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The authors present an orbital guidance scheme for the satellite with an electrical propulsion system using a Lyapunov feedback
control. The construction of a Lyapunov candidate is based on orbital elements, which consist of angular momentum and
eccentricity vectors. This approach performs orbit transfers between any two arbitrary elliptic or circular orbits without any
singularity issues.These orbital elements uniquely describe a non degenerate Keplerian orbit.The authors improve the reliability of
the existing Lyapunov orbital guidance scheme by considering the energy term. Additional improvement is achieved by adding the
penalty function. Furthermore, it is shown that the final suggested approach is suitable for the satellite passing the earth’s shadow
area.

1. Introduction

Orbit transfer problems for a satellite, which has an electric
propulsion system, are very interesting and difficult because
of the low and continuous thrust of the electric propulsion
system. There are various approaches to solve the orbit
transfer problem. Some of the earliest work in this field has
focused on finding optimal trajectories using either indirect
or direct techniques or mixtures of them [1–4]. The orbit
transfer duration of the satellite using an electric propulsion
system, however, is quite long. Itmeans that obtaining control
profiles for the transfer orbit is extremely difficult for the on-
board computer of a satellite to calculate. In addition, tra-
jectory optimization methods typically determine an open-
loop steering program that may be difficult or impractical to
store at the on-board computer. Therefore, orbital guidance
schemes are demanded for interplanetary or small satellites
[5].

There are two categories of the approach for orbital
guidance. One category (see [6–8]) involves “blending” the
instantaneously optimal thrust directions for changing each
of the orbital elements during each of several phases of
the orbit transfer. The second category (see [9–14]) is based

on Lyapunov feedback controls, where a suitable Lyapunov
function candidate must be defined by mission designers.
Ilgen [9] has suggested a Lyapunov candidate is based on
only five of the classical orbital elements. While the physical
interpretations of the classical orbital elements are easy to
visualize, this set of orbital elements often leads to singular
equations as the eccentricity and the orbit inclination angle
tend to zero. Chang et al. [13] have proposed a Lyapunov
candidate is based on the orbital elements, which consist of
angular momentum and eccentricity vectors. This approach
helps to avoid the singular equations.

Moreover, small satellites on low earth orbits (LEOs) can
be in the earth’s shadow area, which is an important issue [15,
16]. Supplying electric powers to the satellite during the time
when it is in the earth’s shadow area is going to be difficult
due to insufficient sun powers. Hence, the earth’s shadow
effect should be taken into account for guidance schemes for
orbit transfers. This work studies an orbital guidance law of a
satellite passing through the shadow area of the earth using
an electric propulsion system for transferring orbits. Note
that the Lyapunov feedback control law is themost promising
technology for orbit transfers because of its simplicity.
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2. Review of Orbital Dynamics

In classical orbital mechanics, six orbital elements are usually
used to describe motions of an orbiting body. These classical
orbital elements, however, have some singularity issues when
the eccentricity is 0 or the orbit inclination is 0∘ or 180∘.
The equinoctial orbital elements are used to avoid singularity
issues, but the state dynamics, by using calculus of variation,
are very complex. In contrast with the orbital elements,
a vector notation using the angular momentum and the
eccentricity vectors is very simple, and the singularities can
also be avoided. For this reason, the vector notation is utilized
for this work.

Every nondegenerate Keplerian orbit can be uniquely
described by the angular momentum and the eccentricity
vectors. In general, six elements are required to describe the
motion of the particle moving around the massive body. In
this study, the final time is not specified and the injection
point is free. That is, only five elements are required to solve
the orbit transfer problem. Note that these two orthogonal
vectors can be uniquely used to describe the initial and
desired orbits.

From Figure 1, one can easily convert the orbital elements
to the following vector notations:

h = √𝜇𝑎 (1 − 𝑒2) [𝑅
3
(𝑤)𝑅
1
(𝑖)𝑅
3
(Ω)]

𝑇

[0, 0, 1]

𝑇

,

e = [𝑅
3
(𝑤)𝑅
1
(𝑖)𝑅
3
(Ω)]

𝑇

[𝑒, 0, 0]

𝑇

,

(1)

where 𝑅
𝑖
(⋅) is the rotational matrix for the 𝑖th Euler angle, e

is the eccentricity vector, h is the angular momentum vector,
𝑎 is the semimajor axis, 𝜇 is the earth gravitational constant,
and 𝑒 is the eccentricity. Because these vector notations do not
consider a particle’s position in orbits, additional parameters
are required for rendezvous missions.

A satellite motion, which includes only the gravitational
force from the earth, is considered and the governing equa-
tion is given by [17]

̈r = − 𝜇
𝑟

3

r + a
𝑇
, (2)

where r is the position vectors of the spacecraft in Earth-
centered inertial (ECI) coordinate frames and the thrust
acceleration vector a

𝑇
in the ECI frame is described by [10]

a
𝑇
= −

2𝜂𝑃

𝑚𝑔𝐼SP
û = 𝑎
𝑇
û, (3)

where 𝑚 is the mass of spacecraft, 𝑃 is the input power to
the electric propulsion system, 𝜂 is the engine efficiency, 𝑔 is
the earth gravitational acceleration, 𝐼SP is the specific impulse,
and û is the unit vector along the thrust direction. Note that
the unit thrust vector direction is the control command and
an acceleration vector due to perturbations is not considered.
The mass flow rate due to the low-thrust engine is given by
[10]

�̇� = −

2𝜂𝑃
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2
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Figure 1: The conversion between classical orbital elements and
vector notation.

The differential equations for e and h in (1) are expressed
as

̇h = 𝑎
𝑇
[r̃] û,

ė = 𝑎
𝑇
Γû,

(5)

where Γ is defined as

Γ =

1

𝜇

[k̃] [r̃] (6)

and the notation [̃d] represents

[
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where d ≡ [𝑑
1
, 𝑑
2
, 𝑑
3
]

𝑇 is the generic variable.

3. Previous Guidance Schemes

There is much research about orbital guidance schemes
for satellites moving around the earth or other planets. In
these researches, the guidance scheme using the Lyapunov
feedback control method is suitable for the satellites with an
electric propulsion system. Because these satellites have very
low thrust for the orbit transfer mission, the orbit transfer
duration is quite long. That is, during the orbit transfer, the
reliability of the convergence is a very important factor, and
the reliability can be verified by using the Lyapunov feedback
control.

Many researchers have explored the Lyapunov feedback
control. For example,Vadali et al. [12] have used the Lyapunov
feedback control for the earth capture mission. This method,
however, is only applicable to two-dimensional orbit transfer
missions because scalar terms for the Lyapunov feedback
control are only considered. In contrast with thiswork, Chang
et al. [13] have used the vector notation to consider three-
dimensional orbit transfer missions. In this section, this
orbital guidance scheme is introduced.
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Consider a Lyapunov candidate
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(8)

where e
𝑓
and h

𝑓
are the desired eccentricity and angu-

lar momentum vectors, respectively. Note that the angular
momentum vector term is normalized because this value
is very large. On the other hand, the eccentricity vector is
not normalized to avoid the singularity as the eccentricity
approaches zero. 𝑊

1
and 𝑊

2
are the positive definite gain

matrices. Thus, the Lyapunov candidate always has positive
values except when the satellite achieved the desired orbit
state. Therefore, during the orbit transfer, the time derivative
of the Lyapunov candidate must have negative values to let
the Lyapunov candidate go to zero.

Using (5), the time derivative of the Lyapunov candidate
in (8) is written as
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where û is the control parameter which is selected to make
(9) negative as follows:
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Now, (9) is always negative except the following two cases:
(i) the orbit reaches the desired orbit and (ii) the thrust
magnitude is zero. Case (ii) will be discussed in Section 5.

4. Improved Guidance Schemes

The guidance scheme [13] performs well even though the
orbit state has some singularity conditions. However, this
guidance scheme also has some problems by using the vector
notation. One of the problems is caused when large-angle
maneuvers are performed. Because this orbital guidance
scheme uses the vector control, the transition vector is
varying during the orbit transfer as shown in Figure 2. This
transition vector is not exactly passing the line between
the initial and final angular momentum vectors. This phe-
nomenon comes from the coupled dynamics between the
angular momentum vector and the eccentricity vector as
follows:

ė = 𝑎
𝑇
Γû = 𝑎𝑇

𝜇

[k̃] [r̃] û = 1
𝜇

[k̃] ̇h. (11)

For this reason, the angular momentum vector is sometimes
decreased during the orbit transfer. That is, the semimajor
axis is also decreased from the following relationship:

‖h‖ = √𝜇𝑝 = √𝜇𝑎 (1 − 𝑒2), (12)

where 𝑝 ≡ 𝑎(1 − 𝑒2) is the semilatus rectum.

Initial vector

Transition vector

Target vector

Figure 2: The conversion between classical orbital elements and
vector notation.

The spacecraft model is described in Table 1, and identity
gain matrices are assumed.

Figure 3 shows the simulation result for the large-angle
maneuver using the conditions described in Table 2.The total
duration of orbit transfer is about 45.3 days by consuming
the propellant fully. The initial and final eccentricities are the
same; thus the semimajor axis is only affected by the angular
momentum. Figure 3(a) shows that the altitude of the satellite
is sometimes lower than the radius of the earth.That is, for the
LEO, the satellite crasheswith the earth by using this guidance
scheme.

4.1. Guidance Scheme 1: Addition of an Energy Term. To avoid
the crash problem for the large-angle maneuver using the
previous guidance scheme, the semimajor axis of the transfer
orbit must be controlled. A Lyapunov candidate adding the
orbital energy term is proposed as follows:
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(13)

where 𝐸 and 𝐸
𝑓
are the orbital energy and the desired orbital

energy, respectively. Note that the orbital energy term is
normalized because this value is large. 𝑘

1
is the positive gain

parameter. Thus, the Lyapunov candidate always has positive
values except when the satellite achieved the desired orbit
state. Therefore, during the orbit transfer, the time derivative
of the Lyapunov candidate must have negative values to let
the Lyapunov candidate go to zero.

The time derivative of the orbital energy is given by

̇
𝐸 = 𝑎
𝑇
k𝑇û. (14)
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(b) The profile of the eccentricity vector error and the angular momentum
vector error

Figure 3: The simulation result for the large-angle maneuver using the previous guidance scheme.

Table 1: The spacecraft model for the simulation.

Parts Features
Total mass for spacecraft (initial mass) 350 kg

Total mass for propellant 30% of the total
mass for S/C

Thrust level 1 N (ideal)
Specific impulse (𝐼sp) 3800 sec

Table 2: The first simulation conditions.

Initial values Desired
values

Semimajor axis (𝑎) 20000 km 20000 km
Eccentricity (𝑒) 0.3 0.3
Inclination angle (𝑖) 45∘ 45∘

Longitude of the
ascending node (Ω) 205∘ 25∘

Argument of perigee
(𝜔) 225∘ 45∘

Using (9) and (14), the time derivative of the Lyapunov
candidate in (13) is written as
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and û is selected to make this time derivative negative as
follows:
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Now, (15) is always negative except when the orbit is the
desired orbit or the thrust magnitude is zero.

Figure 4 shows the result for the large-angle maneuver
using the conditions in Table 2 with guidance scheme 1. The
gain parameter 𝑘

1
= 100 is assumed for the soft con-

straint. Note that this value can be changed to improve
the performance of the suggested guidance scheme. The
total duration of orbit transfer is about 35.1 days and the
crash problem from the previous orbital guidance scheme is
successfully avoided.

This orbital guidance scheme has the redundancy term;
initial and final orbit conditions are 5, and the Lyapunov
candidate uses the six elements (eccentricity vector (3) +
angular momentum vector (3) + orbital energy (1) − con-
straint between eccentricity vector and angular momentum
vector (1)). For this reason, the transition vector of the
angular momentum vector is affected by the orbital energy
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(b) The profile of the eccentricity vector error and the angular momentum
vector error

Figure 4: The simulation result for the large-angle maneuver using the improved guidance scheme.
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(b) The profile of the eccentricity vector error and the angular momentum
vector error

Figure 5: The simulation result for the Molniya orbit using the improved guidance scheme.

term. Furthermore, the semimajor axis value is nearly under
constraint. Therefore, the transition vector of the angular
momentum vector is passing near the line between the initial
and final angular momentum vectors. There is a difference
between the transition vector and the line from the initial to
the final angular momentum vector. This difference comes
from the coupled dynamics between the angular momentum
vector and the eccentricity vector as shown in (12).

Figure 5 shows the simulation result using the conditions
in Table 3 with guidance scheme 1. The gain matrices 𝑊

1
=

𝐼
3×3

and 𝑊
2
= 10𝐼

3×3
and the parameter 𝑘

1
= 1 are as-

sumed. The initial orbit condition is as follows: the perigee
and apogee altitude are 1,000 km and 12,000 km, respectively,

and the angles for the orientation are the arbitrary values.
Then, at the final time, the semimajor and semiminor axes
are 20,000 km and 15,000 km, respectively. These final orbit
states are similar to the Molniya orbit, which has very low
altitude of the perigee. Therefore, one can find the transition
orbit altitude using the previous guide scheme or guidance
scheme 1. Figure 5(a) shows that the satellite passes the earth’s
surface (ground) or the low boundary altitude.

4.2. Guidance Scheme 2: Addition of a Penalty Function Term.
To avoid the crash problem when the initial or final orbit
state has the very low altitude of the perigee, the perigee of
the transfer orbit must be considered as a constraint. For this
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(b) The profile of the eccentricity vector error and the angular momentum
vector error

Figure 6: The simulation result for the Molniya orbit using penalty function method.
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reason, a penalty function is suggested. To avoid the crash
problem during the orbit transfer, it needs to be satisfied with
the following condition:

𝑟
𝑝
= 𝑎 (1 − 𝑒) ≥ 𝑟

𝑝𝑐
, (17)

where 𝑟
𝑝
is the perigee radius and 𝑟

𝑝𝑐
is the minimum bound

of the perigee radius. This condition can be rewritten as the
following inequality condition:

𝑒 ≤ 1 −

𝑟
𝑝𝑐

𝑎

= 1 +

2𝑟
𝑝𝑐
𝐸

𝜇

. (18)

Table 3: The second simulation conditions.

Initial values Desired values

Semimajor axis (𝑎) 12878.14 km 20000 km
Eccentricity (𝑒) 0.4270803 0.6614378
Inclination angle (𝑖) 20∘ 45∘

Longitude of the ascending
node (Ω) 90∘ 180∘

Argument of perigee (𝜔) 0∘ 270∘

When the spacecraft is near the minimum bound of
the perigee, the penalty function affects the orbital guidance
scheme. In thiswork, the sigmoid function is used as a penalty
function, which is expressed as

𝑠 =

1

1 + exp (−𝑐𝐹)
. (19)

The shape of the sigmoid function can be changed by the
positive constant value of 𝑐 and the function𝐹. For example, if
the value of 𝑐 is infinitely large, the sigmoid-function shape is
similar to the step function. In addition, the sigmoid function
has three values depending on the value of 𝐹 as follows: (i)
𝐹 < 0 → 𝑠 = 0, (ii) 𝐹 > 0 → 𝑠 = 1, and (iii)
𝐹 = 0 → 𝑠 = 1/2.

From the sigmoid function in (19) and the inequality
constraint in (18), 𝐹 is obtained as follows:

𝐹 = e2 − (1 +
2𝑟
𝑝𝑐

𝜇

𝐸) . (20)
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Figure 9: The simulation result for the earth’s shadow effect.

The penalty function is added to guidance scheme 1, and
the Lyapunov candidate is written as
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(21)

where 𝑘
2
is the positive gain parameter. Thus, the Lyapunov

candidate always has positive values except when the satellite
achieved the desired orbit state. Therefore, during the orbit
transfer, the time derivative of the Lyapunov candidate must
have negative values to let the Lyapunov candidate go to zero.

Using the chain rule, the time derivative of the penalty
function is obtained as follows:

d𝑠
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Using (15) and (22), the time derivative of the Lyapunov
candidate in (21) is written as
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and û is selected to make this time derivative negative as
follows:

û = −([
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Now, (24) is always negative except when the orbit is the
desired orbit or the thrust magnitude is zero.

Figure 6 shows the simulation result using the conditions
in Table 3 with guidance scheme 2. The gain parameter
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Figure 10: The profile of the Lyapunov candidate under the earth’s shadow effect.

𝑘
2
= 1 is assumed. The total duration of orbit transfer is

about 24.7 days. As shown in Figure 6(a), the crash problem
is completely avoided by considering the penalty function,
which affects the orbit state. Now, the semimajor axis value is
under constraint, and the altitude of the perigee is bounded.
Regardless of the increase of the consumed mass of the
satellite, the reliability is guaranteed for the orbit transfer
mission.

5. Applied Earth’s Shadow Effect

Several types of the orbital guidance schemes are discussed
in previous sections. The guidance command is generated
to make negative values for the derivative of the Lyapunov
candidate, and the derivative of the Lyapunov candidate
is zero when the magnitude of the thrust acceleration is
zero. This means that the electrical propulsion system is not
operated, and one of operating modes is the eclipse mode.
Consider small satellite missions on LEOs, especially when
a satellite is in the earth’s shadow area. During this time,
supplying electrical powers to the satellite is going to be
difficult, because of the insufficient sun power for the solar
array. For this reason, the thrustmagnitude is zero during this
time. Figure 7 shows the position of the satellite and the sun
for the earth’s shadow area.When the angle𝛽 between the sun
and the satellite is larger than the sum of the angle 𝛼, which
is the half cone angle, and 90∘, the satellite is under the earth’s
shadow area.That is, the earth’s shadow effect is applied when
the following condition is satisfied:

𝛽 > 𝛼 + 90

∘

. (26)

In the earth’s shadow area shown in Figure 8, the thrust
magnitude is zero, and the derivative of Lyapunov candidate
is the seminegative definite. In general, when the derivative
of Lyapunov candidate is the seminegative definite, the
Lyapunov candidate is not always converged into zero. Since

Table 4: The third simulation conditions.

Initial values Desired values

Semimajor axis (𝑎) 7278.14 km 7478.14 km
Eccentricity (𝑒) 0.0137398 0.0133723
Inclination angle (𝑖) 15∘ 45∘

Longitude of the ascending
node (Ω) 25∘ 0∘

Argument of perigee (𝜔) 45∘ 0∘

the spacecraft is always turning around the earth, however,
the sum of the derivative of the Lyapunov candidate during
one revolution is always the negative definite. Thus, the
Lyapunov candidate is always converged into zero for the
orbit transfer in elliptic orbits. This means that the desired
orbital conditions can be approached successfully.

Figures 9 and 10 show the simulation result using the
conditions in Table 4 with guidance scheme 2. For simplicity,
a fixed position for the sun and the position vector 1𝐴𝑈 ×

[𝑒, 0, 0]

𝑇 are assumed. The total duration of orbit transfer
is about 14.8 days. Figure 10(b) shows that the Lyapunov
candidate values are not changed when the satellite is passing
the earth’s shadow area.

From these results, we show that guidance scheme 2 can
be applied on the satellite passing the earth’s shadow area.

6. Conclusions

In this study, for the simplicity and avoidance of the singu-
larity of the orbit dynamics, the vector notation is utilized
to describe the motion of the satellite moving around the
earth’s gravity field.TheLyapunov feedback controlmethod is
used as a simple and reliable guidance schemewith the vector
notation. In the previous study, the eccentricity and angular
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momentum vectors are considered as a Lyapunov candidate
to avoid singularities of the orbit dynamics. However, the
altitude of the satellite is sometimes lower than the surface of
the earth using the previous guidance scheme. To avoid the
crash problem, a vector constraint is considered by using the
energy term in the Lyapunov candidate. The soft constraint
about the altitude is considered, and the crash problem is
avoided for the large-anglemaneuver. Furthermore, the crash
problem including the Molniya orbit is completely avoided
by using the penalty function. In addition, the orbit transfer
under the earth’s shadow effect is also successfully achieved by
using guidance scheme 2, which is the general one and would
be very useful for solving any orbit transfer problems.
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