂ K∆ ⇔ σ = ∅ or
⋂

i∈σ

Hi , ∅.

Definition 3.7 (Generic cut). Let ∆ ⊂ Rn be an-dimensional simple polytope with non-ghost facetsHi , i =
1, · · · ,m. Consider a hyperplane

H := {~x ∈ Rn | 〈~x, λ0〉 + ξ = 0}

and the corresponding closed half spacesH̃+ = {〈~x, λ0〉 + ξ ≥ 0} andH̃− = {〈~x, λ0〉 + ξ ≤ 0}. A generic cutof
∆ is given by the pair (∆,H) such thatH , H̃1, · · · , H̃m are in general position andHo := H ∩ ∆ , ∅. In this
case,∆+ := ∆ ∩ H̃+ and∆− := ∆ ∩ H̃+ are non-empty simple polytopes.

The simplicial complexesK∆,K+,K− associated to∆,∆+,∆− to be defined as simplicial complexes defined
on the vertex set̃[m] := [m] ∪ {o}:

K∆ := {σ ⊂ [̃m] | σ ⊂ [m] and ∩i∈σ Hi , ∅} ∪ {∅}

K+ := {σ ⊂ [̃m] | ∩i∈σ (Hi ∩ ∆+) , ∅} ∪ {∅}

K− := {σ ⊂ [̃m] | ∩i∈σ (Hi ∩ ∆−) , ∅} ∪ {∅}.

Lemma 3.8.

K+ ∩ K− = starK+∪K−(o) = starK+(o) = starK−(o) (3.2)

(K+ ∪ K−)\K∆ = OK+∪K−(o) = OK+(o) = OK−(o) (3.3)

Proof. By definition,σ ∈ K+ ∩ K− iff σ = ∅ or (∩i∈σHi) ∩ ∆+ ∩ ∆− , ∅. Since∆+ ∩ ∆− = Ho, σ ∈ K+ ∩ K−
iff σ = ∅ or (∩i∈σHi ∩ ∆+) ∩ Ho = (∩i∈σHi ∩ ∆−) ∩ Ho , ∅. Therefore

K+ ∩ K− = {σ ∈ K+ | σ ∪ {o} ∈ K+}︸                         ︷︷                         ︸
starK+ (o)

= {σ ∈ K− | σ ∪ {o} ∈ K−}︸                         ︷︷                         ︸
starK− (o)

.

By definition and∆+ ∪ ∆− = ∆, σ ∈ (K+ ∪ K−)\K∆ iff σ ∈ K+ ∪ K− ando ∈ σ. Thus

(K+ ∪ K−)\K∆ = {σ ⊂ ˜[m] | o ∈ σ, andσ ∈ K+ ∪ K−} = OK+∪K−(o).

On the other hand, wheno ∈ σ, σ ∈ K+ iff σ ∈ K−. Indeed,∩i∈σ(Hi ∩ ∆+) = (∩i∈σHi)∩Ho = ∩i∈σ(Hi ∩ ∆−) if
o ∈ σ. ThusOK+∪K−(o) = OK+(o) = OK−(o). �

Theorem 3.9. If (∆, H̃o) is a generic cut, then K∆ is the strong connected sum K+ #ZK− where Z= OK+∪K− (o).

Proof. From Lemma 3.8, it is clear thatK∆ is the connected sumK+ #ZK−. We need to showOK±(o) =
W\(K±\W) whereW := K+ ∩ K− = starK+(o) = starK−(o) (See Lemma 3.8). Supposeτ ∈ OK+(o). Since
{o} ∪ σ < K+ for all σ ∈ K+\W, we haveτ ∪ σ < K+ for all σ ∈ K+\W. ThusOK+(o) ⊂ W\(K+\W) (See
Lemma 3.4). To proveW\(K+\W) ⊂ OK+(o), we show thatτ ∈ starK+(o)\OK+(o) implies τ ∈ K+\ starK+(o).
Sinceτ ∈ starK+(o) ando < τ, we haveτ ⊂ B such that (∩i∈τHi) ∩ Ho , ∅. Since the cutting is generic,
dim∩i∈τHi ≥ 1 and∩i∈τHi has a vertex contained in∆+ but not contained inH0. Let∩i∈σHi be such a vertex.
Thenσ ∈ K+\W. Sinceτ ⊂ σ, τ ∈ K+\W. The same argument may be used to proveOK−(o) =W\(K−\W). �
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Lemma 3.10. For σ ⊂ [̃m], let Fσ := ∩i∈σHi . Let Z= {σ ⊂ [̃m] | Fσ , ∅ and Fσ ⊂ ∆+\Ho}.

K+ ∩ K∆ = Z (3.4)

(K+ ∪ K∆)\K− = Z (3.5)

Proof. K+ ∩ K∆ consists of∅ andσ ⊂ [m] such thatFσ ∩ ∆+ , ∅. SinceZ ⊂ K+ ∩ K∆, we haveZ ⊂ K+ ∩ K∆.
Suppose thatσ ∈ K+ ∩ K∆ andσ < Z. SinceFσ 1 ∆+\Ho andFσ ∩ ∆+ , ∅, we haveFσ ∩ Ho , ∅. Thus
dimFσ ≥ 1 and so there is a vertexFτ of Fσ contained in∆+\Ho, which meansτ ∈ Z. Sinceσ ⊂ τ, we have
σ ∈ Z. ThusK+ ∩ K∆ ⊂ Z.

SinceFσ ⊂ ∆+\Ho iff Fσ ∩ ∆− = ∅, it follows that (K+ ∪ K∆)\K− = Z. �

Lemma 3.11. Let Z= {σ ⊂ [̃m] | Fσ , ∅ and Fσ ⊂ ∆+\Ho}.

K+\Z = OK+(o) (3.6)

K∆\Z = {σ ⊂ [̃m] | Fσ , ∅ and Fσ ⊂ ∆−\Ho}. (3.7)

Proof. By definition and (3.6),σ ∈ K+\Z if and only if o ∈ σ andFσ , ∅. ThusK+\Z = OK+(o). Also by
definition and (3.6),σ ∈ K∆\Z if and only if Fσ , ∅ andFσ ⊂ ∆−\Ho. �

Theorem 3.12.Let (∆, H̃o) be a generic cut and let Z= {σ ⊂ [̃m] | Fσ , ∅ and Fσ ⊂ ∆+\Ho}. Then K− is the
strong connected sum K+ #ZK∆.

Proof. From Lemma 3.10,K− is the connected sumK+ #ZK∆. We only need to prove it is strong. LetW :=
Z = K+ ∩ K∆. First we show thatZ = W\(K+\W) = W\starK+(o). Supposeσ ∈ Z. If σ ∈ starK+(o), then there
must beτ ∈ OK+(o) such thatσ ⊂ τ. Sinceo ∈ τ, we haveFσ ∩ Ho , ∅ which contradicts withFσ ⊂ ∆+\Ho.
ThusZ ⊂ W\starK+(o). On the other hand, ifσ ∈ W\starK+(o), thenFσ ∩ ∆+ , ∅ and there is no vertex of
Fσ that lies onHo. ThereforeFσ ⊂ ∆+\Ho, i.e. σ ∈ Z. Finally we show thatW\(K+\W) = W\(K∆\W). Let
∅ , σ ∈W∩K+\W. Thenσ ⊂ [m] andFσ ∩Ho , ∅. Thus dimFσ ≥ 1 and there is a vertexFτ of Fσ that lies
in ∆−\Ho. Sinceτ ∈ K∆\Z, we haveσ ∈ K+\W. On the other hand, suppose that∅ , σ ∈ W ∩ K∆\W, then
Fσ∩∆+ , ∅ and there is a vertex ofFσ that lies in∆−\Ho. ThusFσ∩Ho , ∅which impliesσ ∈ starK+(o). �

4. Stanley-Reisner Rings and Connected Sum

We study the algebraic structure of the Stanley-Reisner ring of the connected sumK1 #ZK2 defined in the
previous section. The algebraic model is theconnected sum of ringsintroduced and studied by Ananthnarayan-
Avramov-Moore [1]. In Section 4.1, we review the definitionsand show that the Stanley-Reisner ringZ[K1 #ZK2]
is the connected sum of the Stanley-Reisner ring ofK1 andK2. In Section 4.2, we study the Gorensteinness
of Z[K1 #ZK2] in terms of the ones of ofK1, K2 andK1 ∩ K2 for strong connected sums. Here Corollary 4.8
is our motivation to definestrongconnected sums. In Section 4.3, we discuss how those properties descend to
Torsion algebras of Stanley-Reisner rings.

4.1. Connected Sum of Rings.

Definition 4.1 (Fiber Product and Connected Sum of Rings). Let ǫA : A → C and ǫB : B → C be ring
homomorphisms. Then thefiber productA ×C B is the subring ofA ⊕ B defined byA ×C B := {(x, y) ∈
A⊕B | ǫA(x) = ǫB(y)}. Now take aC-moduleV and regard it as aA-module and aB-module throughǫA andǫB.
Consider the commutative diagram

V

ιB
��

ιA // A

ǫA
��

B
ǫB

// C

(4.1)

whereιA andιB are homomorphisms ofA-modules andB-modules. Theconnected sum of the diagram (4.1) is
given by

A #V
CB :=

A ×C B
{(ιA(v), ιB(v)) ∈ A ⊕ B | v ∈ V}

.



12 TOMOO MATSUMURA AND W. FRANK MOORE

Remark 4.2. One may also view the definition of the connected sum of rings as arising via the following exact
sequences:

0 −→ A ×C B −→ A ⊕ B
(ǫA,−ǫB)
−→ C (4.2)

V −→ A ×C B −→ A #V
CB −→ 0 (4.3)

Theorem 4.3. Let K̃ := K1∪K2 and W:= K1∩K2 where K1 and K2 are simplicial complexes on[m]. There is
a natural isomorphismθ : Z[K̃] → Z[K1] ×Z[W] Z[K2] defined byθ(r) = (f1(r), f2(r)) wheref1 : Z[K̃] → Z[K1]
and f2 : Z[K̃] → Z[K2] are the obvious quotient maps.

Proof. ObserveZK̃ = ZK1 ∪ ZK2 andZW = ZK1 ∩ ZK2. Then we can apply the Mayer-Vietoris Sequence
for T-equivariant cohomology. Since there are no odd degree classes, the sequence splits into short exact
sequences. By Theorem 2.8, we have

0→ Z[K̃]
(f1,f2)
−→ Z[K1] ⊕ Z[K2]

(g1,−g2)
−→ Z[W] → 0

whereg1 andg2 are the obvious quotient maps. The kernel (g1, g2) is the fiber product and soθ gives the
isomorphism. �

Theorem 4.4. Let K1 #ZK2 be a connected sum. Then there is a natural isomorphismξ : Z[K1] #JZ
Z[W]Z[K2] →

Z[K1 #ZK2] whereJZ is the ideal inZ[W] generated by xσ, σ ∈ Z.

Proof. Let K := K1 #ZK2 = DelZ(K̃). The relative cohomology sequence for the pair (ZK̃ ,ZK) splits into
short exact sequence. By Theorem 2.8 and Theorem 4.3, we obtain

0→ IZ

θ|IZ
−→ Z[K1] ×Z[W] Z[K2]

h◦θ−1

−→ Z[K] → 0

whereh : Z[K̃] → Z[K] is the obvious quotient map andIZ is the ideal inZ[K̃] generated byxσ, σ ∈ Z. Since
OK̃(Z) ⊂ W, j : IZ → JZ, xσ 7→ xσ is an isomorphism ofZ[x1, · · · , xm]-modules. Since the connected sum
Z[K1] #JZ

Z[W]Z[K2] is defined to beZ[K1] ×Z[W] Z[K2]/θ ◦ j−1(JZ), the mapξ is the isomorphism induced from

h ◦ θ−1. �

4.2. Connected sum of Gorenstein rings.Let W be a subcomplex of a simplicial complexK on [m]. Let
IK\W be a kernel of the quotient mapZ[K] → Z[W].

Lemma 4.5. The annihilator(0 :Z[K] IK\W) is generated by xσ, σ ∈W\(K\W).

Proof. The annihilator is generated byxσ whereσ ∈ K s.t.σ ∪ τ < K,∀τ ∈ K\W. The claim is a corollary of
Lemma 3.4. �

The following is a basic fact about the canonical module of a Cohen-Macaulay ring [2, Theorem 3.3.7]:

Lemma 4.6. Suppose that W and K are pure with the same dimension. If K is Gorenstein and W is Cohen-
Macaulay, then(0 :Z[K] I) is a canonical module ofZ[W].

From [1], we have the following theorem.

Theorem 4.7. In the definition 4.1,A #V
CB is Gorenstein ifA andB are Gorenstein,C is Cohen-Macaulay and

V is a canonical module ofC.

As a corollary, together with Lemma 4.5 and 4.6, we have

Corollary 4.8. Let K1 and K2 are simplicial complexes on[m] such that K1, K2 and W := K1 ∪ K2 are pure
with the same dimension. Assume that K1,K2 are Gorenstein and W is Cohen-Macaulay. If K1 #ZK2 is a strong
connected sum, thenZ[K1 #ZK2] is Gorenstein.

The above corollary is the algebraic motivation to have Definition 4.1 of the strong connected sum.
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4.3. Tor algebra of connected sums.Let K1 #Z
WK2 be a connected sum and letK̃ = K1∪K2 andK = K1 #Z

WK2.
Let [m] = {1, · · · ,m} be the vertex set of̃K. Theorem 4.3 and Theorem 4.4 imply that there are two short exact
sequences of algebras and modules overZ[x1, · · · , xn]:

0→ Z[K̃] → Z[K1] ⊕ Z[K2] → Z[W] → 0 (4.4)

0→ IZ → Z[K̃] → Z[K] → 0 (4.5)

Consider an integern × m matrix B of rank n. The choice of suchB bijectively corresponds to a choice of a
surjective mapT := U(1)m → R := U(1)n. DenoteZ[T∗] := Z[x1, · · · , xm]. Let ui :=

∑m
j=1 Bi j x j and denote

Z[R∗] := Z[u1, · · · , un] ⊂ Z[T∗]. Consider the Koszul complexKR given by the exterior algebra generated by
ξ1, · · · , ξn overZ[R∗]. By tensoringKR to the short exact sequences above, we obtain the short exactsequences
of complexes, therefore we have the long exact sequences:

· · · → TorZ[R∗]
i+1 (Z[W],Z)→ TorZ[R∗]

i (Z[K̃],Z)→ TorZ[R∗]
i (Z[K1],Z)⊕TorZ[R∗]

i (Z[K2],Z)→ TorZ[R∗]
i (Z[W],Z)→ · · ·

(4.6)
· · · → TorZ[R∗]

i+1 (Z[K],Z)→ TorZ[R∗]
i (IZ,Z)→ TorZ[R∗]

i (Z[K̃],Z)→ TorZ[R∗]
i (Z[K],Z)→ · · · (4.7)

The following claims can be easily observed:

Lemma 4.9. Suppose thatTorZ[R∗]
1 (Z[W],Z) = 0. ThenTorZ[R∗]

1 (Z[K̃],Z) = 0 if and only ifTorZ[R∗]
1 (Z[K1],Z) =

TorZ[R∗]
1 (Z[K2],Z) = 0. In this case,

TorZ[R∗]
0 (Z[K̃],Z) = TorZ[R∗]

0 (Z[K1],Z) ×TorZ[R∗ ]
0 (Z[W],Z) TorZ[R∗]

0 (Z[K2],Z).

Lemma 4.10. If TorZ[R∗]
1 (Z[K1],Z) = TorZ[R∗]

1 (Z[K2],Z) = TorZ[R∗]
1 (Z[K],Z) = TorZ[R∗]

1 (Z[W],Z) = 0, then

TorZ[R∗]
0 (Z[K],Z) = TorZ[R∗]

0 (Z[K1],Z) #
TorZ[R∗ ]

0 (IZ,Z)

TorZ[R∗ ]
0 (Z[W],Z)

TorZ[R∗]
0 (Z[K−],Z).

Remark 4.11. By Proposition 2.3 [9], Tor1 = 0 implies Tori = 0 for all i > 0. Therefore, in the above lemmata,
we actually have TorZ[R∗]

0 (Z[K̃],Z) = TorZ[R∗]
∗ (Z[K̃],Z) and TorZ[R∗]

∗ (Z[K],Z) = TorZ[R∗]
0 (Z[K],Z).

Lemma 4.12. Suppose that K1,K2 are defined by a generic cut of a polytope andTorZ[R∗]
1 (Z[W],Z) = 0. If

TorZ[R∗]
1 (Z[K],Z) = 0, thenTorZ[R∗]

1 (Z[K1],Z) = TorZ[R∗]
1 (Z[K2],Z) = 0.

Proof. In this case, observe thatIZ � Z[W] asZ[T∗]-modules. Thus TorZ[R∗]
1 (Z[W],Z) = TorZ[R∗]

1 (Z[K],Z) = 0

implies TorZ[R∗]
1 (Z[K̃],Z) = 0 and hence TorZ[R∗]

1 (Z[K1],Z) = TorZ[R∗]
1 (Z[K2],Z) = 0. �

Remark 4.13. The opposite statement of Lemma 4.12 is not true. We give an example which shows that
TorZ[R∗]

1 (Z[W],Z) = TorZ[R∗]
1 (Z[K1],Z) = TorZ[R∗]

1 (Z[K2],Z) = 0 does not imply TorZ[R∗]
1 (Z[K],Z) = 0.

Consider the following simplicial complexes

K •4

PP
PP

PP
PP

PP
PP

PP
P

•1

⑤⑤⑤⑤⑤⑤⑤⑤

✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵

•3

◦5

•2

K1 •4

PP
PP

PP
PP

PP
PP

PP
P

•1

⑤⑤⑤⑤⑤⑤⑤⑤

✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵

•3

•5

⑤⑤⑤⑤⑤⑤⑤⑤

⑤⑤
⑤⑤
⑤⑤
⑤⑤

•2

K2 ◦4

◦1 •3

•5

⑤⑤⑤⑤⑤⑤⑤⑤

⑤⑤
⑤⑤
⑤⑤
⑤⑤

•2

K is a strong connected sum ofK+ andK− alongW := K1 ∩ K2. Consider the following 2× 5 matrixB:

B =

(
1 0 −2 0 −1
0 2 0 −1 1

)
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By direct computation (we usedMacaulay2), we find that

TorZ[R∗]
1 (Z[W],Z) = TorZ[R∗]

1 (Z[K1],Z) = TorZ[R∗]
1 (Z[K2],Z) = 0

but TorZ[R∗]
1 (Z[K],Z) , 0.

The above example comes from cutting a labeled polytope (∆, b) that corresponds to the direct product of
weighted projective space,CP1

12× CP
1
12:

∆ •
H4

H1

◦ •

H3◦ ◦

•
H2
◦

H5

•

∆1 •
H4

H1

◦ •

H3

◦ •

•
H2
•

H5
⑧⑧⑧⑧⑧⑧⑧
◦

∆2 ◦
H4

H1

◦ ◦

◦ •

H3

◦ •

H5
⑧⑧⑧⑧⑧⑧⑧

H2
•

The polytope∆ is labeled byb = (1, 2, 2, 1), the cutting facetH5 is labeled by 1, and the matrixB actually
corresponds to the extendedB-matrix B̃ in the notation of Section 2.
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