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CONNECTED SUMS OF SIMPLICIAL COMPLEXES AND EQUIVARIANT COH OMOLOGY
TOMOO MATSUMURA AND W. FRANK MOORE

AsstracT. In this paper, we discuss tlnnected sum K#° K, of simplicial complexe; andK,, as well as
define the notion of atrongconnected sum. Geometrically, the connected sum is metiiat Lerman’s symplec-
tic cut applied to a toric orbifold, and algebraically, itrsotivated by the connected sum of rings introduced by
Ananthnarayan-Avramov-Moorel[1].

We show that the Stanley-Reisner ring of a connected§u#f K is the connected sum of the Stanley-Reisner
rings of K; andK; along the Stanley-Reisner ring & N K,. The strong connected suka #°K; is defined in
such a way that wheK;, K, are Gorenstein, and is a suitable subset ¢f; N K,, then the Stanley-Reisner ring
of Ky #K, is Gorenstein, by work appearing [n [1]. These algebraicmaations can be interpreted in terms of
the equivariant cohomology of moment angle complexes andeseribe the symplectic cut of a toric orhifold in
terms of moment angle complexes.

1. Introduction

The moment angle compleXk associated to a simplicial compldk was introduced by Buchstaber and
Panov in[[4] as a disc-circle decomposition of the Davisddakiewicz universal space. It has been actively
studied intoric topologyand its connections to symplectic and algebraic geometiy,cambinatorics. The
original aim of introducing such a space is to generalizef@gntic or algebraic toric manifolds to topological
toric manifolds that are now callegliasi-toric manifoldsntroduced in[[6].

The goals of this paper are to introduce a notion ofdbrenected sum of simplicial complexgsunderstand-
ing the combinatorial aspect of Lerman’s symplectic tui [dfZza symplectic toric orbifold, and to understand
the algebra structure of the (equivariant) cohomology ettbrresponding moment angle complex in the frame-
work of theconnected sum of ringatroduced by Ananthnarayan-Avramov-Mooreé [1]. The caried sum of
simplicial complexes introduced in this paper is a more gar@eration than just the connected sum along a
facet.

In the first part of this paper (Sectiéh 2), we study a sympleait of a toric orbifold in terms of moment
angle complexes and describe the (equivariant) cohomaiogyof the toric orbifold in terms of the ones of
the cut pieces, using the notion of the connected sum ofirings

Theorem 1.1 (Theorem 2.15) Let X, and X_ be the toric orbifold defined by a symplectic cut of a toric
orbifold X. Letg. : Xo — X. be the toric sub-orbifold corresponding to the section &f tat. Let# denote
the connected sum of rings (See Definifion 4.1) which is dkfisang the pushforward and pullback maps
andg;. We have

* . * H*(XOIZ) * .
H(Xi Z) = HA(Xo, 2) #, ( HR (X Z)

Furhter more this descends to the non-equivariant cohogyotwerQ:
H'(X;Q) = H' (X Q) 41  H' (X1 Q).
This holds oveZ-cogficients if all of the cohomology rings are concentrated innedegrees.

Our method is to identify the toric orbifolds as quotienck®of moment angle complexes by a torus action
and we regard the (equivariant) cohomology of toric orloisohs the (equivariant) cohomology of moment
angle complexes with appropriate torus actions. We alse gidescription of the cohomology ring At
in terms of X, and X in a similar fashion (Theorem 2.17), which can be intergtets a special case of the
work previously done by Hausmann-Knutson![10]. This desdicnn is also useful, since the cutting process
sometimes creates more complicated yet interesting exampl
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In the second part, we introduce tb@nnected sum of simplicial complex&gctiori B) for general simplicial
complexes, abstracting the combinatorial aspect of auftislytope by a generic hyperplane. Namely,Ket
andK, be simplicial complexes omj] and letZ ¢ K; N K5 be a subset. We define the connected 8yn# K
of K1 andK5 by

K1 #K; := Delz(K1 U Ky) (Definitions2.1 an@311)

Furthermore, we introduce tisrongconnected sum df; andK; by assuming

(%) Z = K1\ (K1\W) = K2\ (K2\W)

whereW := K; N K,. We show that ifA, andA_ are simple polytopes obtained by cutting a simple polytape
with a generic hyperplané,, then the simplicial compleK associated ta is a strong connected sum of the
simplicial complexes. associated ta.. Interestingly,K_ is also a strong connected sumkaf andK.

In Section 4, we show that (Theoréml4.4) the Stanley-ReisngZ[K #°K5] of a connected surk; # K>
is the connected sum of Stanley-Reisner rififjs1] andZ[K>] of K1 andK, respectively, in the sense o6f [1].
More explicitly, letg; : Z[Ki] — Z[W] andf; : Z[K1 U K2] — Z[K;] be the natural quotient maps of Stanley-
Reisner rings associated to the corresponding inclusibasnplicial complexes. Lef 7 be the ideal irZ[W]
generated by the monomials corresponding to elemerits ©hen

ker@@: — gz : Z[Ka] X Z[K2] — Z[W])
(f1, 2)(Z 2) .

The extra assumption{ required for the strong connected sum is motivated by thelahic facts (see Corol-
lary [4.8) that ifK; and K, are Gorenstein an@ is Cohen-Macaulay, then the assumptiaes) {(mplies that
the idealfz is a canonical module ¢f[W]. As a consequence, by the work of [1], we can show purely al-
gebraically that ifK; # K is a strong connected sud; andK, are Gorenstein\V is Cohen-Macaulay, then
K, #K> is Gorenstein.

In the last section, we discuss how these algebraic stegtuehave if we take the torsion module of the
Stanley-Reisner ring. Letn] = {1,---,m} be the common vertex set &f;, K, and K so that the corre-
sponding Stanley-Reisner rings are the quotient&[od, - - - , Xm] by monomials given by non-faces. Let
B = (Bjj) € Mat,m(Z) be an integral matrix of rank, then we have a polynomial rirgfu] := Z[ug, - - - , U]

sitting inside of= Z[xq, - - - , Xm] Whereu; = 2?‘21 Bij. In Section 4.3, we observe that if f&”ﬂ (Z[L],Z) = Ofor

L = K, Ky, Ky, W, then To%[y] (Z[K1#7K>], Z) is again a connected sum of the Torsion algebra%[kf’(E[Kl],Z)

and To%[g] (Z[K>],Z). Those torsion algebras correspond to the (equivariatipmology of moment angle
complexes (c.f. [[3],[[14]). The connected sum of simpliciamplexes can be used to construct interesting

spaces (c.f.[[8]) and the techniques developed in this pagpebe used to compute the (equivariant) cohomo-
logical invariants of these spaces.

Z[K1f7Ko] =
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2. Symplectic cut of toric orbifolds

In this section, we will first review the construction of momangle complexes and their conomology rings.
Then we describe the symplectic cut of a toric orbifold imtsiof moment angle complexes and show the main
theorem (Theoreimn 2.15) of the first part of this paper.



CONNECTED SUMS OF SIMPLICIAL COMPLEXES AND EQUIVARIANT COBMOLOGY 3

2.1. Moment Angle Complex. In this section, we review the basic construction of the munamgle com-
plexes for polytopes and general simplicial complexes.tik®@details, we refer td [3] or [15].

Definition 2.1 (c.f. p.25[3]) A ssmplicial comlex on the vertex sef is a collectionK of subsets (callethceg
of S such that ifo- € K, then all subsets including the emptyof o are inK. A simplicial complexK is
calledpureif all its maximal faces have the same dimension where thedsion of aface- € Kis|o|— 1. A
maximal face is also calledfacet The set of all facets is denoted #)(K). A vertexx is called aghost vertex
if {x} ¢ K. LetZ be a subset of a simplicial complé&such thatz ¢ Z. Theclosureof Z in K is the smallest
subcomplex containing. Theopen neighborhoodf Z in K is the set of alb- € K such that- contains some
7 € Z. Note thatOg (Z) = Z if and only if K\Z is a subcomplex oK. Thestar of Z in K and thedeletionof Z
from K are the subcomplexes defined by g{@) := Ox(Z) and Def(K) := K\Ok(Z) respectively. IfK; and
K, are simplicial complexes on the same vertex$dhen we can naturally take the intersectkonn K, and
the unionK; U K that are also simplicial complexes éh

Definition 2.2. Throughout this paper, we use the following notation forvemmence. LeX be a set and, Z
subsets oK. Leto c [m] be a subset. TheW” x Z[M\o ¢ X™ denotes the direct product ¥fandZ’s where
i-th component i¥ if i e ccandZif i € [m]\o.

Definition 2.3 (Moment Angle Complexes)Let K be a simplicial complex on the vertex sed|[;={1,--- ,m}
(with possible ghost vertices). Define ttrment angle compleZk [ € C™ by

Zk[m = U D x gDIM\ = U D7 % gplM\e
oeK GET(K)

whereD = {ze€ C||Z < 1} anddD = {z€ C| |74 = 1}. The standard action & := U(1)™ on C™ can be
restricted to the one 0k [n-

Definition 2.4 (Moment Angle Manifolds) Let A be a rationah-dimensional simple polytope iR" given by
the inequalities:

A={ReR"|(RA)+n>0,i=21---.m}, {j€Z",p€Z (2.1)
We allow this description to be “reducible”, i.e. some of thequalities may be redundant. Or equivalently, let
H; ;= An {(X 4)) + nj = 0} andH; is a facet or empty. We call such an emptya ghost facet The associated
simplicial complexKy ny is a simplicial complex oni] and o € Ky [ if and only if Nie,Hj # @. Here a
ghost facet corresponds to a ghost vertex. Bet [A1, -+ ,An] @andn = (71,--- ,nm) and define anféine
embeddingg, : R" — R™ by

gy =B (X) +n. (2.2)

Define themoment angle manifol@s g, for A given in [2.1) by the following fiber diagram:

C
Zagy—=C"

|
A——>RM
tByla
whereut(2) = (|zf?, - - - , |zml?) is the standard moment map of the actiorTat= U(1)™ onC™. It is indeed a
smooth manifold (Construction 6.8 and Lemma 6.2 [3]) andstaedardr-action onC™ can be restricted to a
T-action onZa g,
It is also possible to defin&, g, as a quotient space. Namely, Tet := U(1)” x (1IN = T for a subset

o c [m]. Then there is &-equivariant homeomorphis@a g, = (T x A)/~, where (, p) ~ (s, q) if and only if
p = gandts™ e T, with p € NiesHi.

Remark 2.5 (1.1 [15] or Section 6.1[[B3]) There is ar-equivariant homeomorphism
OnBy Loy = LKy m- (2.3)
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Namely, consider a cubical subdivisionsflefined in Construction 4.5][3] and the corresponding decsinp

tion of Za gy
A= U Co, -ZA,BJ] = U B,
oeF (Ka) geF (Ka)
whereB, := u;71(tg,(C,)). EachB, is T-equivariantly homeomorphic ©” x (9D)!"\" and these homeomor-
phisms are patched together to def@es .

Remark 2.6. We describe the parts &k, [m corresponding to a vertex and a facetothrough®, g ,,. For
o € F(Ka), letv = njc,Hi be a vertex oA. Then

O Br (14 (V)) = (0} X (9D)M7.
For a facetH; of A, we have
Orpalir e, (H)) = [ ) 10/ x D7 x (9D)Me,
ieceF (Kp)
Definition 2.7. For a simplicial compleX on [m], the Stanley-Reisner ring defined by
Z[Xla T, Xm]
(Xr, 0 ¢ K)

wherex,, = [licr Xi- We identifyZ[xq, - - - , Xy] With the cohomology of the classifying space®fZ[T*] :=
H*(BT, Z). Therefore we set deg := 2.

Z[K] :=

The basic fact about the-equivariant conomology ring dlx [ny iS

Theorem 2.8(Davis-Januszkiewicz [6])There is an isomorphism of graded ringfK] = H1(Zk n; Z). This
isomorphism is natural in a sense that, for a subcomplex \K, we have the commutative diagram of short
exact sequences

0

T\w Z[K] Z[W] 0

0 —— Hi(Zkm)» Zwim; Z) — Hi(Zkm); Z) — HH(Zwm; Z) —=0

whereZ k\w is the ideal inZ[K] generated by monomials.xo- € K\W and H:(Zk (m, Zw(n; Z) is the relative
equivariant cohomology faZwn € Zk[m - The vertical isomorphism on the left is induced from thesoth
two isomorphisms and the short exactness of rows.

2.2. Symplectic Cutting of a Toric Orbifold. In this section, to fixed the notation, we recall the congiounc
of toric orbifolds from labeled polytopes [113] and the syewtic cut [12] applied to a toric orbifold.

A labeled polytopdA, b) is ann-dimensional rational simple polytopk in R" where each facetl;,i =
1,--- ,mis labeled by a positive integer. Here, we assume that tih& are not ghost facets. Lat:= U(1)"
andR := U(1)" andt andr their Lie algebras. We identifff = R™andr* = R". Suppose that is described as

A={Xer" [ (LB, +n >0,i=1---,m (2.4)

whereg; is the primitive inward normal vector to each fa¢ét We regardy := (171, - - ,nm) IS an element of
t*. Let B be the integen x mmatrix defined byB := [b181, - - - , bmBm] and regard it as the linear m&p: t — ¢
and also as the induced map on tBri T — R. The surjectivity ofB : T — R follows from the simplicity of
A. The kernelG of B: T — R is connected if and only iB : Z™ — Z" is surjective. LetA : G — T be the
inclusion and lefA : ¢ — t be the induced map on the Lie algebras (t* — g*).
The symplectic toric (gective) orbifoldX for (A, b) is given by reducing=™ by the standard action @& at
the regular valué\*(n). Namely, ifur : C™ — t* is the standard moment map, then the moment map for the
G-action onC"is given byug := A* o ut andX is defined as a quotient stack

X :=[M/G], where M := u (A" ().
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Using the #ine embeddingg, : r* — t* defined at[(2Z]2), the moment map for the residualR-action

71
on X is given byur : M -5 tgy(r") 2% ¢, Note thatu;1(:8,(A)) = M since @) () = tg,(*) and
tBy(A) = 1, (r*) Nty wheret?, = ur(C™).

The symplectic f:ut oX wi_th respect to the action of a 1-dimensional subtdrus R produces two toric
orbifolds X, andX_ with corresponding polytopes, andA_ that are obtained by cutting the polytopdy a
generic rational hyperplan®. Lety € r be an integral primitive normal vector i and find¢ € Z to write

H = {Xer" [{(y,X)+&=0)
A, = {(Xer" | (3, +&E>201NA
A = [Rer" | (3, +EE<0INA.

The elementy € r defines 1-dimensional subtorus:= Ry/Zy c R and its Lie algebrd := Ry c r. With
the natural identification = R, letu : C — I* be the standard moment map— |[wi? and letz : C —

I (W~ —|wi®) be the moment map for the standar@ction onC with the opposite symplectic structure. The
symplectic cuts to reduceX x C andX x C with respect to the anti-diagonal actionloft the regular value
—£. Namely, letd : L <— R x L be the anti-diagonal map sendihg- (I,171) and consider the moment map

¢+:MXC(lﬂ)r*€BI*LI* ZW) - p () - WP

MxT v or D @w) o u @+ WE
Then-¢£ is a regular value for botl, andy_. Thus we define
M, = ¢ 5 (=4), M_:=¢(-£) and X, :=[M,/G]. X_:=[M_/G],

whereG is the preimage af(L) ¢ R x L under the mapg,id) : TxL - Rx L.
Leta : RxL — R be defined by(r,l) := rl so that kerr = Im d. Define an fline embedding, ¢ : r* —

" @1 by 1p£(X) := a*(X) + (0,8 = (R (X y) + &) so that, £(r*) = (d*)"1(—£). Then we have

My = (ur, ) (tas(A+)) and M- = (ur, 1) *(tae(A-))-
Thus the moment map for the-action onX, andX_ are given by

) w ) o
MR+ - My — 14£(r") “4 ¢ and MR- Mo — 14£(1") — 1"
2.3. M. as Quotients of Moment Angle Complexes bﬁ;. We use the notation from the previous section.
Consider the integrat x (m+ 1) matrix B := [b181, - , bmBm, y] regarded as amap of tof : T x L — R.
Then we have the commutative diagram of surjective maps

TxL

S~ 7

RXxL

Since kew = d(L), we have keB = G. LetA: G — T x L be the inclusion. We also denote the map on Lie
algebrasbA:g - to L

Lemma 2.9. X, andX_ are obtained by reducing™ x C andC™ x C by the action of5 at the regular value
A*(7) € g wherer; = (71, -+ ,nm, £). More precisely consider the moment maps

e xc U or A and . oY rer S

Then we have
M. = ugh, (A@) and M = ug" (A (7).
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Proof. Define the &ine embeddingg; : v* — t" & " by (5;(X) = B*(X) + 7 similarly as in [Z:2) so that
(A LA (i) = 155(r*). We observe that ; = (:5,,id) © to.¢. Indeed,

Lé,ﬁ(ﬂ = B*()O + FI = (B*(ﬂ + T]a <Xa 7) + f) = (LB,T](X)a <Xa 7) + f) = (LB,TP Id) © L[l/,f()O‘
Now consider the fiber diagrams:

My —> MppXxC—=C"xC and M_—> MypxC—=C"xC

\L“R& (#R,ll)l (ﬂT’ﬂ)l l/‘R-— (/JR,}_l)l (#Tﬁ)l/

r* I‘* @ I* . t* @ [* % * * * *
L85 L85

Since the outer circuit of each diagram is also a fiber diagveeobtainM, = (/,t-r,/l)_l(té’ﬁ(r*)) = ,uéi(ﬂ*(ﬁ))
andM_ = (ur.1) Y(e550%)) = ugf_(A* @) O

Let K, andK_ be the simplicial complexed associatedMpandA_ respectively. Here the common vertex
set ofK, is[m] := [m] U {0}.

Corollary 2.10. SinceB and7j definesA, as in [2.4), we have M= Za, g5 as in Definitior{ 2.4. Therefore
there is aT x L-equivariant homeomorphis®, g, : M. — ZK+’[7n-] defined atl(213).

Corollary 2.11. There is a canonical x L-equivariant homeomorphistf: M_ = Z -

Proof. The mapJ : C"x C — C™x C (Zw) — (Z W) is aT x L-equivariant homeomorphism with respect
to the involutionj : TxL — Tx L, (t1) ~ (t,17). The imageJ(M.) is naturally Z, g 7 Where B =
[b1B1, -+, bmBm, =yl @ands’ := (1, -+ , 7m, =&). Sinced also induces & x L-equivariant involution oiZK_m
with respecttg : T x L — T x L, we have an honegtx L-equivariant homeomorphism:

®A_.E’.;]/

J J
¥Y:M_.—JM) = gy — ZK,,[TE] — ZKﬂ[’r‘nd]'

Corollary 2.12. TopologicallyX, = [ZK+,ﬁ/é] andX_ = [ZK_,fﬂ/é]

2.4. Gluing along the toric suborbifold. Let Hq =ArNA-Ct Consider the obvious inclusioris. :
C"x {0} » C"xCandh_. : C"x {0} - C"xC. LetM{ = (ﬂT,ﬂ)_l(Lg’;l(Ho)) c Imhy and My =
(/JT,/j)_l(LE’;](HO)) c Im h_. Define the suborbifold correspondinghig in X, andX_ by
Xo = [Mo/G] whereM, := h7}(M{) = h=}(M5).

together with the embeddirtg. : My, — M, andh_ : My — M_. We obtained the spadd., Uy, M_ which
is given by gluingM, andM. alongM, with respect tch, andh_.

On the other hand, sind¢, andK_ have the common vertex sgti, we can naturally glue them to obtain
a simplicial complexK, U K_ whereW := K, n K_ = stalk, (0) = stak_(0) where stag, (0) is the smallest
simplicial complex containing all faces i{. that containo. It follows from Definition[2.3 thatZk, ok =

Zk, U Zk_andZw = Zk, N Zk_ where we suppressed the vertex[set The image ofV, under®,, g
and¥ coincide with

ZCV = U {0}{0} e Do\{o} e (aD)ﬂ\a — {O}{O} v [

Do\l o D[’rﬁi\a]'
ocoeF (Ky)

ocoefF (K;)
It is a subspace of

Zw= | D7 x @)™ =Dl x

[ DoV} ¢ D[’r‘n‘]\o]‘
oeF (W) ocoeF (W)
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Therefore thel-equivariant homeomorphis®, := @, s ; and'¥ induces al-equivariant map
O M, Uy, M_ — Zk,uk_-

Lemma 2.13. For any subgroupQ c T, the pullbackd* : HE(ZK+UK_,Z) - H;S(M+ Um, M_,Z) is an
isomorphism.

Proof. We observe that there isTaequivariant deformation retract froy to L thereforabl’l;,lo : H(*?(ZW) =
HS(MO). The claim follows from the diagram of the Mayer-Vietoregsiences and the Five Lemma:

* * *

hi_h* *— * * * hi-hZ *
He H(ML)@HE H(M-) "= H i (Mo) ——= H(M, Uy, M2) —— Ho(ML)@H5(M-) ~—— Ho(Mo)

(®’;,‘1’*)TE Ts T@* (@i,‘["*)TE TE
Ha_l(ZKJ@HS_l(ZK,) — H(*{l(Zw) — Hy(Zk.uk) — Hg(Zk.)eHG(Zk ) — Hy(Zw)

O

Lemma 2.14.

2.5. Computing the Cohomology ofX. The original toric orbifoldX can also be defined by adding one more
trivial inequality forA:
Xyy+& >0, &>0.
Let7 := (71, ,nm, &) and reduc&€™ x C by the action ofG at the regular valud* (7). We have
X =[M'/G] where M’ =z (A"(i)).

ThenM’ = Z, 5 and so we have the-equivariant homeomorphis@ := Opgiy - M = Zy, - Thus we
can identifyX = [Z, /Gl

Now for any subgroug® c T, there are two long exact sequences to compute the (equitacohomology

of M = ZKAm' One is the Mayer-Vietoris Sequence as in the proof of Lemrid and the other is the
relative cohomology sequence

- — Hy(Zk,uk_ Zk,) . H3(Zi.uk ) —— Hy(Zk,) —= -+ 2.5)

2

Note that there is an isomorphisfi : H(*D‘Z(ZW) — H(*Q(ZKNKJZK) defined through the Thom isomorphism
for Zy, ¢ Zw and obvious pullback maps:

HE 2(Zw) —= Hy 2(Z5) T2 HY(Zw. ZW\Ziy) —== Ho(Zw: Zoew) <= H(Zk,uk - Zk,).

Furthermore, we also have the natural maps: HE‘Z(ZW) - HS(ZKi) given as a composition ¢f and
obvious pullback maps:

T My (Zw) 5 Hy(Zkeok - Zi) = Ho(Zkou ) —= Ho(Zi.),

If the Mayer-Vietoris sequence and the relative cohomolsgguence split into short exact sequences, more
precisely, if the odd degrees of the cohomologyZ, Zk, and Zk, vanish, theri—lg(ZKA) is isomorphic to

the quotient of the kernel dﬂg(ZK+UK_) - HS(ZK+)@H5(ZK_) by the image of ¢, 7). Since.Z. can be
identified with the pushforward majps, respectively, we also have thidf (M) is isomorphic to the quotient

of the kernel oh; — h* by the image ofl{.., h_.). We state this result for the case that we are interested in:

Theorem 2.15. Recall the embedding. : My —» M.. We have
ker(ht —h* : H(M; Z) ® HX(M_; Z) — Hz(Mo; Z))
Im (s, ho2) - HE(Mo; Z) — H2(M.5 Z) @ H2(M-; Z)

Hz(M";Z) =
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Furthermore
ker(h? —h* : H:(M.; Q) @ H(M_; Q) - HE(Mo; Q)

Im ((h.... h-.)  HE (Moi @) — HZ (M. Q) © HL(M_; Q)
which is also true oveZ-cogdficients if the cohomology rings of M., M’ are concentrated in even degrees.

Hz(M"; Q) =

Proof. The first claim follows, since the odd degreeTeequivariant cohomology vanishes. The second claim
follows from the fact that the odd degree of rational ordynahomology of toric orbifolds vanishes [5,/111]0

Remark 2.16. Let T act onM and suppose the action &f c T is locally free. This defines aR := T/G-
action on an orbifold M/G]. The cohomologyH*([M/G]; Z) is defined to beH (M;Z) and the equivariant
cohomologyHy ([M/G]; Z) is defined to bed7(M; Z). We refer to Edidin([7] for the details. With the notation
of the connected sum of rings which is explained in Definidlah, Theorem 2.15 is exactly our main theorem
described in the introduction.

2.6. Computing Cohomology of X_. Similarly we can consider the following two long exact seages in
terms of moment angle complexes and interpret them in tefiesa@ sets of moment maps. Again we suppress
the vertex sean'] from the notation of moment angle complexes. Ket= K, U K_ = K U K,. We have the
Mayer-Vietoris Sequence

B —. H(*g_l(-ZKa,ﬂK) - H(S(ZK) - HS(ZKJr) @ HE)(ZK) - H(*Q(ZKJ\K) - H(*;—l(ZK) — ... (26)
and the relative cohomology sequence
= HEHZ ) = HG(Zks Zk) = HG(ZR) = HY(Zk) = HENZk Zk) = -+ (2.7)

Let B, 77/ and M’ be the ones defined in Section]2.5. Nt := (ﬂT,ﬂ)_l(Lg’ﬁ,(A+)). SinceA, c A, we have
the obvious inclusiori : N, ¢ M’. We can choose a cubic subdivision®fn such a way tha®, g ; (N.) =
Zkrk,- Letgy : Ny — M, be the natural inclusion defined B, = Zknk, — Zk, = M.. Thus the map
HG5(Zk.) @ Hy(Zk) = HG(Zk,nk) in (2.8) can be replaced by
* * ’ gj'_f* * .
HE(M.) @ HE (M) == HE(NL);

On the other hand, observe that the inclusions of p&ir&(n K_) c (K, K_) o (K,, W) o (K, N K, WN K)
induces isomorphism by pullback on relative cohomology:

Ho(Zk, Zk ) = Ho(Zk. Zknk) = Ho(Zk.» Zw) = Ho(Zk,nks Zwnk)-
Let N_ := (ur, 1) Heg(A-)) andNo = (ur, )tz (Ho)) so that, with the same cubic subdivision &f
used above, we haw®, g;(N-) = Zkrk. and®, g (No) = Zknw. Then by the functoriality, the map
H5(Zk. Zk) = HH(Zg) = HG(Zk.) @ HG(Zk) can be replaced by the following map:
6: HQ(N+, No) — HQ(N+a No) @ HQ(N+, No) = HQ(M+a ®A1,I§,ﬁ(ZW)) @ HQ(Ma N.) — HQ(M+) @ HQ(M)-
Thus similarly to Theorermn 2.15, we obtain the following the:
Proposition 2.17(c.f. [10]). We have
ker((g3, =) : HZ(M,; Z) @ HZ(M; Z) — HZ(N,; Z))
Im (s : HE(N, No; Z) - HZ(M,; Z) & H;(M;Z))
Furthermore, if I—(E(M;Z) - Hé(N+;Z) or Hé(M+;Z) - Hé(N+;Z) is surjective, then

Hi(M_;Z) =

H:(M_;Z) =
° Im (61 HE (N2 No Z) — HE (M3 Z) © HE (M; Z)
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Remark 2.18. The above proposition is a special case of what is proved mgidann-Knutsori [10] for more
general symplectic cuts. They used the projectiarN, — M, by quotienting the boundary ®f, by a circle
action, instead of the inclusian. : N, < M, in our case. Itis actually easy to see thandg, are homotopy
equivalent. Namely,

N, = ZKmK+,[Fr?ﬂ = (D) x ZKnK,.[m]-
is a deformation retract of

L] b l
NI = Z5 o a = (P\5D) X Zek, im

whereD\3D = {ze C| § < |4 < 1}. Defineh; : N} — Zy, mp0stslby sendingd\ 3D — D via

re?i? (%) (r - %)ez”"’.

3. Connected sum of simplicial complexes

In this section, we define the (strong) connected 8y K, of simplicial complexe; andK, on a vertex
set m]. It is motivated by the simplicial complexes of the polygspobtained by the symplectic cut of a toric
orbifold. We show that the case of the cutting polytope defastrong connected sum of simplicial complexes.

3.1. (Strong) Connected Sumes.

Definition 3.1 (Connected Sum)Recall our notation from Definition 2.1. L&t; andK, be simplicial com-
plexes onin]. LetZ c K;NK; be a subset not containing the empty set and suppos@hat,(Z) ¢ KiNKoy.
Theconnected sum ¥#K, of K; andK, alongZ is defined by

K1 # K, := Delz (K1 U Ky).
Note that sincék (Z) c K1 N Ky andKy N Ky is a subcomplex, stafZ) = Ok (Z) c K1 N K.
Example 3.2(Connected sum along a facet p.24 [3]et K; andK; be two pure simplicial complexes. Let
oi € F(Kj). If we identify the vertex sets af1 ando, we haveK; N K, = o where we denote = o1 = o).
LetZ := {o} and therOk,uk,(Z) = {o} ¢ K1 N Kz. The connected suid; #K; := K1 U Ky\{o} is exactly the
“connected sum” defined in][3].
Example 3.3. Let (K1) = {a, b, c,d} andv(K5) = {a, b, c, €}. Let F(K1) = {abg becd} andF (K,) = {abc acg.
Then¥ (W) = {abg and letZ = {abg = Ok (Z). This is a connected sum which is a connected sum in the sense
of [3]. The result is not pure.

Thestrong connected suima connected sum with an extra condition on the gave delete from the union
K1 U Ky. The algebraic justification comes in the later section aré ve show the following lemma.

Lemma 3.4. Let W be a subcomplex of a simplicial complex K. Let
Z={reK|TtUo ¢ K,Yo € K\W}. (3.1)
Then (Z2) = Z and Z= W\(K\W).

Proof. By definition, if r € Ok(Z), then there ig’ € Z such thatr’” c 7. Thus for allo € K\W, c Ut ¢ K,
because if otherwise U v € K. This showsOk(Z) = Z. To showZ = W\(K\W), first observe thaZ c W.
Indeed, ifr € K\W, thent Ut = 7 € K and sor ¢ Z. If r € K\W, then there isr € K\W such that
r coandsorUo = o € K. ThusZ ¢ W\(K\W). On the other hand, let ¢ W\K\W. If r ¢ Z, then
there isc € K\W such thatr U o € W. This means € staik(K\W). However, recall from Definition
2.1 that stag(K\W) = Ox(K\W) = K\W. Thust € K\W which is a constradiction. Thus € Z and so
W\K\W c Z. O

Definition 3.5 (Strong connected sump connected suniK; #° K, is calledstrongif Kq, K» andKy N K» are
pure with the same dimension and

Z = W\(K1\W) = W\(K2\W)
Algebraic justification of the following definition will bexplained in Sectiofi 4]12.
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3.2. Polytope cutting and connected sum.

Definition 3.6 (c.f. Section 1.1[[3]) A polytopeA is defined to be the convex hull of a finite set of points in
R". Suppose that

A={ReR"|(XAy+n>0,i=1,---,m}.
for somel; € (R")* anda; € R. A polytopeA is simpleif the bounding hyperplane; = {{(X ) +ni = 0}
are in general position, i.e. if the dimension/fs r, then there are exactlyhyperplanedd; meeting at each

vertex of A. We callH; := A n H; afacetfor eachi = 1,--- ,m. Note thatH; isr — 1 dimensional or empty. If
H; is empty, we call it aghost facet
For a simple polytope\ with facetsH;,i = 1,--- ,m, the associated simplicial complé&, is a simplicial

complex on ] defined by
cCKreo=0 or ﬂHi * Q.
ieo
Definition 3.7 (Generic cut) Let A ¢ R" be an-dimensional simple polytope with non-ghost facksi =
1,---,m. Consider a hyperplane
H = {XeR"|(X Ag) + & =0}
and the corresponding closed half spaigs= {(X, Ao} + & > 0} andH_ = {(X, Ao) + & < 0}. A generic cutof
A'is given by the pair4, H) such thatH, Hs, - - - , Hy are in general position artd, := H N A # @. In this
caseA, .= AnH, andA_ := An H, are non-empty simple polytopes.
The simpliciaﬁomplexeKA, K., K_ associated ta, A,, A_ to be defined as simplicial complexes defined
on the vertex sdim] := [m] U {o}:

Kya = {oc[m|oc[mandni, Hi #2}U {2}
Ki = {oc[m| nicr (HiNA) %2} U {2}
K. = {oc[m| Niee (HiNAL) # @} U {2}.
Lemma 3.8.
KiNK. = stak,uk (0) = stalk, (0) = stak_(0) (3.2)
(Ky UK \Ka = Ok,uk_(0) = Ok, (0) = Ok _(0) (3.3)

Proof. By definition,o € K, N K_ iff oo = @ or (NicsHi) NAy NA_ # @. SinceA, N A_ = Hg, 00 € K, N K_
iff o = @ or (Nieo-Hi N AL) N Hg = (NieoeHi N AZ) N Hg # @. Therefore

KinK_o={oceK,|ou{ojeK,}={oceK_|ou{o} e K_}.
staik, (0) stak_(0)

By definition andA, UA_ = A, 0 € (K; UK \K, iff o € K, UK_ ando € 0. Thus

(Ky UK )\Ky = {oc[m]|o € o, ando € K, U K_} = Ok, uk_(0).

On the other hand, whame o, o € K, iff o € K_. Indeed i, (Hi N A;) = (Njee-Hi) N Ho = Niee(Hi NAL) if
0 € 0. ThusOk,uk_(0) = Ok, (0) = Ok _(0). O

Theorem 3.9. If (A, Ho) is a generic cut, then Kis the strong connected sum KZK_ where Z= Ok, uk_(0).

Proof. From Lemmd 38, it is clear thd{, is the connected sud, #.K_. We need to shovDk, (0) =
W\(K:\W) whereW = K, n K_ = stak,(0) = stak_(0) (See Lemm&_3]8). Supposec Ok, (0). Since
{ofUo ¢ K, for all o € Ki\W, we haver U o ¢ K, for all o € K,\W. ThusOk, (0) ¢ W\(K;\W) (See
Lemma[3.4). To prov&V\(K;\W) c Ok, (0), we show thatr € star, (0)\Ok, (0) impliest € K.\ staf, (0).
Sincer € stak, (o) ando ¢ 7, we haver c B such that (ic.Hi) N Ho # @. Since the cutting is generic,
dimnie.Hi > 1 andnj.H; has a vertex contained i, but not contained itgy. Let Njc-Hj be such a vertex.
Theno € K, \W. Sincer c o, 7 € K, \W. The same argument may be used to piOye(0) = W\(K_\W). O
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Lemma 3.10. For o C [Tﬁ] let Fy := NiesHj. LetZ={o C [Tni | F # @ and F, c A\\Hp}.
KinKy = Z (3.4)
(Ki UKAOW\K. = Z (3.5
Proof. K, N K, consists oz ando- ¢ [m] such thatF, N A, # @. SinceZ c K, N Ky, we haveZ c K, N Kj.
Suppose thatr € K, N Ky ando ¢ Z. SinceF, ¢ A\Ho andF, N A, # @, we haveF, N Hy # @. Thus

dimF, > 1 and so there is a vertdx. of F, contained inA,\H,, which means € Z. Sinceo c 7, we have
oeZ. ThusK, NKy c Z.

SinceF, c A,\H, iff F, N A_ = @, it follows that (K, U KA)\K_ = Z. O
Lemma3.11. Let Z= {o c [m] | F, # @ and F, ¢ A,\Ho}.

Ki\Z = Ok,(0) (3.6)

Ka\Z = {oc[m|F,#@andF, c A\Ho}. (3.7)

Proof. By definition and[(3.6)¢ € K,\Z if and only ifo € o- andF, # @. ThusK,;\Z = Ok, (0). Also by

definition and[(3.6)¢ € Ky\Z if and only if F, # @ andF, c A_\H,. O

Theorem 3.12. Let (A, Ho) be a generic cut and let Z {o ¢ [m] | F, # @ and F,, ¢ A;\Ho}. Then K is the
strong connected sum, K K.

Proof. From Lemmd 3. 10K _ is the connected suid, #K,. We only need to prove it is strong. L& :=
Z = K, N K,. First we show thaZ = W\(K,\W) = W\stal, (0). Supposer € Z. If o € stak, (0), then there
must ber € Ok, (0) such thatr c r. Sinceo € 7, we haveF, N Hy # @ which contradicts withF, c A, \Ho.
ThusZ c W\stak, (0). On the other hand, i € W\stak, (0), thenF, N A, # @ and there is no vertex of
F. that lies onHg. ThereforeF, c A, \Hg, i.e. o € Z. Finally we show thatW\ (K, \W) = W\(K,\W). Let
@+ o€ WNK,\W. Theno c [m] andF, NHg # @. Thus dimF, > 1 and there is a vertei, of F,. that lies
in A_\Ho. Sincer € Kx\Z, we havesr € K,\W. On the other hand, suppose tigat: o € W N Kx\W, then
F-NA; # @ and there is a vertex &, that lies inA_\H,. ThusF,NH, # @ which implieso € stak, (0). O

4. Stanley-Reisner Rings and Connected Sum

We study the algebraic structure of the Stanley-Reisngy ofrthe connected suid; # K, defined in the
previous section. The algebraic model is tomnected sum of ringatroduced and studied by Ananthnarayan-
Avramov-Moore[[1]. In Section4l1, we review the definiticarsd show that the Stanley-Reisner rif{dl, # K]
is the connected sum of the Stanley-Reisner ringlpaindK,. In Sectiol 4.2, we study the Gorensteinness
of Z[Ky #Ky] in terms of the ones of oKy, K> andKy N K for strong connected sums. Here Corollary 4.8
is our motivation to definstrongconnected sums. In Sectibn 4.3, we discuss how those piespddscend to
Torsion algebras of Stanley-Reisner rings.

4.1. Connected Sum of Rings.

Definition 4.1 (Fiber Product and Connected Sum of Ringsg¢ten : A —» C andeg : B — C be ring
homomorphisms. Then thiiber productA xc B is the subring ofA & B defined byA xc B = {(xy) €
A®B|ea(X) = es(y)}. Now take aC-moduleV and regard it as A-module and &-module throughes andeg.
Consider the commutative diagram

AL A (4.1)

B——C
€8

whereta andig are homomorphisms @&-modules and-modules. Theonnected sum of the diagram[(4l1) is
given by

AXxcB
{a(V),t8(v)) eA®B | Ve V)

Vp .
A#!B =
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Remark 4.2. One may also view the definition of the connected sum of risggrsing via the following exact
sequences:

0— AxcB—AeB “P ¢ (4.2)
V—>AXCB—>A#\C/:B—>O (4.3)

Theorem 4.3. LetK = K; U K2 and W:= K; N Ky where K and K; are simplicial complexes qrgn]. There is
a natural isomorphisnd : Z[K] — Z[K1] xzjw) Z[Kz] defined by(r) = (fi(r), f2(r)) wherefy : Z[K] — Z[K4]
andf, : Z[K] — Z[Kj] are the obvious quotient maps.

Proof. ObserveZy = Zk, U Zk, andZw = Zk, N Zk,. Then we can apply the Mayer-Vietoris Sequence
for T-equivariant cohomology. Since there are no odd degresadathe sequence splits into short exact
sequences. By Theordm P.8, we have

0 7[R] ™% 7[K.] @ Z[K] T 7pw) - 0

whereg; andg, are the obvious quotient maps. The kerrgl, ¢) is the fiber product and s@ gives the
isomorphism. O

Theorem 4.4. Let K; #2K5 be a connected sum. Then there is a natural isomorplis@[K] #72

Z[W]Z[KZ] -
Z[K1 #K;] whereJ7 is the ideal inZ[W] generated by x o € Z.

Proof. Let K := Ki #K, = Delz(K). The relative cohomology sequence for the pdiz(Zk) splits into
short exact sequence. By Theorem 2.8 and Thebrem 4.3, wia obta

Olr, hog~1
0— 77 — Z[K1] xzjwy Z[K2] — Z[K] — 0
whereh : Z[K] — Z[K] is the obvious quotient map ar is the ideal inZ[K] generated by, o € Z. Since

Or(Z) cW,j: Iz = Jz,%r — X, iS an isomorphism oZ[xy, - - , Xm]-modules. Since the connected sum
Z[K1] #fzj[ZW]Z[Kz] is defined to beZ[K1] xzpw) Z[K2]/6 o i1(J7), the mag is the isomorphism induced from
hoo L. O

4.2. Connected sum of Gorenstein rings.Let W be a subcomplex of a simplicial complékon [m]. Let
Ix\w be a kernel of the quotient m&jK] — Z[W].

Lemma 4.5. The annihilator(0 :zjk; Zk\w) is generated by x o € W\(K\W).

Proof. The annihilator is generated by whereo € K s.t.c Ut ¢ K,¥r € K\W. The claim is a corollary of
Lemmd3.4. m|

The following is a basic fact about the canonical module obaé&h-Macaulay ring |2, Theorem 3.3.7]:

Lemma 4.6. Suppose that W and K are pure with the same dimension. If K ierstein and W is Cohen-
Macaulay, ther(0 zikj 7) is a canonical module d£[W].

From [1], we have the following theorem.

Theorem 4.7. In the definitio 411A #/B is Gorenstein ifA andB are GorensteinC is Cohen-Macaulay and
V is a canonical module of.

As a corollary, together with Lemnia 4.5 dnd]4.6, we have

Corollary 4.8. Let K; and K, are simplicial complexes oim] such that K, K, and W:= K; U K, are pure
with the same dimension. Assume thath are Gorenstein and W is Cohen-Macaulay. {f# K is a strong
connected sum, thef{ K, #K,] is Gorenstein.

The above corollary is the algebraic motivation to have D&dim[4.1 of the strong connected sum.
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4.3. Tor algebra of connected sums Let Ky # K> be a connected sum and let= KUK, andK = K; # Ko.
Let[m] = {1, --- , m} be the vertex set df. Theoreni4.B and Theordm 4.4 imply that there are two shaxtex
sequences of algebras and modules @&y, - - - , X,]:
0 — Z[K] — Z[K4] ® Z[K3] — Z[W] — 0 (4.4)
0- I; - Z[K] - Z[K] - 0 (4.5)
Consider an integem x m matrix B of rankn. The choice of suclB bijectively corresponds to a choice of a
surjective mapl ;= U(1)™ — R := U(1)". DenoteZ[T*] := Z[X1, - , Xm]. Lety; := Z?‘zl Bijx; and denote
Z[R*] := Z[uy, - - - , uy] € Z[T*]. Consider the Koszul compleX® given by the exterior algebra generated by
£1,-++, & overZ[R*]. By tensoringKR to the short exact sequences above, we obtain the shortseqances
of complexes, therefore we have the long exact sequences:
- — Tor'®(z[w], ) — Tor R 1(Z[K], Z) - Tor®(zZ[K4], Z)eTor R (z[K,], Z) — Tor R (Z[VV],(Z) 7
4.6
- = Tor'®Y(z[K],2) - Tor*(12,2) - Tor'®(z[K],2) - Tor R 1(Z[K],Z) - --- (4.7)
The following claims can be easily observed:

Lemma 4.9. Suppose thafor; " /(Z[W],Z) = 0. ThenTor; (% }([K],Z) = 0if and only ifTor; (R 1(Z[K4],Z) =
Tor, R 1(Z[K2],Z) = 0. In this case,

ToR1(Z[R], Z) = ToPR)(Z[Ky]. Z) x Torg * (Z[Ka], Z).

Torg ™) (Z[W],2)
Lemma 4.10. If Tor: R (z[K4], Z) = TorA®R(Z[K,], 2) = TorR1(Z[K],Z) = Tor R 1(z[W], Z) = 0, then

TorZ I(12,2)

[R] R
Torg®1(Z[K]. Z) = Tors " N (Z[K4], Z) # Tod™ w2

Tors R 1(Z[K_], 2).

Remark 4.11. By Proposition 2.3 9], Tar= 0 implies Tor = O for alli > 0. Therefore, in the above lemmata,
we actually have T 1(Z[K], 2) = Tor'R1(Z[K], Z) and ToFR 1(z[K],Z) = Tork®)(z[K], 2).

Lemma 4.12. Suppose that KK, are defined by a generic cut of a polytope aifud%[R*] (Z[W],Z) = 0. If
Tor, R 1(Z[K],Z) = 0, thenTor; " 1(Z[K1],Z) = ToriR)(z[K,], 2) =

Proof. In this case, observe thay = Z[W] asZ[T*]-modules. Thus T4 !(z[W],Z) = TorA®1(z[K],Z) = 0
implies To£* 1(z[K],Z) = 0 and hence T4 (z[K4], 2) = Tor'R1(Z[K,],Z) = 0. O
Remark 4.13. The opposite statement of Lemma 4.12 is not true. We give ampbe which shows that

Tor, R 1(ZIW], 2) = Tor, R 1(Z[K1],Z) = ToriR1(z[K,], Z) = 0 does not imply Tg" 1(Z[K], Z) =
Consider the following simplicial complexes

K1 K> Bz

\ o

K is a strong connected sum kif andK_ alongW := K1 N Ky. Consider the following % 5 matrix B:

g_(1 0 -2 0 -1
“lo2 0 -1 1
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By direct computation (we usddacaulay3, we find that
Tor®(zIW], 2) = Tor*)(z[K4], 2) = Tor®(z]K,], 2) = 0

but Tor " (Z[K], Z) # 0.
The above example comes from cutting a labeled polytapb)(that corresponds to the direct product of
weighted projective spac€P}, x CP1,:

A o ° Al o——o— o Ay 0 O °
Ha Hy Ha
Hs
Hi Hs Hi ° oHy o
H H : : H
5 / / Hs

[ ] —6— o ) @ e o O e ° °

Ha Hz Ho

The polytopeA is labeled byb = (1,2,2,1), the cutting facetis is labeled by 1, and the matri actually
corresponds to the extendBematrix B in the notation of Sectionl 2.
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