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F-69622 Villeurbanne Cedex, France
dDepartment of Physics, Korea Advanced Institute of Science and Technology,

335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Korea
eSchool of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea
fCenter for Axion and Precision Physics, IBS,

291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea

E-mail: g.cacciapaglia@ipnl.in2p3.fr, hcai@ipnl.in2p3.fr,

flacke@kaist.ac.kr, sjjlee@kaist.ac.kr, parolini@kaist.ac.kr,

hserodio@kaist.ac.kr

Abstract: The top quark can be naturally singled out from other fermions in the Stan-

dard Model due to its large mass, of the order of the electroweak scale. We follow this

reasoning in models of pseudo Nambu Goldstone Boson composite Higgs, which may derive

from an underlying confining dynamics. We consider a new class of flavour models, where

the top quark obtains its mass via partial compositeness, while the lighter fermions acquire

their masses by a deformation of the dynamics generated at a high flavour scale. One in-

teresting feature of such scenario is that it can avoid all the flavour constraints without the

need of flavour symmetries, since the flavour scale can be pushed high enough. We show

that both flavour conserving and violating constraints can be satisfied with top partial

compositeness without invoking any flavour symmetry for the up-type sector, in the case

of the minimal SO(5)/SO(4) coset with top partners in the four-plet and singlet of SO(4).

In the down-type sector, some degree of alignment is required if all down-type quarks are

elementary. We show that taking the bottom quark partially composite provides a dynami-

cal explanation for the hierarchy causing this alignment. We present explicit realisations of

this mechanism which do not require to include additional bottom partner fields. Finally,

these conclusions are generalised to scenarios with non-minimal cosets and top partners in

larger representations.
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1 Introduction

The discovery of a new scalar resonance at the LHC, resembling the Standard Model (SM)

Higgs boson, unquestionably opened a new era in high energy particle physics. The Higgs

boson is the last highly sought particle predicted by the SM, as originally proposed in

the 70’s. Nevertheless, the theoretical shortcomings of the SM, iconically represented by

the naturalness problem, together with unexplained phenomena like Dark Matter and the

baryon asymmetry in the Universe, cry for the presence of new physics. In some models,

especially the ones addressing naturalness, the scale of new physics is close to the TeV,
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and possibly accessible at the LHC. The fact that no other state but a Higgs has been

found in Run I of the LHC has not ruled out this possibility yet, as new states at the TeV

scale, or lighter if weakly coupled, are still allowed. On the other hand, the measurement

of the couplings of the discovered Higgs boson offers a novel way to access the effects of

new physics. At the moment, after the full analysis of the Run I data, the couplings are

in good agreement with the SM predictions, at the 10% level precision. Some couplings,

like the ones to fermions, are much less constrained. Therefore, we are still in a situation

where more fundamental realisations of the Higgs mechanisms other than the ad-hoc SM

one are possible and deserve to be studied in depth, in view of the improvement in the

Higgs coupling measurements expected at the Run II.

One very attractive idea, which dates back to the 70’s [1–3], is to replace the fundamen-

tal scalar field, responsible for the spontaneous breaking of the electroweak (EW) symmetry,

with a whole strong interacting and confining sector. In this way, the scale at which the

symmetry is broken is dynamically generated by a non-perturbative dimensional transmu-

tation, which is thus insensitive to the problem of quantum instability. Furthermore, spon-

taneous symmetry breaking by confinement is a very well known phenomenon, observed

in many systems, notably in quantum chromodynamics (QCD). From the theoretical side,

asymptotically-free and confining theories occupy the special seat of theories that can be

potentially well defined at all scales. The main obstacle of such idea is the difficulty in

generating a large enough mass for the top quark and the absence of a light Higgs-like state.

In the 80’s new ideas offered a revival of the whole scenario. On the one hand, it was re-

alised that, by extending the global flavour symmetries of the underlying dynamics, it is pos-

sible to generate a Higgs-like state among the pseudo-Nambu Goldstone Bosons (pNGB),

like pions, of the spontaneous symmetry breaking. This mechanism allows a composite

scalar to be naturally and parametrically lighter than other composite particles [4–9]. In ad-

dition to it, for the top mass, the idea of partial compositeness [10] was put forward: in this

scenario, the existence of fermionic spin-1/2 states with the same quantum numbers of the

top is postulated. They couple to the source of electroweak symmetry breaking (EWSB),

being part of the composite sector, while a linear coupling with the elementary fermions

allows for a propagation of the symmetry breaking to the quark sector. The advantage over

the traditional direct coupling of a top bilinear to the composite sector [11, 12] is the absence

of dangerous four-fermion operators that may mediate large flavour changing effects [13].

A third revival of the idea came in the new millennium when, inspired by the con-

jecture of a correspondence between warped extra dimensions (AdS) and conformal field

theories in 4 dimensions (CFT) in string theory [14], models of strong dynamics with a

quasi-conformal behaviour have been associated to models on a warped extra dimensional

background [15, 16]. The extra dimensional version allows to build a weakly coupled model

describing pions, together with spin-1 and spin-1/2 resonances, in a calculable way [17].

On the other hand, the correspondence may not guarantee the existence of a 4-dimensional

strongly coupled counterpart for any 5 dimensional model. Following the success of extra di-

mensional models [18], intensive studies of models of composite pNGB Higgs has sprouted,

based on an effective Lagrangian approach (see ref. [19] for a recent review). Partial com-

positeness as the origin of fermion masses has been considered as a key ingredient at the
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basis of this kind of models. The main reason for this choice is that in the extra dimen-

sional construction, flavour structures partially explaining the hierarchies in the fermion

masses [20] and the absence of flavour changing neutral currents are automatically in place.

Furthermore, loops of the composite fermions have been advocated as a stabilising mecha-

nism for the Higgs mass, and the lightness of the Higgs mass has served as a motivation to

consider fermions even lighter than the compositeness scale [21–23]. While this conclusion

may be justifiable in models with a warped extra dimension where some of the top partners

can be naturally lighter than the Kaluza-Klein scale [24–26], in a 4D effective field theory

approach the solidity of the assumption is more questionable, especially when all the top

partners are assumed to be lighter than the compositeness scale. Examples of fundamental

dynamics at the origin of this kind of models can be found, both non-supersymmetric [27]

and supersymmetric [28]. More recently, the possibility to generate top partners in simple

non-supersymmetric underlying dynamical models has been explored [29], with the conclu-

sion that very few scenarios allow for such states to consistently exist [30, 31]. In fact, if

the UV completion is a strong dynamics with only fermions as fundamental components,

one is forced to add a number of fermions in different representations of the underlying

hypercolour gauge group in order for the spectrum of composite states to contain spin-1/2

particles. Furthermore, additional multiplicity is implied by QCD colour invariance which

needs to be included within the global symmetries of the strong dynamics.

From the low energy effective field theory point of view, pNGB composite Higgs models

(CHM) typically need flavour symmetries [32] in order to satisfy the flavour bounds, as the

flavour scale is set by the TeV scale for solving the naturalness problem. A comment is in

order: in partial compositeness framework where all the quarks are partially composite, the

flavour puzzle in new physics is mostly solved, a feature which makes partial compositeness

very appealing. This is manifested in 5D models, where a Randall-Sundrum (RS) Glashow-

Iliopoulos-Maiani mechanism is built-in [33], representing a major achievement of partial

compositeness. However, there is a residual tension left from ǫK and electric dipole mo-

ments (EDMs), which requires the compositeness scale to be still as high as O(10)TeV [32,

34]. To solve this little hierarchy, some kind of flavour symmetries (e.g. horizontal symme-

tries, alignments, minimal flavor violation with SU(3) or U(2), etc ) are still required, both

in 5D holographic models [35–40] and 4D composite Higgs models [32, 41–43].

In this paper, we want to consider a scenario of pNGB composite Higgs where partial

compositeness is present for the top quark only,1 while the masses of light quarks and lep-

tons are generated by the more traditional direct coupling to the dynamics: an example of

such structure could be found in technicolour theories [11, 12], in particular in conformal

technicolour [44]. One reason for this choice is the difficulty in defining a simple underly-

ing dynamics. Another more general issue relates to the properties of the dynamics that

may be providing fermionic partners for each generation: in fact, if we assume that the

strong dynamics respects a flavour symmetry and couples differently to the three genera-

tions, then it is inevitable to ask if such symmetry is spontaneously broken by the strong

1Potentially also the bottom quark can be partially composite, i.e. it is gaining its mass from linear

mixing to composite fermions.
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sector. Furthermore, including partners for all SM fermions would require a large number

of fundamental fermions, that risks to spoil the asymptotic freedom of the underlying dy-

namics [29]. Without specifying a well-defined microscopic dynamics, it is not possible to

answer these questions. The case where both partial compositeness and direct couplings

are present has some advantages: the top is uniquely defined as the combination of elemen-

tary fermions that couples to the fermionic partners, thus one can consider a truly flavour

blind underlying dynamics. Furthermore, as the large top mass is generated by the partial

compositeness, the direct couplings can be suppressed by a larger energy scale (just light

enough to generate the bottom, charm and tau masses) so that the sector responsible for the

generation of such terms can be pushed to scales which are safe with respect to flavour vio-

lating effects, namely O(105) TeV. These benefits would however only hold if no additional

flavour symmetries are needed. We will therefore analyse the effects of bounds from both

flavour-violating and flavour-conserving processes on a scenario where the light fermion

flavor structure is anarchic at the high flavour scale. We anticipate that two different small

ratios play an important role: mc/mt and mt/M∗, where M∗ ∼ 1TeV indicates the scale of

new physics. While the smallness of the latter is related to the smallness of v/f and it is

well understood in the context of pNGB Higgs models, f ∼ 1TeV being the decay constant

associated to the coset of the breaking, the former suppression is truly a result of the inter-

play of two different mass sources. The solution of the hierarchy problem needs to single

out a combination of quarks and make it heavier, causing the emergence of an approximate

U(2) symmetry in the up sector. A similar attitude has been also put forward in MSSM-like

extensions of the SM, in particular in the context of deconstructed models [42, 45].

It should be stressed that our scenario does not necessarily require the presence of a

technicolour sector, nor of an underlying technicolour model. In fact, our analysis applies

to a much larger class of models, including weakly coupled ones, described by the effective

Lagrangian with a pNGB Higgs. Moreover models with heavy vector-like quarks, with or

without a composite Higgs, might share the same properties as our framework.

The paper is organised as follows: in section 2 we introduce the minimal case of a

SO(5)/SO(4) symmetry pattern with composite fermions in the 5 of SO(5), also known as

MCHM5, with only composite top and anarchic UV sector, and we present the constraints

in this scenario in section 3, showing that the setup evades the need of any alignment or

flavor symmetries in the top-sector and strongly reduces (but in general not completely

overcomes) the need for alignment in the bottom-sector. In section 4 we propose an ex-

tension in which the bottom quark mass is also realised via partial compositeness which

dynamically generates the residual alignment needed in the bottom sector. We present

explicit realisations of this concept which do not require the inclusion of further composite

partners. In section 5 we show that our results can be extended to non-minimal symmetry

breaking pattern and also to cases where the top partners belong to other representations.

Finally, we conclude in section 6.
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EW scale (v)

Compositeness scale (f): the strong sector is described by heavy resonances,

some of them have a mass of order f .

Condensation scale (ΛHC): the strong dynamics breaks SO(5) to SO(4).

Flavour scale (ΛUV ): additional Yukawa operators are generated.

resonances
tPC+HC

Figure 1. Schematic representation (not in scale) of the energy range considered in the model.

2 A composite Higgs model with additional Yukawa interactions

The basic set-up of the model can be represented by the diagram in figure 1: we imagine the

existence of resonances of a strong dynamics sector appearing above a scale f , and deriving

from the condensation of a “hyper-colour” gauge group which takes place at a higher scale

ΛHC . Between these two scales, all the heavy resonances appear, including top partners and

spin-1 resonances. Above the scale ΛHC , we postulate the existence of a different dynamics

that generates direct couplings of the elementary fermions (both quarks and leptons) to

the strong sector at a high scale: this may happen via four-fermion operators generated by

a conformal technicolour sector (as an example). In order to sufficiently suppress flavour

changing neutral currents generated at the same scale, we will require that ΛUV & 105

without assuming CP conservation: this is in stark tension with the generation of the top

mass, however such a large scale can be compatible with the generation of the bottom and

charm masses, as we will show in section 3.3. On the other hand, the compositeness scale f

needs to be at the TeV scale for consistency with naturalness. Note also that we postulate

the existence of a gap between f and the EW scale v, so that the mass of the pNGBs of

the symmetry breaking are at a scale v, compatible with the measured value of the Higgs

mass. The gap is also required for the model to pass electroweak precision tests, so that

the confinement scale is larger than the EW scale, f > v, at the price of a fine tuning.

2.1 Particle content and Lagrangian

In this section we shall introduce a class of models which could give rise, at low energy, to

the paradigm previously discussed. These are the well known CHM, where the Higgs boson

arises as a pNGB of a spontaneously broken global symmetry, and the top quark couples

to heavy fermions through partial compositeness, namely linear mass mixing. Both the

spontaneous breaking, and the heavy fermions, may be produced by an underlying strong

dynamics, however this is not the only scenario we want to cover. In this section, we restrict

ourselves to the minimal coset preserving a custodial symmetry, namely SO(5)/SO(4) [18],
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and we embed the left-handed quarks qL = (tL, bL)
T and the right-handed one tR in

spurions transforming in the fundamental 5 of SO(5) [26, 46]: this set-up is also known as

MCHM5. We also assign to the elementary spurions

q53L =
1√
2

(

−ibL, bL, −itL, −tL, 0
)

, t
5
R =

(

0, 0, 0, 0, tR
)

, (2.1)

a charge ±2/3 under an additional local U(1)X . The Higgs doublet, whose components

are identified with the pNGBs, always appears through a unitary matrix U . In the unitary

gauge, where the three real scalar degrees of freedom providing the longitudinal modes of

the electroweak W± and Z0 gauge bosons disappear, it takes the form

U =















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 cθ sθ
0 0 0 −sθ cθ















with sθ = sin θ = sin
h+ 〈h〉

f
, (2.2)

and the decay constant f depends on the detail of the UV theory. Following naive argu-

ments, we fix 4πf ≃ ΛHC . The pion matrix U transforms non-linearly under g ∈ SO(5):

U → gUh†(g, h), where h ∈ SO(4). It is convenient to define Σ = U · (0 0 0 0 1)t, trans-
forming linearly as a 5 under SO(5). We also define

ǫ = 〈h〉/f , (2.3)

sǫ = sin ǫ and cǫ = cos ǫ. The EW scale is set by v = sǫf ≃ 246GeV, and we focus on

values s2ǫ ∼ 0.1 which implies f ≃ 800GeV, as set by electroweak precision bounds [47].

The composite sector typically contains many spin-1/2 fermionic resonances. We

choose here to use the minimal set apt to generate a mass for the top via linear mix-

ing, i.e. a four-plet Q and a singlet T̃ of SO(4), originating from a 5 of SO(5):

ψ =

(

Q

T̃

)

=
1√
2















i B − i X5/3

B +X5/3

i T + i X2/3

−T +X2/3√
2 T̃















. (2.4)

The most general Lagrangian we can write is then

Lcomp = iQL,R

(

/D + /E
)

QL,R + iT̃L,R /DT̃L,R −M4

(

QLQR +QRQL

)

−M1

(

T̃LT̃R + T̃RT̃L

)

+ icLQ
i
Lγ

µdiµT̃L + icRQ
i
Rγ

µdiµT̃R + h.c.

−Lmix = yL4,1fq
5
3LUψR + yR4,1ft

5
RUψL + h.c.

= yL4f
(

bLBR + c2θ/2tLTR + s2θ/2tLX2/3R

)

− yL1f√
2
sθtLT̃R

+ yR4f

(

sθ√
2
tRTL − sθ√

2
tRX2/3L

)

+ yR1fcθtRT̃L + h.c. ,

(2.5)
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where Eµ and dµ denote the CCWZ Cartan-Maurer one-forms (cf., e.g., ref. [48] for the

explicit expressions). Masses and couplings deriving from this Lagrangian are detailed in

appendix A. The terms in Lmix are responsible for the partial compositeness of the top

quark. Top partial compositeness and the gauging of SU(2)L × U(1)X lift the Higgs and

radiatively induce EWSB. The detailed study of the Higgs potential is out of the scope of

this work, it has been extensively investigated in [21–23], and we shall just rely on those

results concerning the Higgs vacuum expectation value and mass. We fix the masses of

the heavy coloured fermions appearing in eq. (2.5) to be around 1TeV, and above the

currents experimental bounds, roughly 650−800GeV depending on the quantum numbers

and on the branching ratios [49–51]. We expect these fermionic composite objects to have

masses of order g∗f where g∗ is a coupling of the strong sector, implying masses in the

few to multi-TeV range; on the other hand lighter masses are preferred by the light Higgs

mass and therefore we assume this is the case and we loosely identify M∗ ∼ M4 ∼ M1 ∼
|M1 −M4| ∼ f . We do not expect heavier partners to invalidate the analysis we are about

to develop. Note that eq. (2.5) naturally singles out the top quark as the only elementary

field that couples to the composite fermions. We would also like to point out that, in the

context of the model we are discussing, another possibility exists: to assume that tR is a

fully composite state. With this choice, the Lagrangian giving rise to masses and couplings

would be different from eq. (2.5) [52].2 However, we have checked that the conclusions of

the analysis we present here will stay the same, as the general flavour structure would be

unaffected by changing tR from partially composite into fully composite (see appendix B).

In addition we assume the presence of direct Yukawa interactions of all fermions, quarks

and leptons, generated at a scale ΛUV > ΛHC : they appear in the effective Lagrangian as

couplings between pairs of SM elementary fermions and operators belonging to the com-

posite sector. A simple example is provided by conformal technicolour-like theories, where

they are four-fermion interactions with the component fermions of the strong dynamics.

This mixed possibility, partial compositeness for the top and additional deformations for

the other quarks, has been recently considered in [54] in a supersymmetric theory and it

has been analysed in the presence of flavour symmetries in [55]. Similarly, it has been

proposed in a non-supersymmetric model based on the coset SU(5)/SO(5) [31]. In this

scenario we loose the nice feature of partial compositeness naturally generating flavour

hierarchies but we can study microscopical models in realistic situations and still account

for a single separation of scale, between the top and all the other quarks. Schematically,

we complement the Lagrangian with the following interactions at the scale ΛUV

LY = q̄L,αλ
u
α,βuR,β Ou + ¯̃qL,αλ

d
α,βdRβ Od + h.c. , (2.6)

where α and β are indices over the 3 SM generations, and Ou,d are operators of the new

dynamics. As these terms are generated independently on the partial compositeness of the

top, their embedding in the global symmetry SO(5) is free. For concreteness, we will for

now choose the same embedding as of the top, so that the spurions appearing in the above

equations transform as 5’s. The fields qL and uR are thus a generalization of eq. (2.1) to

2For other models with composite tR, see [53].
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include three families, and q̃L and dR are defined by

q̃5αL =















0 0 0 −1 0

0 0 1 0 0

0 1 0 0 0

−1 0 0 0 0

0 0 0 0 0















q5αL , d5αR =















0

0

0

0

dαR















, (2.7)

with U(1)X charge ±1/3. Ou,d are composite operators in a non trivial representation of

the broken SO(5) interpolating at low energy the Higgs doublet. If these operators are in

a representation contained in 5× 5 of SO(5), at low energy we obtain the following

LY =
√
2 (q̄5αLΣ)m

u
UVαβ(Σ

Tu5βR) +
√
2 (¯̃q5αLΣ)m

d
UVαβ(Σ

Td5βR)

=
s2θ
2

[

ūαLm
u
UVαβuβR + d̄αLm

d
UVαβdβR

] (2.8)

where mu,d
UV ∝ λu,d such that s2ǫm

u,d
UV ∼ O(1)GeV to correctly reproduce the charm and

bottom masses. The way U appears is fixed by the representation of the operators Ou,d:

our choice gives the same dependence obtained for the top from partial compositeness.3

If the composite sector is fundamentally a gauge theory of strongly interacting fermions

Ψi one can secretly imagine the operators Ou,d as ΨiΨj bilinears. If Ψ transform in the 5

of SO(5) at low energy we find the dependence expressed in eq. (2.8). In this case in the

UV the interactions, written in terms of microscopical degrees of freedom, are of the form

q̄uΨΨ/Λ2
UV. This way of viewing them reminds us of conformal technicolour theories; in

the following, we will dub these terms UV, independently on their physical origin.

These operators have a small impact on the Higgs potential: they do not play a

significant role for what concerns naturalness. Indeed the largest contribution to the Higgs

square mass is

− 3
y2b

16π2
Λ2
HC ≃ (30 GeV)2 . (2.9)

Finally we stress that λu,d are 3 × 3 generic matrices in generation space with rank

3. This additional mass term of order O(1 GeV) in the up sector causes a misalignment

between the physical top and the top defined as the partially composite quark.

2.2 The structure of the model

The fermionic field content defined above can be split into up and down sectors as

ξ↑ =
(

u c t T X2/3 T̃
)T

, ξ↓ =
(

d s b B
)T

. (2.10)

Their Yukawa-mass Lagrangian is given by

− Lyuk−mass = ξ̄↑L [Mup + Yuph+ · · · ] ξ↑R + ξ̄↓L [Mdown + Ydownh+ · · · ] ξ↓R + h.c. (2.11)

3A simpler choice could be to have composite operators in the 5 and embed right-handed quarks in

SO(5) singlets: as a result we would have a different Higgs dependence in the effective Lagrangian, namely

a single Σ would appear. This choice would not significantly affect our analysis.
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with the matrices Mup and Mdown extracted from eq. (2.5) and eq. (2.8) and given in

appendix A. The first task is to define a proper change of basis in the up and down sector

to recover the mass eigenstates.

Since this cannot be done exactly we use s2ǫ as an expansion parameter for perturba-

tion theory: this implies that in the elementary quark sector a general 3 × 3 matrix is a

perturbation to the null matrix. In other words, the unitary matrices that we shall find

in this expansion do not completely diagonalize the 6 × 6 (or 4 × 4) matrix, but actually

only block diagonalizes it. Nevertheless, this is enough since in this new basis the heavy

eigenstates are diagonal and they can be safely integrated out at tree level.

For the up-quark sector we get, up to O(s32ǫ),

U †
uLMupUuR ≃

(

mU 0

0 DM

)

, (2.12)

with

mU ≃ s2ǫ
2

mu
UV +mtΠ , Π =





0 0 0

0 0 0

0 0 1



 , DM ≃ diag (MT ,M4,MT̃ ) , (2.13)

wheremt is the contribution to the top mass from partial compositeness (so that s2ǫ mUV ∼
mc ≪ mt). The masses are defined as

mt=s2ǫ
f2|yL1yR1M4−yL4yR4M1|

2
√
2MTMT̃

, MT =
√

M2
4+f2y2L4 , MT̃ =

√

M2
1+f2y2R1 . (2.14)

We also define

sφL =
yL4f

MT
, sφR =

yR1f

MT̃

. (2.15)

The Yukawa couplings are brought, by these transformations, to a non block-diagonal form.

The Yukawa matrix for the light quark sector is now given by

yu ≃ mU

fs2ǫ/2

(

1− 1

2
s22ǫ

)

+Bu , where Bu ∼ Σu

M2∗
. (2.16)

We also define

Σu ∼







m2
c m2

c mcmt

m2
c m2

c mcmt

mcmt mcmt m2
t






. (2.17)

Exact expressions are lengthy and are not reported here. They are obtained as outlined

in appendix A.2. Here, we prefer to show approximate results capturing the size of the

corrections. Hence these equations should not be considered as true equalities because we

are neglecting numerical coefficients of order one.

For the down sector we obtain

U †
dLMdownUdR ≃

(

mD 0

0 MT

)

, mD ≃ s2ǫ
2

md
UV . (2.18)
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The Yukawa coupling in the down sector is decomposed in aligned and non aligned parts as

yd ≃ mD

fs2ǫ/2

(

1− s22ǫ
2

)

+Bd , (2.19)

where in analogy with eq. (2.17) we have

Bd ∼ mbΣd

ǫM3∗
, where Σd ∼ ǫ2(md

UV)
2
. (2.20)

The interaction Lagrangian of the EW gauge currents is

Lgauge = Zµξ̄↑L,Rγ
µAtL,R

NC ξ↑L,R+Zµξ̄↓L,Rγ
µAbL,R

NC ξ↓L,R+W+
µ ξ̄↑L,Rγ

µAL,R
CC ξ↓L,R+h.c. (2.21)

where AtL,R
NC , AbL,R

NC and AL,R
CC are reported in eq. (A.6), eq. (A.7) and eq. (A.8). Applying

the unitary transformations UuL,uR and UdL,dR to the EW gauge currents we obtain:

• deviations in the neutral currents

δAtL
NC

∣

∣

3×3
≃ g

cW

Σu

M2∗
, δAtR

NC

∣

∣

3×3
≃ − g

cW

Σu

M2∗
,

δAbL
NC

∣

∣

∣

3×3
= 0 ,

(

δAbR
NC

∣

∣

∣

3×3

)

ij

≃ − g

2cW

Σd

M2∗
;

(2.22)

• deviations in the charged currents

(

δAL
CC

)

≃ − g√
2

Σu

M2∗
,

(

δAR
CC

)

≃ − g√
2M2∗

mb







mc mc mc

mc mc mc

mt mt mt .






. (2.23)

In order to go from this basis to the “true” mass eigenbasis we just need to perform

unitary transformations acting on the light sector only. The light mass matrices in eq. (2.13)

and eq. (2.18) are diagonalized through unitary transformations as follows:

mU = VuLMUV
†
uR , mD = VdLMDV

†
dR (2.24)

where MU = diag(mu,mc,mt) and MD = diag(md,ms,mb) are the masses of the six

quarks. Given the fact that O(s2ǫmUV) ∼ O(mc), the matrix mU given in eq. (2.13)

contains a strong hierarchy due to the {3, 3} entry which receives a contribution from

partial compositeness of order mt ≫ mc. Therefore it can be diagonalized through VuL,R

of the form

VuL,R ∼







O(1) O(1) O(mc
mt

)

O(1) O(1) O(mc
mt

)

O(mc
mt

) O(mc
mt

) 1






. (2.25)

From this hierarchy and eq. (2.17) we have

V †
uLΣuVuR ∼ Σu . (2.26)

Therefore deviations in the gauge couplings of up currents can be directly read from

eq. (2.22).

In the down sector there is no a priori hierarchy between the mass matrix entries,

except from the fact that is has to accommodate the down-type quark spectrum.
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3 Confronting the model with data

In this section we confront our model with the present constraints coming from flavour

conserving/violating processes and also comment on precision data, non linearities and

neutron EDM. All these effects may have three distinct origins:

(1) induced solely by the mixing effects due to top partial compositeness and direct

Yukawa couplings, thus appearing as flavour-violating couplings of the Z, W and

Higgs;

(2) induced by heavy resonances, appearing at the compositeness scale;

(3) induced by the dynamics that generates elementary Yukawa couplings at the scale

ΛUV .

The third type of effects will play no role in our framework, as we will show in section 3.3.

We can now proceed to evaluate the impact of the above results on SM measurements:

we first discuss flavour-conserving couplings, leaving flavour-violating effects for the follow-

ing subsection.

3.1 Flavour preserving processes

3.1.1 Constraints from top partial compositeness

We start with the tree level coupling of the top to Z and W boson, mainly affected by the

partial compositeness mixings. The expressions we found for δgZtL , δgWtLbL and δgZtR at

λu = λd = 0 agree with eq. (6.6) and eq. (6.7) of [52]; we also checked that the following

relation holds true:
δgZtL

g/cW
=

δgWtLbL

g/
√
2

, (3.1)

as expected [57–59]. In the limit yL1 = yL4, yR1 = yR4 and cL = cR = 1/
√
2, we ob-

tain simple formulae that can be considered as an example of more general complicated

expressions

δgZtL ≃ − g

cW

(

mt

M∗

)2 (1− s2φR)
2

2s2φR
, δgZtR ≃ − g

cW

(

mt

M∗

)2 (2− s2φL)

2
. (3.2)

In the general case, corrections of the same order are obtained.4

The corrections to the Z couplings to the top can be large, but no experimental bound

on them is available. Such deviation, however, also enters the coupling to charged currents:

besides threatening the unitarity of the CKM matrix in the light flavours, as we will discuss

in the next section, it affects the value of the coupling of the W to third generation quarks.

The latter needs to be compatible with the direct measurement of |Vtb| = 1.021±0.032 [60].

To satisfy the bounds, it is enough to have

|δAL
CC |1/2 ∼

∣

∣

∣

∣

∣

mt

M∗

(1− s2φR)√
2sφR

∣

∣

∣

∣

∣

. 10−1 . (3.3)

4Notice that δgZtL → 0 if yL4,L1 → 0 and δgZtR → 0 if yR4,R1 → 0, a fact that might be obscured in

eq. (3.2).
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At fixed mt this implies that sφR < 1/2 is disfavoured, unless we take M1 to be much larger

than 1TeV.

For what concerns right-handed couplings, t̄R /WbR, the expression in eq. (2.23) gives

us a coefficient ∼ g√
2

mtmb

M2
4
: the same result holds in models with partially composite top

and bottoms [61] and from the analysis presented there of b → sγ processes we read

M4 & 1TeV.5

For the couplings of the bottom quark we obtain

δgZbL = 0 , δgZbR = − gs22ǫ
8cW

(

yL4fm
d
UV33

M2
4 + y24Lf

2

)2

≃ − g

2cW
s2φLc

2
φL

(

mb

M∗

)2

; (3.4)

deviations to the left-handed couplings vanish, as expected, because of the custodial sym-

metry [26], while corrections to the right-handed ones are sufficiently suppressed by the

smallness of the bottom mass.

3.1.2 Constraints from heavy resonances

We now proceed inspecting subleading corrections along the line of recent works [52, 55]:

those are especially important in the down sector, where the contribution of the composite-

ness is under control. At tree level corrections proportional to the momentum exchanged in

the vertex are not forbidden by the custodial symmetry, and one can expect operators like

L ∼ s2φL
b̄γµDνF

µνb

m2
V

≃ s2φL

(

mZ

mV

)2

b̄ /Zb (3.5)

to arise, where mV is the mass of a heavy vector resonance. The coefficient of the operator

in eq. (3.5) is proportional to s2φL, the square of the mixing of bL with the BL top partner:

this is the only effect since we do not have other partners and, therefore, we obtain correc-

tions to δgZbL and not to δgZbR . At loop level a potentially sizable effect comes from the

presence of four top partners interactions, generated by exchanging a vector resonance at

a scale mV defined as before. This will be proportional to log(mV /M4) and again to s2φL
since we need two mass insertions on the external legs to connect the vertex with two ele-

mentary bL. For the same reason we do not expect a similar contribution arising for δgZbR .

Both tree level and loop corrections can be estimated to be around 10−3 for mV = 3TeV

and for sensible values of other parameters, thus satisfying the experimental bounds [62].

Deviations for other quark couplings are suppressed by (mc/M∗)
2 and (mb/M∗)

2 for

up and down type respectively and they are below the experimental bounds which can

be found in [63] for charm and in [60] for light quarks, the latter extracted from parity

violation measurements in atomic physics.

3.2 Flavour violating processes

Four-quark operators changing the flavour number by two units, i.e. |∆F | = 2 transitions,

are common in beyond the SM scenarios and can place strong constraints on the new

5We thank N. Vignaroli for a comment on this point.
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physics. They are typically described by an effective Lagrangian of the form

L|∆F |=2 =
5

∑

i=1

C
qαqβ
i Qqαqβ

i +
3

∑

i=1

C̃
qαqβ
i Q̃qαqβ

i (3.6)

with the dimension six operators defined as

Qqαqβ
1 =

(

qβLγµqαL
) (

qβLγµqαL
)

, Q̃qαqβ
1 =

(

qβRγµqαR
) (

qβRγµqαR
)

,

Qqαqβ
2 =

(

qβRqαL
) (

qβRqαL
)

, Q̃qαqβ
2 =

(

qβLqαR
) (

qβLqαR
)

,

Qqαqβ
3 = qaβRq

b
αLq

b
βRq

a
αL , Q̃qαqβ

3 = qaβLq
b
αRq

b
βLq

a
αR ,

Qqαqβ
4 =

(

qβRqαL
) (

qβLqαR
)

,

Qqαqβ
5 = qaβRq

b
αLq

b
βLq

a
αR .

(3.7)

In the down sector the most relevant constraints to these operators come from the K0−K
0

and B0
q−B

0
q systems, described by the operators Qsd and Qbq, respectively. In the up sector

the D0 −D
0
system place constraints on Qcu. We compute the coefficients Ci at tree level

and we compare with the bounds reported in [64] for new physics scale at 1TeV. We

neglect running effects, expected to introduce at most O(1) variations. We also discuss,

when necessary, |∆F | = 1 processes, such as strange meson decays, top flavour violating

decays and non SM couplings of the W boson.

In the following we first survey the contributions from the three distinct sources (top

compositeness, heavy resonances and UV operators), then we discuss the overall implica-

tions for our model. Finally, we close with a remark on neutron EDM.

3.2.1 Constraints from top partial compositeness

The first type of contributions will apply, mostly, to operators relevant to the D0 − D
0

system, due to the absence of bottom composite partners. Higgs flavour violating couplings

are present in the theory and they are given by

V †
u,LBuVuR , (3.8)

with Bu given in eq. (2.16). The contribution of a Higgs exchange to the operator Quc
4 can

be estimated to be of the order of

1

m2
H

(

mc

M∗

)4

≃ 10−12

TeV2

(

1 TeV

M∗

)4

, (3.9)

where M∗ is a generic top-partner mass. For what concerns the down sector we have

negligible effects because |Bd| ∼ ǫ(mb/M∗)3 ∼ 10−7(1TeV/M∗)3. Flavour violating Z

interactions are controlled by

V †
uLδA

tL
NCVuL , V †

dLδA
bL
NCVdL . (3.10)

where δAt,bL
NC are given in eq. (2.22). In this case the exchange of a Z boson contributes to

Quc
1 with a coefficient proportional to

(

V †
uLδA

tL
NCVuL

)

12,21
and given by

g2

16c2Wm2
Z

(

mc

M∗

)4

≃ 10−11

TeV2

(

1 TeV

M∗

)4

. (3.11)
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Therefore, flavour violation in the up sector is well under control.

In the down sector, the situation is different, since at tree level in our effective descrip-

tion δAbL
NC = 0. Therefore, we use here the contribution from higher order operators we

discussed in section 3.1 for the Zbb coupling; this results in effective operators of the form

1

m2
Z

(

sφL
mZ

mV

)4
[

(V ∗
dL33VdL31)

2Qdb
1 + (V ∗

dL33VdL32)
2Qsb

1 + (V ∗
dL32VdL31)

2Qds
1

]

≃ 10−4

TeV2

[

(V ∗
dL33VdL31)

2Qdb
1 + (V ∗

dL33VdL32)
2Qsb

1 + (V ∗
dL32VdL31)

2Qds
1

]

, (3.12)

for mV with a mass at 3TeV. These coefficients are too large, therefore one need to rely

either on the fact that the higher order operators are suppressed more than what naively

expected, or the mixing angles in the down sector have a hierarchy. Comparing with

ref. [64], we find that

|V ∗
dL33VdL31| < 10−1 , |V ∗

dL33VdL32| < 10−1/2 , |V ∗
dL32VdL31| < 10−5/2 . (3.13)

These constraints are in mild tension with our assumption of anarchic masses, requiring

some kind of alignment.

Flavour violating couplings of the Z boson can also be constrained from Bs → µ+µ−

decay branching ratios [65, 66]: from eq. (2.22) we easily read a suppression of the form

m2
b/M

2
∗ whereas deviations up to order 10−3 are allowed.

Flavour violating neutral currents can also mediate flavour violating top decays, such

as t → ch, uh and t → Zq, which are being probed at the LHC [67, 68]. In our framework

we only have partial compositeness for the top quark, and therefore no flavour violation

can arise from this sector alone. All flavour violation has to be linked with the flavour

structure from the direct Yukawa couplings. As it can be see from eq. (2.16) and eq. (3.8),

the leading contributions to misaligned Yukawas are of the form

ytc,L ≃ ytc,R ∼ mcmt

fM∗
≃ 10−4 . (3.14)

Third generation flavour violating Z couplings are given in eq. (2.22) and eq. (3.10) and

they read

(δAtL,R
NC )32 ≃

g

cW

mtmc

M2∗
≃ 10−4 . (3.15)

On the other hand we have [69]

B(t → ch) ≃ 0.25 (|ytc,L|2 + |ytc,R|2) , B(t → Zc) ≃ 3.5 (δAtL,R
NC )

2

32 . (3.16)

Therefore, the effects expected in our scenario are many orders of magnitude too small to be

detected at the LHC. In fact, after Run I, B(t → ch) < 6÷8×10−3 at 95 % CL [70, 71] and

B(t → Zc) < 5× 10−4 at 95 % CL, a limit set by CMS with 19.7 fb−1 at
√
s = 8TeV [68].

During Run II, the LHC is expected to set limits up to B(t → Zq) ∼ O(10−4÷5) with 300

and 3000 fb−1 [72], and similarly an improvement of order one on the bound on the Yukawa

flavour violating couplings is expected with 300 fb−1 data [67]. The results on eq. (3.14) are
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in contrast with the usual case of partially composite light quarks, where the light effective

Yukawa couplings are aligned with the mass matrix, resulting in the absence of flavour

violation at O(yLyR/M
2) [73]. It is then common to consider higher order contributions

in the kinetic terms of the elementary quarks in order to estimate the dominant effects

in Higgs FCNCs processes. In [69] the authors estimated these contributions through the

help of holographic techniques and found, for the anarchic scenario, at O(y2Ly
2
R/M

4
∗ )

ytc,L ∼ mtmc

fM∗Vcb
, ytc,R ∼ m2

tVcb

fM∗
(3.17)

in the quark mass eigenbasis. This type of flavour misalignment has been also estimated

in [73] through the use of naive dimensional analysis, and in [74] in a specific 5D imple-

mentation using the mass insertion approximation in KK language.

Turning to W couplings, in this model the CKM matrix is not a unitary matrix due to

the presence of 3 extra tops and 1 extra bottom. It is defined by the following expression:

VCKM = V †
uL

(

1 +

√
2

g
δAL

CC

)

VdL . (3.18)

As the matrices VuL,dL are unitary, the corrections δAL
CC is constrained by unitarity, in

particular

V †
uLVdL = VCKM −

√
2

g
V †
uLδA

L
CC VdL , (3.19)

(

V †
uLVdL

)†(
V †
uLVdL

)

= 1 ⇒
√
2

g
V †
dL(δA

L
CC+δAL†

CC)VdL=V †
CKMVCKM−1+O(δ2AL

CC) ,

(

V †
uLVdL

)(

V †
uLVdL

)†
= 1 ⇒

√
2

g
V †
uL(δA

L
CC+δAL†

CC)VuL=VCKMV †
CKM−1+O(δ2AL

CC) .

Because of the unitarity of VuL,dL, even taking small mixing angles, the unitarity of the

CKM matrix cannot be restored, and the largest deviation appears in the coupling of the

top to the bottom, which can easily be set to satisfy the bounds as we have seen in the

previous section. The unitarity violation in the up sector is also under control, thanks to

the hierarchy in the 3×3 mixing angles of order mc/mt. However, in the down sector, a

hierarchy in the UV masses is also required in order to satisfy the bounds: comparing with

the experimental results [60], we find

|VdL13| < 10−1 , |VdL23|2 < 10−1 . (3.20)

Once more, this indicates a mild hierarchy in the down-type sector, requiring some sort of

alignment.

3.2.2 Constraints from heavy resonances

The effects induced by heavy resonances, in a way, reflect our little knowledge about

the physics at the compositeness scale. One expects other resonances (vector, scalar,

etc.) to appear at this scale, whose presence affects flavour observables. In a bottom up
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approach we shall parametrise scalar and vector resonances and look at the predictions for

the d = 6 operator coefficients. We will assume that the composite resonances only couple

to composite fermions, even though direct couplings to the elementary quarks may be

generated by the same mechanism coupling them to the strong sector to give them masses.

Let us consider first the interaction of a real scalar field Φ transforming as a singlet of SO(4):

L = Φ(gBQ̄Q+ gS
¯̃T T̃ ) +

1

2
m2

ΦΦ
2 . (3.21)

The mass of this additional resonance is proportional to f and to some strong coupling

constant of the theory and it is expected to lie between f and ΛHC . Due to partial compos-

iteness, eq. (3.21) induces interactions between the top and this additional scalar and, after

diagonalising the quark mass matrices, this results in flavour violating couplings. Their

flavour structure is

L ≃ Φ
(

ūL c̄L t̄L

)

·







0 0 gSs
2
φRcφR

mc
M∗

0 0 gSs
2
φRcφR

mc
M∗

gBs
2
φLcφL

mc
M∗

gBs
2
φLcφL

mc
M∗

(gB − gS)
mt
M∗






·







uR
cR
tR






+ h.c. (3.22)

In the mass eigenstates basis for the quarks the flavour violating vertex has thus the form

L ≃ g̃

(

mc

mt

)2 mt

M∗
Φ ūc+ h.c. , (3.23)

with g̃ ∼ gB,S . Integrating out Φ allows us to compute the coefficients of the dimension-6

operators in eq. (3.7). In the case at hand, we are left with:

L ≃
(

g̃

mΦ

)2(mc

mt

)4(mt

M∗

)2

Quc
4 ≃

(

1 TeV

M∗

)2( g̃

mΦ/TeV

)2

× 10−10

TeV2 Quc
4 , (3.24)

potentially larger than the effect of a misaligned Higgs Yukawa in eq. (3.9), but still well

below the experimental bound [64]. For the down sector the induced Yukawas are only

proportional to gB because we do not have partial compositeness for the right bottom.

The analogous of eq. (3.22) is

L ≃ gBs
2
φLcφLΦb̄L

(

mb

M∗
dR +

mb

M∗
sR +

mb

M∗
bR

)

+ h.c. . (3.25)

Then, after going to the mass basis and integrating out the scalar resonance we get, for

the flavour violating operator in the down sector analogous to eq. (3.24),

L ≃
(

gBs
2
φLcφL

mΦ

)2
(

mb

M∗

)2
[

zdb4 Qdb
4 + zsb4 Qsb

4 + zds4 Qds
4

]

≃
(

1TeV

M∗

)2( gB
mΦ/TeV

)2

× 10−5

TeV2

[

zdb4 Qdb
4 + zsb4 Qsb

4 + zds4 Qds
4

]

(3.26)

with the dimensionless coefficients given by

z
dαdβ
4 = V ∗

dL3αVdL3β

∑

γδ

VdRγβV
∗
dRδα . (3.27)
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The constraints on the Q4 operators require the dimensionless coefficients to satisfy

|zdb4 | < 10−2 , |zsb4 |2 < 10−1 , |zds4 | < 10−6 , (3.28)

The constraints above can be considered as a conservative worse case scenario, as they

have been computed by assuming mΦ/g ∼ f ∼ 1TeV. In fact, the resonances may have a

larger mass, up to the condensation scale ΛHC ∼ 4πf and have couplings to top partners

of order one. Depending on the details of the underlying theory, therefore, the bounds may

be mitigated by a factor up to (4π)2 ∼ 102.

In the case of massive vector resonances we can write the interaction in the form

L = Vµ(gBQ̄Lγ
µQL + gS

¯̃TLγ
µT̃L) + (L → R) +

1

2
m2

V VµV
µ . (3.29)

After bringing the mass matrices to their block diagonal form, the resonant vector contri-

bution becomes

L = VµūαL,Rγ
µ(δAu

LR,res)αβuβL,R + Vµd̄αL,Rγ
µ(δAd

LR,res)αβdβL,R (3.30)

with

δAu
L,res ∼









gSs
2
φRc

2
φR

m2
c

M2
∗

gSs
2
2φRc

2
φR

m2
c

M2
∗

−(gS − gBc
2
φL)cφR

mtmc
M2

∗

gSs
2
φRc

2
φR

m2
c

M2
∗

gSs
2
φRc

2
φR

m2
c

M2
∗

−(gS − gBc
2
φL)cφR

mtmc
M2

∗

−(gS − gBc
2
φL)cφR

mtmc
M2

∗
−(gS − gBc

2
φL)cφR

mtmc
M2

∗
gBs

2
φL + gS−gB

s2φR

m2
t

M2
∗









,

(3.31)

where the right-handed couplings can be obtained from the above expression with the

replacements φL ↔ φR and gB ↔ gS , and

δAd
L,res ∼ gBs

2
φL









0 0 c3φL
m2

b
M2

∗

0 0 c3φL
m2

b
M2

∗

c3φL
m2

b
M2

∗
c3φL

m2
b

M2
∗
1 + 2c4φL

m2
b

M2
∗









, δAd
R,res ∼ gBs

2
φLc

2
φL

Σd

M2∗
. (3.32)

In the mass eigenstates basis for the quarks, the coefficients of the flavour violating effective

operators induced by the decoupling of the heavy resonance are

Cuc
1 ≃ 1

m2
V

(

gBs
2
φL

(

mc

mt

)2

+ g′∗

(

mc

M∗

)2
)2

∼
(

gB
mV /TeV

)2

× 10−9

TeV2 (3.33)

C
dαdβ
1 ∼

(

gBs
2
φL

mV

)2(

(V †
dLΠVdL)αβ+c3φL

(V †
dLΣdVdL)αβ

M2∗

)2

∼
(

gB
mV /TeV

)2

× [V ∗
dL3αVdL3β ]

2

TeV2

C̃
dαdβ
1 ≃

(

gBs
2
φLc

2
φL

mV

)[

(V †
dRΣdVdR)αβ

M2∗

]2

≤
(

1 TeV

M∗

)4( gB
mV /TeV

)2

× 10−10

TeV2

with g′∗ ∼ gS,B. The coefficient C̃uc
1 can be obtained from Cuc

1 using the replacement

described below eq. (3.31). The constraints on Cbd
1 , Cbs

1 and Csd
1 imply, respectively,

|V ∗
dL33VdL31| < 10−3 , |V ∗

dL33VdL32| < 10−2 , |V ∗
dL32VdL31| < 10−5 . (3.34)

Similarly to the case of scalar resonances, a larger mass and a smaller coupling may lift

the bound by an additional factor (4π)2 ∼ 102.
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3.3 UV contribution to flavour violations

It is equally important to consider the effect of four fermion interactions generated at the

UV cutoff ΛUV and to make sure that their presence does not reintroduce the flavour

problem. We can rewrite the Lagrangian eq. (2.6) responsible for the generation of light

quark masses as

L = λu(ΛUV ) q̄u O + h.c. (3.35)

focusing on the up sector and neglecting flavour indices for brevity; quark masses are then

given by

L = λu(ΛHC)Λ
[O]
HC

v

f
q̄u+ h.c. = 4πλu(ΛHC)Λ

[O]−1
HC v q̄u+ h.c. , (3.36)

employing 〈O〉 = Λ
[O]
HCv/f and ΛHC ≃ 4πf , [O] being the dimension of the operator O. If

we assume that the theory is an interacting CFT between ΛUV and an infrared fixed point

ΛHC , where SO(5) is broken to SO(4), [O] is nearly scale independent and the running of

λu is well captured by

λu(ΛHC) = λu(ΛUV )

(

ΛHC

ΛUV

)[O]−1

. (3.37)

Moreover we can define a dimensionless coupling λ̄u(ΛUV ) = λu(ΛUV )Λ
[O]−1
UV . Putting

everything together we find quark masses

4πλ̄u(ΛUV )

(

ΛHC

ΛUV

)2([O]−1)

v . (3.38)

Requiring that eq. (3.38) reproduces the charm mass, or equivalently the charm Yukawa

times v, and imposing λ̄u(ΛUV ) ≤ 4π, namely perturbativity at the scale where the operator

O is generated, we have

(

ΛHC

ΛUV

)

≥
( yc
16π2

) 1
2([O]−1) ≃ 6× 10−5 (3.39)

choosing [O] = 1.5 [75] (see also [76] and references therein). Since ΛHC ≃ 4πf ≃ 10TeV

we get ΛUV . 105TeV. Therefore four fermion interactions of the form

L =
1

Λ2
UV

(q̄q)2 + h.c. (3.40)

do not reintroduce any flavour problem as large enough suppression scales are allowed.

These four-fermion interactions are a generic prediction of the physics responsible of

eq. (3.35) and from an effective theory point of view they can be suppressed only de-

coupling the UV cutoff: we avoid tensions typical of technicolour theories because we need

to fix the charm — and not the top — mass. Finally notice that the same line of reasoning

is applied to the down sector and a single cutoff ΛUV is consistent since mc ∼ mb.
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3.4 Summary and discussion

In the up sector, top partial compositeness and additional Yukawa interactions can be com-

bined safely from the point of view of flavour observables. This strongly relies on hierarchies

in the mass matrices which are generated by the two different mass sources. For what con-

cerns other tests, corrections to EW precision parameters S and T can be computed as

in composite Higgs models, with the additional Yukawa interaction playing a very minor

role. We then refer to the literature for estimates, such as [77–79] and [52, 55]. We content

ourselves noting that, generically, with our choice of f and ΛHC , EW tests can be satisfied.

Since a couple of years, the Higgs boson is a new player in constraining new models

via the knowledge we have of its couplings. In composite Higgs models, relative deviations

in its couplings to quarks are given by non linearities and, henceforth, they depend on the

form of the interactions with the strong sector: in the case at hand, eq. (2.8), the correction

is universal and it has the form

ySM − y

m/v
≃ 1− 1− 2s2ǫ

√

1− s2ǫ
≃ 0.15 . (3.41)

This value is still allowed for the hb̄b coupling [80]. For light quarks the Yukawa couplings

are not constrained with the same precision.

The only sector where anarchic UV mass terms are in tension with data is the down

sector: here, flavour bounds require the mixing angles to be small, so that a certain amount

of alignment seems to be necessary. A combined analysis of all the results we collected is

in order:

Z boson FCNCs, eq. (3.13) ⇒ |V ∗
dL33VdL13| < 10−1

, |V ∗
dL33VdL23| < 10−1/2

, |V ∗
dL13VdL23| < 10−5/2

,

CKM unitarity, eq. (3.19) ⇒ |VdL13| < 10−1
, |VdL23| < 10−1/2

,

Scalar resonance, eq. (3.28) ⇒ |zdb4 | < 1÷ 10−2
, |zsb4 | < 1÷ 10−1/2

, |zds4 | < 10−4 ÷ 10−6
, (3.42)

Vector resonance, eq. (3.34) ⇒ |V ∗
dL33VdL31| < 10−1 ÷ 10−3

, |V ∗
dL33VdL32| < 1÷ 10−2

,

|V ∗
dL32VdL31| < 10−3 ÷ 10−5

.

The range in the case of resonances is due to the unknown value of the masses and couplings

of the resonances. The only constraints that derive directly from partial compositeness

in the up-sector are the ones from CKM unitarity: however, they require a quite mild

hierarchy in the down-sector mixing matrix, especially in the first generation. It should

also be noted that the effect scales like M−2
∗ , so increasing the mass of the top partners can

help releasing the tension. The strongest constraints come from higher order operators (in

the case of the Z boson FCNCs) and heavy resonances, thus their presence is more model

dependent. Nevertheless, there is no way to avoid such contributions in general.

A possible simple way to contemporarily fulfill all the limits is to have VdL13 = 0 and

|VdL23| < 10−2, with VdL33 = O(1) and generic VdR: we would not regard to this choice

as particularly fine tuned; moreover many other possibilities are available. A very special

case would be to have the down mass matrix hierarchical as it happens in the up sector,
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forcing the unitary transformations to have the form

VdL,R ∼







O(1) O(1) O(ms
mb

)

O(1) O(1) O(ms
mb

)

O(ms
mb

) O(ms
mb

) 1






. (3.43)

This in general is not completely satisfactory because the constraints on the coefficients

Cbd,sd
1 of down-type operators coming from the exchange of heavy vector resonances gen-

erate a residual tension, as they may be one order of magnitude larger than the bounds;

however an agreement with experiments can be obtained by varying the mass and couplings

of the resonances. The structure in eq. (3.43) would be a consequence of λd
33 ≫ λd

αβ , such

that mD,33 ≃ mb while mD,αβ ≃ ms for all the other entries. Notice that this would change

all the coefficients discussed, for instance Σd or the couplings in eq. (3.25): we checked that

this would also satisfy all the experimental bounds. In the down sector mass terms all orig-

inate from the same operators and in principle no hierarchy is expected. In the following

section we will show a possible way to generate such hierarchy by further extending the

model and making the bottom partially composite, and fixing the other down masses to

be of the order of the strange mass. This would make the down sector similar to the up

sector, with a clear distinction between the {3, 3} entry and the others in the mass matrix

and the form of the diagonalizing VdL,dR would be a consequence. We also point out that

the simultaneous holding of eq. (2.25) and eq. (3.43) for VuL and VdL respectively is in

agreement with the observed values of the third family entries of the CKM matrix.

It is instructive to revisit the limits collected in eq. (3.42) allowing the entries of VdL

to be O(1) complex numbers, apart from |VdL13| < 10−1 and |VdL23| < 10−1/2 because of

CKM unitarity: this in turn implies |VdL31,32| . 10−1/2 because of VdL unitarity. We report

here the values of the masses of heavy resonances probed by reconsidering the processes

discussed above under this viewpoint:

Z boson FCNCs, eq. (3.13) ⇒ mV > (3 TeV)
(

101/2
)1/4

= 4 TeV , (3.44)

Scalar resonance, eq. (3.28) ⇒ g2B

(

1 TeV

mΦ

)2(

1 TeV

M∗

)2

< 10−5 ⇒ mΦ = M∗ >
√
gB 17 TeV ,

Vector resonance, eq. (3.34) ⇒ g2
∗

(

1 TeV

M∗

)4(

1 TeV

mV

)2

< 10−8 ⇒ mV = M∗ > g
1/3
∗ 21 TeV .

To conclude, we briefly address issues related to CP violation. So far, we neglected

all phases and treated all parameters as real: the suppressions we find are enough also for

the imaginary parts. However some flavour conserving CP violating processes such as the

neutron EDM might be enhanced. The current experimental bound is [81]

|dn| < 2.9× 10−26 e cm (90%CL) . (3.45)

New physics effects can be sizable, indeed the neutron EDM receives contributions from

the quarks EDMs. The effects of partial compositeness have been investigated elsewhere

in the literature [32, 33, 82]. We estimated the order of magnitude of the quarks EDMs,
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du,d, retaining only the fermions included in ξ↑ and ξ↓ and restricting to one loop diagrams

with Z, W and Higgs bosons. Neglecting QCD running effects, expected to be O(1),

we find generic contributions to du,d in the range of 10−21 ÷ 10−24 e cm, thus up to five

orders of magnitude above the experimental bound in eq. (3.45). Particular choices of

parameters or unitary matrices VdL,R might improve the situation for the EDM of the down

quark. In the up sector there are some fixed contributions, coming from Higgs exchange,

and to properly account for them we have to assume that additional cancellations are at

work or that the relative phase between V ∗
uL31 and VuR31 is small, less than 10−4. A full

understanding of the neutron EDM constraint relies on a complete theory of flavour and

on the knowledge of the strongly interacting sector, and therefore is outside the scope of

our effective parametrization: for this reason we do not include it in our global analysis.

4 Bottom mass

We have focused so far on top partial compositeness and on direct Yukawa couplings.

There is the possibility to propagate EWSB to the bottom quark if it linearly couples to

composite operators as well, as a variant of what discussed above:

L ⊇ q̄3LOqL + b̄RObR + h.c. (4.1)

We choose the minimal option consisting in introducing linear mixings for both left-handed

and right-handed fermions with the same composite resonance of the effective theory of

the strong sector. This mechanism differs from the usually considered partially composite

bottom scenario in which additional composite fermions are introduced as bottom partners.

In our proposal, the right-handed bottom develops a linear mixing with the same partner,

B, which also mixes to the left-handed bottom, with the difference that the mixing in the

right-handed sector vanishes when the EW symmetry is restored.

Indeed, given that the left-handed doublet q3L already mixes with the strong sector to

give rise to the top mass, we do not need to add any new resonance. We can just complement

eq. (2.5) and eq. (2.8) with the following effective operator, written in a formally SO(5)

invariant way:

L = yRf ψ̄LU
td143RΣ+ h.c. =

1

2
yRfsθB̄LbR + h.c. , (4.2)

where the last equality holds in the unitary gauge, ψ is the quark partner five-plet defined

in eq. (2.4) that contains the bottom partner B, and d143R is a spurion formally transforming

as the 14 of SO(5), whose dynamical component is only the right-handed bottom:

d143R =
bR

2
√
2















0 0 1 i 0

0 0 −i 1 0

1 −i 0 0 0

i 1 0 0 0

0 0 0 0 0















. (4.3)

With this embedding, its U(1)X charge is 2/3, matching the charge of ψ. An equivalent

term could have been written embedding bR in a different representation, as the 10 for
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instance, or in any other SO(5) representation whose decomposition to SO(4) contains the

4.6 Eq. (4.2) is the most general term that we could add, in particular we can always go

to the basis where only one out of the three right-handed down-type quark, consequently

defined as bR, couples to ψL.

Because of the partial compositeness of q3L and taking into account the already present

elementary Yukawas we obtain

L = d̄αLm
d
αβdβR + h.c. , md = md

UV

s2ǫ
2

+ Π
fyRsφL

2
sǫ . (4.4)

The second mass term in md is generated by the bottom partial compositeness. We exploit

here this mechanism to mimic what happened in the up-type sector: for this reason we

require fyRsφLsǫ/2 ≃ mb, fixing yR ∼ mb/f = O(10−3), and we let the elementary Yukawa

to take into account the strange (and down) mass, |md
UV | ∼ ms ≪ mb. This hierarchy

generates the structure presented in eq. (3.43) for the down sector and it introduces two

small quantities: ms/mb and mb/f , which alleviate the need for the alignment in down

sector Yukawas. Notice that this is a consequence of two different origins of the masses

and it does not rely on the specific mechanism mediating EWSB to the bottom. We have

checked that this modification is safe from the point of view of the observables of section 3,

reconsidering the whole discussion including eq. (4.2). Remarkably contributions to Zb̄b

couplings are under control because we do not introduce additional bottom partners as well

as we keep the custodial Zbb̄ symmetry [26] for left-handed coupling as before: at tree level

δgZbL = 0 , δgZbR = − gs22ǫ
8cW

(

yL4fm
d
UV33 +M4yRf

M2
4 + y24Lf

2

)2

≃ −2
g

cW

c4φL
s2φL

(

mb

M∗

)2

. (4.5)

A quantitative change is present in the bottom Yukawa: since the dominant contribution

has a new spurionic structure we get

ySM − y

mb/v
≃ 1−

√

1− s2ǫ ≃
1

2
s2ǫ ≃ 0.05 (4.6)

for the deviation in hb̄b coupling. Note that the operators Q
dαdβ
1 are still induced with

the same coefficients as in eq. (3.33), and henceforth the coefficients Cbd,sd
1 suffer from

the same O(10) tension, which can be resolved by an extra suppression coming from the

masses and couplings of the resonances.

5 Generalisation of the results

The results we presented in the previous sections apply to the minimal scenario, however

the source of suppression of the flavour violating effects is quite generic. In this section,

we show how the results can be generalised to cases with top partners in more complicated

representations, and in the case of less minimal cosets.

6The term in eq. (4.2) can be formally rewritten as Tr[Q̄14d
14
3R], defining Q14 = U(Q1 + Q4 + Q9)U

t,

assuming that in the effective theory Q4 mixes with the four-plet Q defined in eq. (2.4) or directly identifying

Q and Q4 and then decoupling the unnecessary components of Q14, namely Q1 and Q9. This also suggests

one way to UV complete this Lagrangian in the fundamental theory. We do not study this particular

realization in detail but in the following section we explain how to generalize the results of our analysis to

encompass cases like this.
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5.1 Additional top partners

The discussion carried out so far can be generalised to other cases, where on top of mass

terms of the form eq. (2.8) we have linear mixing with different partners. Allowing for larger

representations of top partners, we restrict to custodians [46] for a zero tree level correction

to Zb̄LbL: the minimal options are 10 = 4 + 6 and 14 = 1 + 4 + 9 [48], decomposed in

SO(4) irreducible representations. Both 6 and 9 contain partners with Q = −1/3 and

the quantum numbers of bR: they can, therefore, couple to bL and the physical Higgs.

After going to the mass basis and integrating out heavy fields we are left with a structure

similar to the minimal setup, but with additional flavour violating Higgs couplings. For

definiteness we focus on partners in the 9 with a massM9 and mixing yL9.
7 In this extended

set-up, in the down sector we obtain the following flavour-violating couplings of the Higgs:

L ≃ −
s2φ9Lc

3
φL

c2φ9L

ǫ2

f
h b̄L

(

md
UV31dR +md

UV32sR +md
UV33bR

)

(5.1)

∝
(

d̄L s̄L b̄L

)





0 0 0

0 0 0

md
UV31 md

UV32 md
UV33









dR
sR
bR



 ,

where sφ9L = yL9f/
√

M2
9 + y2L9f

2. We neglect here the subdominant contributions, pro-

portional to m3
b , similar to Bd reported for the minimal case discussed above. The third

column of this matrix would be different from zero if we had couplings of the form Q̄LbR
to start with: this does not happen as long as the right bottom is completely elementary.

These flavour violating Higgs couplings affect meson observables through the following

dimension six operators

L≃ 1

m2
H

(

ǫmb

f

)2
[

zdb4 Qdb
4 + zsb4 Qsb

4 + zds4 Qds
4

]

≃ 10−4

TeV2

[

zdb4 Qdb
4 + zsb4 Qsb

4 + zds4 Qds
4

]

. (5.2)

Experimental results imply then

|zdb4 | < 10−3 , |zsb4 | < 10−1 , |zds4 | < 10−7 . (5.3)

Therefore the simple assumptions VdL13 = 0 and |VdL23| . 10−1 would be enough, in

analogy with the the minimal case of partners in the 5.

If we assume that the quark mass matrix of the down sector is hierarchical, the {3, 3}
entry of ordermb being parametrically larger than the others of orderms, and that therefore

both VdL,R have the form eq. (3.43), we have that eq. (5.2) reads

1

m2
h

(

ǫ
ms

f

)2
[

Qbd
4 +Qbs

4 +

(

ms

mb

)2

Qds
4

]

≃ 10−7

TeV2

(

Qbd
4 +Qbs

4 + 5× 10−4Qds
4

)

, (5.4)

thus passing all bounds. The same comment made at the end of section 3.2 applies here:

a partially composite bottom quark would dynamically explain this hierarchy.

7Top partners in the 14 representation result in less fine tuned Higgs potential compared with the 5

case [53]: 4 and 5 dimensional models featuring them can be found respectively in [23] and in [56].
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5.2 Non minimal cosets and more general formalism

Going beyond the minimal coset considered in the previous sections may seem a consid-

erable complication. There are many possible viable cosets (for an up to date review, see

ref. [19]), some of which can be obtained in simple dynamical UV completions with only

fermionic components [27, 31]. However, in models where a custodial symmetry is present,

one always has the following situation:

G → H ⊃ SO(4) ⊃ SU(2)L ×U(1)Y (5.5)

where G is the global symmetry broken to H by the dynamics, and SO(4) is the custodial

symmetry. Thus, while in principle one needs to consider top-partners in full representa-

tions of H, the coupling to the top (and bottom) can be written in terms of subcomponents

transforming under SO(4) alone. It is now useful to analyse this scenario by use of the for-

malism developed to describe the interactions of general vector-like quarks, like in [57, 58]

and [83, 84], that mix to SM ones via couplings to the Higgs. The idea is that the couplings

to light quarks can be characterised by the minimum number of “Higgs doublets” needed to

couple them to the SM elementary fields in a gauge invariant way. Even in the non-linear

case we are interested in, this will be an index of the suppression in powers of ǫ of the given

term. For instance, a composite fermion that is a doublet of SU(2)L with hypercharge

Y = 1/6 can have a direct coupling at order ǫ0 with the elementary left-handed doublets,

and coupling suppressed by at least one power of ǫ to the singlets. A composite doublet

with hypercharge Y = 7/6 will have a coupling of order ǫ2 to the elementary doublets, and

ǫ to the top singlet. In general, composite fermions that have semi-integer SU(2)L weak

isospin (such as doublets and quadruplets), will have couplings to the left-handed elemen-

tary doublet which are even powers of ǫ, and to the right-handed elementary singlets with

are odd powers of ǫ. For composite fermions with integer weak isospin (such as singlets

and triplets), the coupling is even in ǫ to the right-handed singlets and odd to left-handed

doublets. Note that non minimal cosets may contain more than one Higgs doublet, so ǫ

should really be thought of as the spurion than breaks SU(2)L, and the sharing of this

among various doublets can be expressed in terms of the effective couplings.

As a first example, we can consider a situation containing the same composite fermions

as in section 2, i.e. a doublet Q = {T,B} with hypercharge 1/6, a doubletX = {X5/3, X2/3}
with hypercharge 7/6 and a singlet T̃ with hypercharge 2/3. Following this argument, the

general mass matrix for the up sector can be written as

Mup =



















0 0 0

mαβ
UV ǫ 0 0 0

YLQ YLX ǫ2 −YLT̃ ǫ

0 0 YRQ ǫ M4 0 0

0 0 −YRX ǫ 0 M4 0

0 0 YRT̃ 0 0 M1



















(5.6)

in the interaction basis ξ↑ =
(

u c t T X2/3 T̃
)

, where T and X2/3 belong to a SO(4) bi-

doublet, and have therefore the same mass M4. The case we discussed in the previous
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section, i.e. the mass matrix Mup obtained from eq. (2.5), can be seen as a particular case,

with YLQ = fyL4 cos
2 ǫ/2, YLX = fyL4

sin2 ǫ/2
ǫ2

, etc. The results we present here, therefore,

are another way to look at the analysis we performed in section 2. In the down sector, in

the interaction basis ξ↓ =
(

d s b B
)

, we can write:

Mdown =











0

mαβ
UV ǫ 0

YLQ
0 0 YRQ,b ǫ M4











. (5.7)

Note that, in the minimal SO(5)/SO(4) model, YRQ,b is usually absent because the elemen-

tary bR is embedded into a 5-plet of SO(5) whose U(1)X charge does not match with the

charge of the composite 5-plet. As this term is allowed by the SM symmetries, it should

always be possible to write an operator that generates it: in the minimal case, this requires

embedding bR into a spurion transforming like a 2-index representation of SO(5), as we

showed in section 4.

Here we have explicitly factored out the minimal power of ǫ necessary to write a gauge

invariant term, so that all the objects like mUV and the Y ’s are functions of ǫ2 starting with

a constant in a small-ǫ expansion. The masses M4 and M1 are vector-like masses of the

two multiplets: depending on the coset, they may be equal if the two fermions belong to

the same multiplet of H. The mass matrix in the up sector can be, in general, diagonalised

by two independent 6×6 matrices:

UL,u ·Mup · U †
R,u = Mdiag

up . (5.8)

Nevertheless, not all entries of UL,u and UR,u are relevant for the flavour physics.

In the interaction basis, the couplings of the Z boson to the up sector are given by

eq. (A.6). Setting for the time being the couplings cL,R to zero, once we pass to mass

eigenstate basis we get

gmass
ZL = UL,u · gZL · U †

L,u = gSMZLδ
i,j − g

cos θW

(

U i5
L,uU

∗,j5
L,u +

1

2
U i6
L,uU

∗,j6
L,u

)

, (5.9)

gmass
ZR = UR,u · gZR · U †

R,u = gSMZRδ
i,j +

g

cos θW

(

1

2
U i4
R,uU

∗,j4
R,u − 1

2
U i5
R,uU

∗,j5
R,u

)

; (5.10)

where i, j = 1 . . . 6, and gSMZL/R are the appropriate SM couplings. Note that the form of this

couplings is very similar to a scenario with generic vector-like fermions (see the appendix

of ref. [84]). In the SM sector, gαβZ with α, β = 1, 2, 3, the deviations in the Z couplings are

proportional to the matrix elements U
α5/6
L,u and U

β4/5
R,u . It can be shown that the leading

contribution to such terms in the mixing matrices is

Uα5
L,u ∼

(

mc

mt
ǫ2,

mc

mt
ǫ2, ǫ2

)

Uα6
L,u ∼

(

mc

mt
ǫ,

mc

mt
ǫ, ǫ

)

(5.11)

Uα4
R,u ∼

(

mc

mt
ǫ,

mc

mt
ǫ, ǫ

)

Uα5
R,u ∼

(

mc

mt
ǫ,

mc

mt
ǫ, ǫ

)

(5.12)
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where ǫ = v/f ∼ mt/M∗, M∗ being a generic top partner mass. These features are very

generic: the ǫ factor comes from the fact that the mixing is due to the EWSB, while the

mc/mt factors come from the hierarchy in the SM quark mass matrix between the top mass

induced by partial compositeness and the mUV contributions which are naturally of order

mc. This structure generates a suppression of order ǫ2m2
c/m

2
t ∼ 10−5 to deviation in the

first two generations, and ǫ2mc/mt ∼ 10−3 for flavour-violating top couplings. Additional

contributions arise from the composite nature of the new fermions, represented by the cL,R
terms in eq. (A.6). Those couplings arise from couplings of the pions and gauge bosons

which connect two composite states belonging to different representations of the unbroken

group H. In the limit where the EW symmetry is unbroken, such terms necessarily vanish

due to gauge invariance, therefore they ought to be proportional to at least one power of

ǫ. In our case, these terms connect the singlet T̃ to doublets, therefore they arise at order

ǫ, and have the form

∆gZL/R(c) = C∗
L/Rǫ (δ

i4δj6 + δi5δj6) + CL/Rǫ (δi6δj4 + δi6δj5) (5.13)

where we imposed the custodial symmetry, i.e. same couplings for the two doublets, and

CL/R are functions of ǫ2 starting with a constant. The above structure is the most general

one, and it agrees with eq. (A.6) with CL/R = − cL/Re√
2cW sW

sin ǫ
ǫ . In the mass eigenstate basis,

they will generate an additional correction to the Z couplings of the form

∆gmass
ZL/R(c)=CL/Rǫ(U

i6
L/R,uU

∗,j4
L/R,u+U i6

L/R,uU
∗,j5
L/R,u)+C∗

L/R,uǫ(U
i4
L/R,uU

∗,j6
L/R,u+U i5

L/R,uU
∗,j6
L/R,u) ,

(5.14)

thus in the SM quark sector, the FCNCs are still proportional to the same mixing matrix

elements, including

Uα4
L,u ∼ Uα6

R,u ∼
(

mc

mt
,
mc

mt
, 1

)

. (5.15)

These mixing angles are not suppressed by any power of ǫ as they involve composite

fermions with the same quantum numbers as the elementary quarks, however the missing

factor of ǫ is compensated by the coupling. Therefore, we can say that the contribution of

the cL/R terms always arises at the same level as the other effects, and are safely suppressed

in the up sector.

In the down sector, the mass matrix can be diagonalised by 4×4 unitary matrices

UL,d ·Mdown · U †
R,d = Mdiag

down . (5.16)

The bottom quark will now receive a contribution from the linear coupling to the composite

partner

mb ∼
YLQYRQ,bǫ
√

M2
4 + Y 2

LQ

+O(ǫ3) ; (5.17)

if we want this to reproduce most of the bottom mass, then we need YRQ,b ∼ mb. As the

composite B has the same quantum numbers as the elementary left-handed bottom, no

corrections to the left-handed Z couplings will arise, while in the right-handed sector

gmass
ZR,d = UR,d · gZR,d · U †

R,d = gSMZR,dδ
i,j − g

cos θW

1

2
U i4
R,dU

∗,j4
R,d . (5.18)
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For the mixing matrices, analogously to the up case, we obtain

Uα4
L,d=−sφL

(

mUV,dǫ

mb
,
mUV,dǫ

mb
, 1

)

, Uα4
R,d=− mb cotφL

√

M2
4 + Y 2

LQ

(

mUV,dǫ

mb
,
mUV,dǫ

mb
, 1

)

. (5.19)

We can see from these formulas that the flavour violation in the right-handed sector due to

mixing to the composite states is suppressed by an extra factor mb/mt ∼ mb/v, while an hi-

erarchy in the coupling to light generations can be naturally obtained ifmUV,dǫ ∼ ms ≪ mb.

Similar suppression factors also arise in the Higgs couplings. This structure is enough

to avoid bounds from flavour conserving and violating effects in the light generation, and

in the top quark.

The charged current sector depends on the bottom sector as well. In the minimal

scenario under consideration, where only the left-handed bottom is partially composite,

there is a single bottom partner belonging to a doublet, therefore the mass matrix can be

diagonalised by two 4×4 rotations UL,d and UR,d. The couplings of the W are given in

eq. (A.8). From it we can extract the 3×3 SM CKM matrix

V αβ
CKM = (vL · v†L,d)αβ + kǫ2vα3L v∗,β3L,d (5.20)

where vL and vL,d are unitary 3×3 matrices sensitive to the diagonalisation of the masses

in the SM sectors (similar to the rotation matrices in eq. (2.24)), and k is an order 1

coefficient. In the up sector, the hierarchy between the partial composite top and light

quarks generates a hierarchy on vL in a similar fashion as the one in eq. (2.25). The

non-unitarity in the up sector is given, at leading order, by

(VCKM · V †
CKM )αβ = δαβ + 2kǫ2vα3L v∗,β3L (5.21)

thus the hierarchy in vL suppresses the effect in the light sector by a factor ǫ2m2
c/m

2
t ∼ 10−5,

which is well below the accuracy to which the unitarity is measured in the first and second

generation cases [60] which is of order 0.5%. In the third component, one may expect effects

of the order ǫ2 ∼ 0.1, which are however compatible with the poorer direct determination

of |Vtb| = 1.021± 0.032 [60].

In the down-sector, we similarly have

(V †
CKM · VCKM )αβ = δαβ + 2kǫ2vα3L,dv

∗,β3
L,d . (5.22)

If the right-handed bottom is fully elementary, the ǫ2 ∼ 0.1 suppression is not enough to

limit unitarity violation in the light quark sector enough to pass the precise determination,

which fares at 0.5% level for the down and 5% for the strange [60]. One is therefore forced

to consider a certain hierarchy in the mUV down masses. Another possibility is to make

the bottom partially composite, so that a hierarchy of order ms/mb ∼ 0.02 is introduced:

this would be enough to avoid bounds from CKM unitarity without introducing hierarchies

in the UV sector generating elementary Yukawas.

One minimal possibility is to use the coupling YRQ,b ǫ in eq. (5.7) to give a contribution

to the bottom mass from partial compositeness, so that naturally mUV ǫ ∼ ms. Another
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possibility is to enlarge the down sector by adding partners with the correct quantum

numbers to mix with bR. In both cases, a similar discussion of this matrix on the same

footing as eq. (5.6) is possible and should give similar results as in the top sector. The

main difference is that small mixings are needed in the partial composite bottom to

reproduce the correct bottom mass (schematically, YRQ,b ∼ mb ≪ YLQ ∼ mt), so that

partial compositeness effects in the down sector should be suppressed by a factor mb/M∗.
The above discussion can be extended to any number and representation of composite

fermions, as long as the spurion breaking SU(2)L comes from one (or more) doublets.

Independently of the properties of the composite fermion, the mixing elements connecting

it to the SM fermions have the form:

Uαi
L,u ∼

(

mc

mt
,
mc

mt
, 1

)

ǫnL , Uαi
R,u ∼

(

mc

mt
,
mc

mt
, 1

)

ǫnR . (5.23)

Depending on the SM quantum numbers, the following cases can occur:

• the composite fermion has the same quantum numbers as the elementary tR: nL = 1

and nR = 0, thus the corrections to the left-handed Z couplings arise at order ǫ2 with

no corrections to the right-handed ones;

• the composite fermion has the same quantum numbers as the elementary tL: nL = 0

and nR = 1, thus the corrections to the right-handed Z couplings arise at order ǫ2

with no corrections to the left-handed ones;

• the composite fermion has semi-integer isospin: nL ≥ 2 and nR ≥ 1, thus the left-

handed coupling is suppressed by at least ǫ4 while the right-handed one by ǫ2;

• the composite fermion has integer isospin: nL ≥ 1 and nR ≥ 2, thus the left-handed

coupling is suppressed by at least ǫ2 while the right-handed one by ǫ4.

Thus, corrections to the couplings of the Z are always suppressed by at least two powers of

ǫ, enough, together with the mc/mt factors, to avoid flavour bounds. For the cL/R terms:

• if cL/R connects a composite state with integer isospin to one with semi-integer

isospin, the coupling is suppressed by at least a factor ǫ, while at least another

factor of ǫ comes from the mixing matrices;

• if cL/R connects composite states with same isospin, the coupling is suppressed by at

least ǫ2, while the mixing matrices may carry no ǫ suppression.

In all cases, therefore, at least a factor ǫ2 appears, together with the mc/mt factors from

the flavour mixing. Thus, the cL/R couplings always appear at the same order as the other

corrections.

An important caveat to this analysis is the presence of additional pNGBs in non-

minimal cosets: these states may have linear couplings to the fermions generated by the

same terms giving mass to them. Therefore, in the mass eigenstate basis, additional FCNCs

may be generated. However, the details of these extra contributions depend on the details

of the model, the coset and the form of the mass terms, both from partial compositeness

and the UV contributions. Thus, their effects should be checked case by case.
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6 Conclusions

We have explored the possibility that the top quark mass has a different origin than the

masses of the other quarks (and leptons). This scenario can naturally arise in models of

pNGB Higgs, deriving for instance from a strongly interacting underlying dynamics. In

this scenario, partial compositeness for top quark is responsible for generating top quark

mass and the Higgs potential. An unrelated source of mass is represented by deformations

of the strong sector that generate bilinear couplings suppressed by a scale heavier than the

condensation scale. In order to avoid four-fermion contributions to FCNCs generated at

this high scale, one needs it to be above 105TeV, which is enough to generate the bottom,

charm and tau masses, but not the top mass, if the dynamics is near-conformal down to the

condensation scale. In our scenario, therefore, the contribution of the top compositeness is

crucial to achieve a large enough top mass.

We showed that this scenario is compatible with bounds from precision measurements

of the quark couplings and from flavour constraints, without the need to assume a flavour

symmetry in the underlying dynamics for the up sector. Hence, while the top is naturally

singled out as the heaviest of the SM quarks, the direct Yukawa couplings can be anarchic.

This property is due to suppressions in the corrections of order v2/f2 in the top sector, and

(mcv)
2/(mtf)

2 in the light quark sector. The situation is different for the down quarks: in

the case where partial compositeness is not employed for the bottom mass, we observe only

corrections of order v2/f2, notably in the unitarity of the CKM matrix. Therefore, in order

to satisfy the bounds, one is forced to ask for a certain hierarchy (requiring some kind of

alignment) in the mixing in the down sector, which is fully generated by direct couplings.

However, allowing the bottom to be partially composite, i.e. adding a further source for the

bottom mass, can ease the tension if the contribution of direct couplings is smaller than

the bottom mass, for instance the strange mass, and a fully anarchic scenario becomes

plausible. In this case, the hierarchy in the mixing in the SM fermion sector is enough

to suppress effects in the unitarity of the CKM matrix and anarchic direct couplings are

fully allowed. We explicitly implemented a very economical bottom partial compositeness,

without any additional fermionic resonance beyond the top partners: in this novel scenario,

the right-handed bottom mixes via the EWSB to the same composite partner that mixes

with the left-handed elementary bottom. For what concerns other observables, we do not

expect significant deviations in flavour processes and the estimated sensitivities for the next

run of LHC are still above the expected top flavour violating decays rates. On the other

hand the neutron EDM might need a dedicated study and could be a significant test bench.

It would be also interesting to address the generation of the flavour hierarchies of the SM,

of the CKM and of the SM CP violating phase, points that cannot be completely decoupled

and solved at high energy because they receive inputs from physics at the EW scale.

A smoking gun for our model will be the prediction of the presence of heavy coloured

fermions, which will be further investigated in the collider experiments. A discovery of the

vector-like top (and bottom) partners, along with the absence of light fermion partners at

the LHC will be a genuine prediction of our model framework.
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Finally, we want to emphasize that, while we analysed in detail the minimal case of

the coset SO(5)/SO(4) with top partners belonging to a four-plet and singlet of SO(4)

(aka MCHM5), our results are quite general. We showed how they can be extended to

cases where the top (and bottom) partners belong to larger representations of SO(4) and

cases where the coset is larger. Our conclusions are therefore rather solid under variations

of the models.
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A Model details and perturbative expansion

A.1 Model details

In this appendix we present some more details on the model discussed in section 2. The 3rd

family part of this model (including the mass matrix, its diagonalization, and charged and

neutral currents in the mass eigenbasis) has been discussed in ref. [85] which we extend,

here, by adding the light quark flavours. The up sector mass matrix, in the field basis in

which the Lagrangian eq. (2.5) is written, is

Mup =





























m̃[ǫ]11 m̃[ǫ]12 m̃[ǫ]13 0 0 0

m̃[ǫ]21 m̃[ǫ]22 m̃[ǫ]23 0 0 0

m̃[ǫ]31 m̃[ǫ]32 m̃[ǫ]33 fyL4 cos
2 ǫ

2
fyL4 sin

2 ǫ

2
−f

yL1√
2
sin ǫ

0 0 f
y∗R4√
2
sin ǫ M4 0 0

0 0 −f
y∗R4√
2
sin ǫ 0 M4 0

0 0 fy∗R1 cos ǫ 0 0 M1





























, (A.1)

with m̃[ǫ]αβ ≡ s2ǫ
2
mu

UVαβ and s2ǫ = sin 2ǫ. The up-type Yukawa couplings have two distinct

contributions. One arises form the mixing Lagrangian Lmix given in eq. (2.5) and can be
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extracted by differentiating Lmix with respect to h and then setting h = 0, which yields

Y mix
up =





























ỹ[ǫ]11 ỹ[ǫ]12 ỹ[ǫ]13 0 0 0

ỹ[ǫ]21 ỹ[ǫ]22 ỹ[ǫ]23 0 0 0

ỹ[ǫ]31 ỹ[ǫ]32 ỹ[ǫ]33 −yL4
2

sin ǫ
yL4
2

sin ǫ −yL1√
2
cos ǫ

0 0
y∗R4√
2
cos ǫ 0 0 0

0 0 −y∗R4√
2
cos ǫ 0 0 0

0 0 −y∗R1 sin ǫ 0 0 0





























, (A.2)

where ỹ[ǫ]αβ ≡ c2ǫ
mu

UVαβ

f
. The second contribution comes from the dµ-term of Lcomp and

the fact that d4µ ∝ ∂µh. Integrating by parts and using the equations of motion we obtain

Y comp
up =































0 0 0 0 0 0

0 0 0 0 0 0

0 0 0
c∗RyL1√

2
sin ǫ −c∗RyL1√

2
sin ǫ cRyL4 cos ǫ

0 0 −cLy
∗
R1 cos ǫ 0 0 −cLM1 − cRM4

f

0 0 cLy
∗
R1 cos ǫ 0 0 −cRM4 − cLM1

f

0 0
√
2c∗Ly

∗
R4 sin ǫ −−c∗LM4 + c∗RM1

f
−c∗LM4 − c∗RM1

f
0































.

(A.3)

For the down sector we have

Mdown =











m̃[ǫ]11 m̃[ǫ]12 m̃[ǫ]13 0

m̃[ǫ]21 m̃[ǫ]22 m̃[ǫ]23 0

m̃[ǫ]31 m̃[ǫ]32 m̃[ǫ]33 fyL4
0 0 0 M4











, Ydown =











ỹ[ǫ]11 ỹ[ǫ]12 ỹ[ǫ]13 0

ỹ[ǫ]21 ỹ[ǫ]22 ỹ[ǫ]23 0

ỹ[ǫ]31 ỹ[ǫ]32 ỹ[ǫ]33 0

0 0 0 0











. (A.4)

The neutral currents mediated by the Z boson yield the interaction Lagrangian

L ⊃ Zµξ↑L,Rγ
µAtL,R

NC ξ↑L,R + Zµξ↓L,Rγ
µAbL,R

NC ξ↓L,R , (A.5)

with ξ↑,↓ defined in eq. (2.11), and with the associated flavour matrices

AtL,R
NC =























e

cW sW

(

δL

2
− 2s2W

3

)

I3 OT
3 OT

3 OT
3

O3

e

cW sW

(

1

2
− 2s2w

3

)

0 −
c∗L,Re√
2cW sW

sin ǫ

O3 0 − e

cW sW

(

1

2
+

2s2w
3

)

−
c∗L,Re√
2cW sW

sin ǫ

O3 − cL,Re√
2cW sW

sin ǫ − cL,Re√
2cW sW

sin ǫ −2esW /3cW























(A.6)
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and

AbL,R
NC =









e

cW sW

(

−δL

2
+

s2W
3

)

I3 OT
3

O3
e

cW sW

(

−1

2
+

s2W
3

)









. (A.7)

For the charged currents mediated by the W we have the interaction Lagrangian

L ⊃ W+
µ ξ↑L,Rγ

µAL,R
CC ξ↓L,R , with AL,R

CC =
g√
2











δLI3×3 OT
3

O3 cos2 ǫ/2

O3 sin2 ǫ/2

O3 −c∗L,R sin ǫ











. (A.8)

In the above formulas, O3 = (0, 0, 0).

A.2 Perturbative expansion

In order to obtain simple analytic results, we diagonalise the mass matrices, presented in

the previous section, in perturbation theory. We use as a perturbation parameter ǫ = v/f .

In the following we review in general terms the adopted procedure and then apply it to

the down-type quark sector as an example, giving the explicit expressions for the matrices

UdL,R which block-diagonalize the down-type mass matrix up to O(ǫ3) corrections.

Given a general squared matrix M(λ) with a parameter dependence, we can find its

eigenvalues and eigenvectors at second order in λ taking the following steps:

• Expand the matrix M(λ) in λ up to the second power;

M(λ) = M0 + λM1 + λ2M2 +O(λ3) . (A.9)

• Define the hermitian combinations (left and right) in powers of λ;

Zeroth order: H0L = M0M
†
0

First order: H1L = M0M
†
1 +M1M

†
0

Second order: H2L = M0M
†
2 +M2M

†
0 +M1M

†
1

(A.10)

(for the right combinations one just needs to replace Mi → M †
i .)

• Determine the zeroth order eigenvalues and eigenvectors, i.e. λ0[i] and |iL,R〉0, defined
by the equation H0L,R |iL,R〉0 = λ0[i] |iL,R〉0.
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• Use the second order expression for the eigenvectors

|iL,R〉2 = |iL,R〉0 + λ
n
∑

k 6=i

0〈kL,R|H1L,R |iL,R〉0
λ0[i]− λ0[k]

|kL,R〉0

+ λ2





n
∑

k 6=i

0〈kL,R|H2L,R |iL,R〉0
λ0[i]− λ0[k]

|kL,R〉0

+
n
∑

k 6=i

n
∑

m 6=i

0〈kL,R|H1L,R |mL,R〉0 0〈mL,R|H1L,R |iL,R〉0
(λ0[i]− λ0[k])(λ0[i]− λ0[m])

|kL,R〉0

−1

2

n
∑

k 6=i

(

0〈kL,R|H1L,R |iL,R〉0
λ0[i]− λ0[k]

)2

|iL,R〉0





(A.11)

• In the sums in the eq. (A.11) it is implicitly assumed that we skip those indices

i 6= j for which λ0[i] = λ0[j]. By not summing these contributions we loose orthog-

onality between the zeroth order degenerate states at order λ2. Therefore we must

orthogonalize them, for instance through the known Gram-Schmidt procedure

|j〉new = |j〉 − 〈i| j〉
〈i| i〉 |i〉 . (A.12)

By following the procedure above we are able to find matrices UL,R =
(

|1L,R〉2 , |2L,R〉2 , · · ·
)

which are unitary up O(λ2) and which (block) diagonalize Mup and Mdown.

To make this procedure less abstract let us look to the simple scenario of the down

sector. We start by identifying the expansion parameter λ as sin 2ǫ. The relevant hermitian

combinations take the form

Zeroth order: Hd
0L =











0 0 0 0

0 0 0 0

0 0 f2y2L4 fM4yL4
0 0 fM4yL4 M2

4











, Hd
0R =











0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 M2
T











First order: Hd
1L = O , Hd

0R =
fy4L
2











0 0 0 md
UV31

0 0 0 md
UV32

0 0 0 md
UV33

md
UV31 md

UV32 md
UV33 0











Second order: Hd
2L =











0

md
UV.m

d T
UV 0

0

0 0 0 0











, Hd
0R =











0

md T
UV.m

d
UV 0

0

0 0 0 0











(A.13)
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The next step is to find the eigensystem at zero order. In our scenario we have:

Eigenvalues: λ0[1] = λ0[2] = λ0[3] = 0 , λ0[4] = M2
T , (A.14)

Eigenvectors:



























|1L〉0=











1

0

0

0











, |2L〉0=











0

1

0

0











, |3L〉0=











0

0

cφL
−sφL











, |4L〉0=











0

0

sφL
cφL











|iR〉0 = (· · · δij · · · )T

There is an arbitrariness in the choice of the first three zero-order eigenvectors, due to the

degeneracy of the light sector. As previously explained, contrarily to the usual perturbation

theory, we shall not solve this degeneracy at first order before going to higher orders.

Instead we keep this degeneracy to second order and use the perturbative expression for the

eigenvectors presented in eq. (A.11). At the end of this stage, the second-order eigenvectors

that shared the same eigenvalue at zero order are no longer orthogonal. We then do the

last step, i.e. the Gram-Schmidt orthogonalization procedure, leading to the unitary (up

to O(s22ǫ)) 4× 4 rotation matrices

UdL =

























1 0 0 s22ǫsφL
m2

13

M2
T

0 1 0 s22ǫsφL
m2

23

M2
T

−s22ǫs
2
φL

m2
13

M2
T

−s22ǫs
2
φL

m2
23

M2
T

cφL

(

1− s22ǫs
2
φL

m2
33

M2
T

)

sφL

(

1 + s22ǫc
2
φL

m2
33

M2
T

)

−s22ǫsφLcφL
m2

13

M2
T

−s22ǫsφLcφL
m2

23

M2
T

−sφL

(

1 + s22ǫc
2
φL

m2
33

M2
T

)

cφL

(

1− s22ǫs
2
φL

m2
33

M2
T

)

























, (A.15)

UdR =

























1− s22ǫs
2
φL

md2
UV31

8M2
T

−s22ǫs
2
φL

md
UV31m

d
UV32

4M2
T

−s22ǫs
2
φL

md
UV31m

d
UV33

4M2
T

s2ǫsφL
mUV31

2MT

0 1− s22ǫs
2
φL

md2
UV32

8M2
T

−s22ǫs
2
φL

md
UV32m

d
UV33

4M2
T

s2ǫsφL
mUV32

2MT

0 0 1− s22ǫs
2
φL

md2
UV33

8M2
T

s2ǫsφL
mUV33

2MT

−s2ǫsφL
md

UV31

2MT
−s2ǫsφL

md
UV32

2MT
−s2ǫsφL

md
UV33

2MT
1− s22ǫs

2
φL

m2
33

8M2
T

























,

where in the above we use the shorthand m2
αβ = md

UVαim
d
UVβi.

The rotations UtL,R which block-diagonalize the up-type mass matrix eq. (A.1) are

obtained analogously, but the expressions are larger so that we do not give them, here.

B A variation: fully composite right-handed top

A minimal variation to the scenario considered here is to assume that the right-handed top

is a massless composite state of the dynamics. This assumption leads to changes in the

up-sector mass, Yukawa matrices and gauge interactions. The Lagrangian, analogous to

eq. (2.5), now reads:

Lcomp = iQL,R

(

/D + /E
)

QL,R + iT̃L,R /DT̃L,R −M4

(

QLQR +QRQL

)

−M1

(

T̃LT̃R+T̃RT̃L

)

+icLQ
i
Lγ

µdiµT̃L+icRQ
i
Rγ

µdiµT̃R+ictQ
i
Rγ

µdiµtR+h.c.
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−Lmix = yL4,1fq
5
3LUψR + yLtfq

5
3LUtR + h.c.

= yL4f
(

bLBR+c2θ/2tLTR+s2θ/2tLX2/3R

)

− yL1f√
2
sθtLT̃R−

yLtf√
2
sθtLt̃R+h.c. (B.1)

The mass matrix reads:

Mup =























m̃[ǫ]11 m̃[ǫ]12 m̃[ǫ]13 0 0 0

m̃[ǫ]21 m̃[ǫ]22 m̃[ǫ]23 0 0 0

m̃[ǫ]31 m̃[ǫ]32 m̃[ǫ]33 − f
yLt√
2
sin ǫ fyL4 cos

2 ǫ

2
fyL4 sin

2 ǫ

2
−f

yL1√
2
sin ǫ

0 0 0 M4 0 0

0 0 0 0 M4 0

0 0 0 0 0 M1























(B.2)

The diagonalisation of this mass matrix will generate corrections to the SM quark couplings

similar to the ones in the case of an elementary tR. The masses for the top and the heavy

partners are:

mt =

∣

∣

∣

∣

M4fyLt

2
√
2
√

M2
4 + f2y2L4

∣

∣

∣

∣

s2ǫ , MT =
√

M2
4 + f2y2L4 , MX2/3

= M4 , MT̃ = M1

(B.3)

Combining the contributions from differentiating of Mup and from the d4µ-term of Lcomp,

the Yukawa matrix is:

Yup=

















ỹ[ǫ]2×2 ỹ[ǫ]T2 O
T
2 O

T
2 O

T
2

ỹ[ǫ]2 ỹ[ǫ]33+
(

ctyLt−
yLt√

2

)

cǫ

(

c∗
R
yL1√
2

+
c∗
t
yLt√
2

− yL4

2

)

sǫ −
(

c∗
R
yL1√
2

+
c∗
t
yLt√
2

− yL4

2

)

sǫ

(

cRyL4−
yL1√

2

)

cǫ

O2 ct
M4

f
0 0 − cLM1−cRM4

f

O2 −ct
M4

f
0 0 − cRM4−cLM1

f

O2 0 −
−c∗

L
M4+c∗

R
M1

f
−

c∗
L
M4−c∗

R
M1

f
0

















(B.4)

Rotating into the heavy quark eigenstates, we find that the factorization pattern displayed

in the partial composite case continue to hold, and the additional ct term in the Lcomp will

give rise to an O(1) correction in the Yukawa interaction:

mU ≃ s2ǫ
2

mu
UV ∓mtΠ , yu ≃ mU

fs2ǫ/2

(

1− 1

2
s22ǫ

)

+ ct (yLt − yL4) cφLΠ+Bu ,

where Π =







0 0 0

0 0 0

0 0 1






, Bu ∼ Σu

M2∗
, and cφL =

M∗
√

M2∗ + f2y2L4

. (B.5)

We continue to discuss the deviations in the gauge interaction. When the tR is fully

composite, the right-handed Z and W currents will be further corrected:

L ⊃ W+
µ ξ↑Rγ

µAtR
CCξ↓R + Zµξ↑Rγ

µAtR
NCξ↑R (B.6)

– 35 –



J
H
E
P
0
6
(
2
0
1
5
)
0
8
5

where the matrices AtR
CC and AtR

NC in the flavour basis are:

AtR
CC =

g√
2















03×2 0T
2

03 −c∗t sin ǫ
03 cos2 ǫ/2

03 sin2 ǫ/2

03 −c∗R sin ǫ















(B.7)

AtR
NC =



















−2esW
3cW

I2 0T
2 0T

2 0T
2 0T

2

02 −2esW
3cW

− c∗t e√
2cW sW

sin ǫ − c∗t e√
2cW sW

sin ǫ 0

02 − cte√
2cW sW

sin ǫ e
cW sW

(

1
2 − 2s2w

3

)

0 − c∗Re√
2cW sW

sin ǫ

02 − cte√
2cW sW

sin ǫ 0 − e
cW sW

(

1
2 + 2s2w

3

)

− c∗Re√
2cW sW

sin ǫ

02 0 − cRe√
2cW sW

sin ǫ − cRe√
2cW sW

sin ǫ −2esW
3cW



















(B.8)

The deviations in charged and neutral right-hand currents should be calculated by trans-

forming to the block diagonal basis, and are of the same order as in the partial composite

case. The main difference is that a fully composite tR couples directly to massive res-

onances of the underlying dynamics, therefore higher order contributions may arise and

differ from the partial composite case in the up-sector. Let us first consider the composite

top partners coupling to a singlet scalar Φ as dictated by eq. (3.21). The flavour interaction

for the SM up-type quarks brought by the partial compositeness effect is:

LS ≃ Φ
(

ūL c̄L t̄L

)

·







0 0 0

0 0 0

gBs
2
φLcφL

mc
M∗

gBs
2
φLcφL

mc
M∗

−gBs
2
φL

mt
M∗






·







uR
cR
tR






+ h.c. (B.9)

with the notation sφL = fyL4/
√

M2∗ + f2y2L4. A difference arises with respect to eq. (3.22)

since there is no tR mixing before EWSB and thus sφR = 0 in this scenario. When we

set mΦ = gBf and integrate out the scalar resonance, the effective Lagrangian for the

dimension-6 operator is,

LS ≃ (1− 2cφL)
2
s4φL
f2

(

mc

mt

)4(mt

M∗

)2

Quc
4 ≃ 10−10

TeV2

(

1 TeV

M∗

)2

Quc
4 . (B.10)

The coefficient Cuc
4 is well below the experimental bound. A larger difference comes from

the tR coupling to a vector resonance Vµ in a SO(4) singlet since the chiral property permits

the following interaction,

LV = Vµ(gBQ̄Lγ
µQL + gS

¯̃TLγ
µT̃L) + (L → R) + g′S t̄Rγ

µtR +
1

2
m2

V VµV
µ . (B.11)

Assuming that yL1 = yL4, gS = gB and M∗ = M4 = M1, and diagonalizing the heavy

quark mass, the flavour interaction for the SM up-type quarks is:
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LV ≃ Vµ

(

ūL c̄L t̄L

)

γ
µ ·









0 0 −gBs
2
φLc

2
φL

mtmc

M2
∗

0 0 −gBs
2
φLc

2
φL

mtmc

M2
∗

−gBs
2
φLc

2
φL

mtmc

M2
∗

−gBs
2
φLc

2
φL

mtmc

M2
∗

gBs
2
φL + 2gBs

2
φLc

2
φL

m2

t

M2
∗









·







uL

cL

tL







+Vµ

(

ūR c̄R t̄R

)

γ
µ ·









gBs
2
φLc

2
φL

m2

c

M2
∗

gBs
2
φLc

2
φL

m2

c

M2
∗

−gBs
2
φLcφL

mtmc

M2
∗

gBs
2
φLc

2
φL

m2

c

M2
∗

gBs
2
φLc

2
φL

m2

c

M2
∗

−gBs
2
φLcφL

mtmc

M2
∗

−gBs
2
φLcφL

mtmc

M2
∗

−gBs
2
φLcφL

mtmc

M2
∗

g′S + (gB − g′S) s
2
φL

m2

t

M2
∗









·







uR

cR

tR






(B.12)

We further rotate from the flavour basis into the mass basis and get the Lagrangian:

LV ≃
(

gBs
2
φL

(

mc

mt

)2

− 2gBs
2
φLc

2
φL

(

mc

M∗

)2
)

Vµ ūLγ
µcL

+

(

g′S

(

mc

mt

)2

+
(

gB (1− 2cφL)
2 − g′S

)

s2φL

(

mc

M∗

)2
)

Vµ ūRγ
µcR + h.c. (B.13)

Integrating out the heavy resonance with its mass set to be mV = gBf , we find that the

dimension-6 operators have the coefficients:

Quc
1 :

1

f2

(

s2φL

(

mc

mt

)2

− 2s2φLc
2
φL

(

mc

M∗

)2
)2

Q̃uc
1 :

1

f2

(

g′S
gB

(

mc

mt

)2

+

(

(1− 2cφL)
2 − g′S

gB

)

s2φL

(

mc

M∗

)2
)2

. (B.14)

Therefore the Wilson coefficients Cuc
1 and C̃uc

1 will be of order of ∼ 10−9/TeV2, which

are below the experimental bound (see ref. [86] for D0 − D̄0 constraints on the real and

imaginary parts of Cuc
1 or C̃uc

1 , which are of the same magnitude).
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