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In Model-Based Testing (MBT) area, Search-Based Software Testing (SBST) has been employed to generate test cases from the
model of a system under test. However, many types of models have been used in MBT. If the type of a model has changed from one
to another, all functions of a search technique must be reimplemented because the types of models are different even if the same
search technique has been applied. It requires too much time and effort to implement the same algorithm over and over again.
We propose a model-independent software framework for SBST, which can reduce redundant works. The framework provides a
reusable common software platform to reduce time and effort. The software framework not only presents design patterns to find
test cases for a target model but also reduces development time by using common functions provided in the framework. We show
the effectiveness and efficiency of the proposed framework with two case studies. The framework improves the productivity by

about 50% when changing the type of a model.

1. Introduction

In the era of machine to machine such as IoT (Internet of
Things), the importance of software dependability rapidly
increases because various pieces of software are embedded on
each machine and are operating collaborating with each other
by taking the core roles in ICT (information communication
technology). To increase software dependability, effective and
efficient software testing techniques based on Research on
Search-Based Software Engineering (SBSE) should be deeply
studied. SBSE has been increasing by 20% every year in
terms of the number of published papers since the year
2000 [1]. Search-Based Software Testing (SBST) is one of
the most dominant research areas in SBSE with more than
50% of papers published related to testing and debugging
(Publication trend analysis data source: SBSE repository at
http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/). Be-
cause SBST is widely used to search useful test inputs among
input domains, it is the most effective area of SBSE.

SBST can be effectively applied to Model-Based Testing
(MBT) because MBT is to search useful test input data among

the input domains of a target model. Previous studies on MBT
have tried to generate test cases using static analyses [2, 3].
The more complex the structure of a model is, the harder the
static analysis for the model is. It is very hard to generate test
cases from a complex model using a static analysis. Recently,
the researchers on MBT are trying to adopt dynamic SBST
techniques to generate test cases. Dynamic SBST employs
search-based methods for software testing by executing the
target source code or model. Therefore, dynamic SBST is far
less affected by the complexity of a model than static SBST
because it determines test data using search-based policies
(4, 5].

However, in MBT, if a target model has changed from one
type to another, all functions of the used algorithm must be
reimplemented for the new type of a model because of the
differences of their target models even if the search technique
is the same as the one used for the previous model. If dynamic
SBST focuses only on the outputs produced by the execution
of a target model, dynamic SBST may be applied to various
models without changes. In other words, dynamic SBST can
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apply the same algorithm to various types of models because
it is weakly dependent on the used models.

However, the dynamic SBST should be supported
by a model-independent software framework. A model-
independent software framework is an essential part of
the implementation of an automatic test case generator
in order to apply dynamic SBST to various models. The
model-independent software framework has a set of basic
programming interfaces, which are required to execute a
target model, to implement a test case generator for state-
based models. It also provides a software architecture and
data structures to implement a test case generator.

There are several advantages of a model-independent
software framework as the following. First, it can be applica-
ble for different domains using the same algorithm because
each domain has the de facto standard software model
such as Petri-Net, UML, and SL/SE. Second, it can help to
save the implementation effort to generate test cases for
various models by reusing the provided APIs. Third, it can
create highly reliable test case generator using the certified
components in the framework.

In this paper, we propose a novel model-independent
software framework, where SBSTs can be applied in MBTs.
The contributions of our paper are as follows:

(1) to present a model-independent software framework
that can be used to implement a search-based test case
generator for MBT,

(2) to provide practical interfaces, standard data struc-
ture, and common functions that can help to apply
a search-based software testing algorithm to various
models,

(3) to show the effectiveness and efficiency of the pro-
posed software framework through two case studies.

The rest of this paper is organized as follows. Section 2
discusses some related works, and Section 3 proposes the
software framework and essential interface functions. In
Section 4, we present two case studies in order to show
the effectiveness and efficiency of our framework. Then, we
conclude in Section 5.

2. Related Works

Most existing works of research on SBST have been related
to structural testing. Structural testing is also called a white
box testing because it builds up test data from the internal
structure of a target piece of software. Although the number
of studies on SBST related to Model-Based Testing has been
increasing recently, many of them are still insufficient in
terms of testing various types of models. In this section, we
describe the related works on structural testing and Model-
Based Testing using SBST.

2.1. Structural Testing. In general, structural testing schemes
use a control flow graph (CFG) of a target program [6]. In
a CFG, a node represents a statement or a set of statements
which does not have a branching statement. Among the
nodes, the nodes related to the decision become predicate
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(or branching) nodes. If the output of the previous branching
node affects the execution of the present node, then we say
that there is a control dependency between the two nodes [7].
A control dependency graph expresses a set of dependency
information among the nodes in a target program. A control
dependency graph provides very important information to
generate test data and is widely used in various algorithms,
which will be presented in the rest of this section.

Structural testing methods can be classified into static
methods and dynamic methods. Static methods generate test
data not by executing a target program but by analyzing
the internal structure of a program. Symbolic execution
methods and domain reduction methods are kinds of static
methods. Dynamic methods generate test data by observing
the outputs of a target program. Random testing, local search,
goal-oriented approach, and chaining approach are kinds of
dynamic methods.

Symbolic execution [8] method does not execute a target
program but narrows down the scope of the symbol’s feasible
values by following the path which is generated using a CFG.
These constraint satisfaction problems are NP-Complete [9].
Symbolic execution does not work well if there are indexes
of arrays or loops. Moreover, this method hardly deals with
runtime objects such as pointers and procedure calls. A few
works are proposed to cope with the problem [10, 11] using
heuristic methods. Boyer et al. [10] employed hill climbing
algorithm, and Ramamoorthy et al. [11] adopted trial-and-
error procedure. However, these works have a drawback, in
which the complexity of the symbolic execution is getting
rapidly higher as the number of paths increases.

Whereas symbolic execution methods try to find out
the constraints for input variables, domain reduction meth-
ods find out a solution for the constraints. Actually, these
methods were presented as a part of constraint-based testing
[12]. Domain reduction methods also suffer from the same
problems (e.g., loops, arrays, pointers, and procedure) as
symbolic execution methods because the constraints used in
domain reduction methods are created by symbolic execution
methods. To relieve these problems, dynamic domain reduc-
tion method is proposed [13], which dynamically reduces the
domain of input variables. However, it does not solve the
index problem of arrays and loops.

Static methods like symbolic execution could not deal
with the index of arrays, loops, and pointers because their
actual values are provided only during the program runtime.
However, dynamic methods overcome this problem because
they execute a target program. Random testing, which is one
of the simplest dynamic methods, executes a target program
with random input data and observes the outputs. However, it
hardly generates test cases for some conditions (e.g., finding x
and y that satisfies “x == y,” where x and y are real numbers).

In 1976, Miller and Spooner proposed a method to find
out test data by executing a target program and by searching
with specially chosen input data [14]. After 1990, the search
method which exploits the branch distance of a Pascal
program was proposed [15]. Branch distance, which is used
in most local search algorithms, shows how far a proposition
is from the true value. However, local search may not find the
global optimum if a local optimum exists.
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To overcome the local optimum problem of the local
search, several studies employ simulated annealing for struc-
tural data generation [16, 17]. These studies can generate test
data for specific paths or statements. These methods do not
intensively exploit information about the proven successful
paths not to be seized by the local optimum, which may
cause another crucial problem. For example, in nested if
statements, the branch distance reducing process for the
inner if statement may violate the condition for the outer
if statement, which has been already proven successful. The
violation occurred because the method treats the branch
distance of the inner if statement and that of the outer if
statement separately.

Some studies employ genetic algorithms to the structural
test data creation, and these studies can be classified into
coverage-oriented methods and structure-oriented methods
[6]. In coverage-oriented methods, the fitness function shows
how much the individual covers the structure of a target
program. The more the individual covers a larger part of
the structure of the program, the better the individual is
[18]. However, this method may not successfully find out
the values for deeply nested statements or rarely occurring
conditions because it chooses the individual that only covers
the longest paths. To overcome this problem, a penalty policy
method is proposed, in which a penalty is charged when a
path that was already found is revisited [19]. However, this
method can only be applied to simple programs.

Structure-oriented methods can be classified into branch
distance oriented methods, control-oriented methods, and
combined methods, in accordance with the type of infor-
mation that the objective function uses. Branch distance
oriented methods use the branch distance, which is employed
in local search methods, as the objective function. Xanthakis
et al. [20] applied a genetic algorithm only for the part not
covered by the random search, but they could not overcome
the local optimum problem. Another study uses the objective
function, which is made up by the branch distance for the
target branch [21]. Another study finds out the individuals
that reach the branches and obtains the test data for the
conditions of each branch [22]. However, these two studies
are not sufficiently effective [6].

The function used in loop testing [21] is one of the
most typical objective functions in control-oriented methods.
In the research, the objective function uses the difference
between the actual loop iteration number and the expected
loop iteration number. A study uses the number of control-
dependent nodes, which should be passed to reach the target
in the control dependence graph, as the objective function
[23]. Control-oriented methods may bring out many plateaus
because they do not have distance information about the
branch predicate.

In combined methods, the objective function uses both
branch distance and control information. Tracey et al. [24]
used the value computed by (1) for the objective function.
In (1), “executed” is the number of executed branches,
“dependent” is the number of branches to be executed, and
“brandist” is the branch distance. However, Tracey’s research
also suffers from the local optimal problem [6]. Wegener et al.
[25, 26] used (2) for the objective function. In (2), the branch

distance is mapped between [0, 1] and added to “approach
level,” which is the number of control-dependent nodes to be
executed:

executed
X) = ————— | * bran_dist,
RS (dependent) * bran-ds M
f (X) = approach_level + bran_dist. (2)

2.2. Model-Based Testing. For MBT, several different algo-
rithms were proposed according to the type of models. SBST
has been employed as an algorithm to generate test cases for
various models. To generate a unique input-output sequence
for an FSM (Finite State Machine), several SBST methods
were proposed [27]. Derderian et al. [28] employed a genetic
algorithm using temporal constraints to generate test data
for FSM. A fitness function uses the number of temporal
constraints violated by each candidate input sequence.

Windisch  [29] employed simulated annealing,
genetic algorithms, and particle swarm optimization to
generate a continuous input signal for real-time SL/SF
(Simulink/Stateflow) models. Signals are generated by the
sequence of the individual signal blocks. The fitness function
uses approach level and branch distance, as shown in (2).

Zhan and Clark [30] employed SBST to effectively gen-
erate test data appropriate for branches. They applied the
metaheuristic search methods only for the parts that were not
covered by the random search of Xanthakis et al. [20]. Zhan
and Clark [31] used the simulation-based method as the SBST
in a MATLAB/Simulink model. They executed the blocks in
a black box style to generate test data for the blocks.

Most previous works of research tried to find out test
data by static analysis of the model without execution of
the model. Recently, several works of research have tried to
find out test data by executing a target model. Yano et al.
[5] generated test input sequences for Extended Finite State
Machine (EFSM) by executing a target model. They presented
the multioptimal solution, which supports high coverage and
short length without the length limit of input sequence. Oh et
al. [4] obtained a fitness value of the candidate input sequence
that is obtained by using the information of the running path,
which is given by executing a target model with a candidate
input sequence. Then, Oh et al’s method could generate the
test case satisfying transition coverage for an SL/SF model
without any static analysis.

However, to the best of our knowledge, there is no study
about a model-independent algorithm for the various types of
models. In this paper, we present a novel model-independent
software framework which does not require static analysis
and is appropriate for dynamic SBST. The proposed software
framework may provide a good infrastructure for the easy
and rapid generation of test data using SBST for the various
types of models.

3. A Model-Independent Software Framework

The proposed framework is composed of the two different
layers, a model abstraction layer and a test case generation
layer. The term model used in this paper means a state-based
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model such as FSM, EFSM, UML, and SL/SE. Figure 1 shows
the overall architecture of the proposed software framework.
The model abstraction layer processes the peculiar parts of
the model, which take on roles of creating data structures
or building an executable model for the test case generation
layer. An executable model is the model which can be
executed by the test case generation layer to select test data.
The framework takes a model as an input and then generates
test cases as an output. The test case generation layer takes
charge in generating test cases with data structures and the
executable model.

3.1. The Model Abstraction Layer. An executable model is
the most important part of dynamic SBST because the
fitness value for the test input selection is determined while
running the executable model. An executable model can
be generated using the source code. An executable model
generation function is located in the model abstraction
layer because different tools are required to generate the
source code, which are the main resource of an executable
model. Most modeling tools provide source code generation
functions. Commercial tools for UML modeling, such as
IBM Rational Rose, IBM Rational Rhapsody, and Borland
Together, provide automatic source code generation tools.
In FSM or EFSM, source code can be generated using a
state machine compiler (SMC) (http://smc.sourceforge.net/).
In an SL/SF model, source code can be generated using
the Simulink coder (http://www.mathworks.com/products/
simulink-coder/index.html) MATLAB package.
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Before an executable model is built from a source code,
interfaces to control the executable model should be merged
with the source codes, which are generated using model
specific tools. The interfaces are combined with the generated
source code. The essential interfaces are as follows.

(i) Model initialization: initialize the executable model to
be executable.

(ii) Model execution: execute the executable model with
the candidate input.

(iii) Model termination: terminate the executable model
to finalize the model.

(iv) Candidate test input setting: set candidate input to the
executable model.

(v) Execution results acquisition: get the execution
results from the executable model.

(vi) Model status acquisition: get the current active state
lists and the values of variables of the executable
model.

An executable model is generated by combining the pre-
defined interfaces and a source code automatically generated
from a model. An executable model appears as a dynamic-
link library. The same algorithm implemented in the test case
generation layer can be used to generate test cases for the
various types of models because the executable models are
loaded dynamically and have the same interfaces.

The final job performed in the model abstraction layer is
to transform the model into a data structure which can be
handled by the test case generator. Because the focus of this
paper is dedicated to the state-based model, every model has
charts, states, transitions, and predicates of the transition. The
data structure is generated from an input model. The model
abstraction layer saves all static features of an input model
in the data structure. The model data structure is the most
suitable data structure for SL/SF model because SL/SF model
is the most complicated state model among FSM, EFSM,
UML, and SL/SE. For the simpler models such as FSM, the
proposed framework allows some data structures to be kept
empty.

3.2. The Test Case Generation Layer. In the test case genera-
tion layer, SBST algorithms can be implemented and applied
regardless of the type of models. The test case generation
layer is divided into an algorithm implementation layer and
an algorithm support layer, as shown in Figurel. In the
algorithm implementation layer, SBST algorithms, such as
random, hill climbing, and genetic algorithm, are practically
implemented. Supporting functions, such as coverage goal
generation, executable model control, and feedback analysis,
are located in the algorithm support layer. The functions in
the test case generation layer are independent of the type of
models and the kinds of search algorithms.

We briefly explain the basic idea of a test case generation
algorithm for the state-based model, which is employed in
the framework. A base node is defined as a snapshot of the
state-based model. In the state-based model, the state and
variables are changed according to input data. Therefore, the
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(1) Test casesetS =@

(2) for each coverage C do

3) Test input sequence X = &

(4) repeat

(5) Set I by random

(6) 2r=2ZUI

(7) Execute the executable model with X .
(8) Get feedbacks f from the executable model
9) Analysis f with C

(10) If f is useful then

11) X=X

(12) end if

(13)  until satisfy C or reach maximum iteration
(14) S=SuZX

(15) end for

ArLcoriTHM 1: Pseudocode of random algorithm.

active state and the values of the variables of a specific point of
time can be obtained by generating a snapshot of the point. To
recover from the snapshot efficiently, the input sequence from
the initial state to the snapshot should be stored and used. A
base node is a snapshot of the model containing an active state
list, values of variables, and the input sequence.

To cover the transition coverage, which is one of the most
important goals, the input sequence should be found to satisfy
each transition of a target model. The search process will be
quite simple if we begin from the source state of the target
transition. Therefore, an SBST algorithm can be modified
as follows. First, find out the base node, in which its active
state list has the source state of the target transition. Second,
find out the test input, by which the target transition can be
covered from the base node. With the above modification of
the algorithm, we can implement the algorithm which can be
easily applied in the algorithm implementation layer.

3.2.1. The Algorithm Implementation Layer. In the algo-
rithm implementation layer, various SBST algorithms can
be employed. Many SBST algorithms select the test cases
among several candidate test inputs according to the fitness
of the candidate inputs. Therefore, the fitness function for
selecting the test inputs among the candidates is defined in
the algorithm implementation layer. Various dynamic SBST
algorithms can be embedded in this layer.

The algorithm implementation layer is the actual core
part of the framework because it takes on the role of creating
test data. On the other hand, the algorithm support layer takes
on the role of defining auxiliary tools required to create test
data. In the test case generation layer, test case generation
algorithms are implemented using data structures. An exe-
cutable model and a model data structure are generated in
the model abstraction layer. The generated executable model
is loaded by the model abstraction layer. Then, the executive
control is moved to the test case generation layer, where the
test case is generated. The test case generation algorithms can
be easily implemented by using various functions, which is
provided in the algorithm support layer.

In general, the state-based model is defined as 4-tuple
M = ($;ILV;T).S, 11, V,and T denote a set of states, a set of
events, a set of variables, and a set of transitions, respectively
[32]. The test input is defined as I = (V,®(V)), where V is a
set of variables and @ is values of V. For example, ®(m) = 1
when m is 1. Therefore, the test input sequence X = {I, | x =
1,...,n}, where I, is the set of the test input on the initial step,
and I, is the set on the nth step. The set of X is the final goal
to obtain because the test for a model can be composed of
several input sequences.

The random algorithm is the easiest algorithm to be
implemented. The algorithm selects an arbitrary candidate
test input I among the candidates and determines whether
or not to put I into the test input sequence after executing
the executable model and analyzing the feedback from the
executable model. If the algorithm decided that I would be
a useful test input to cover the target coverage, then I is
included in X. All steps of the test input should be randomly
chosen. The same process iterates along each coverage goal
of the target model. Algorithm 1 shows the pseudocode of a
random algorithm.

The candidate input is useful only if it can satisfy the
coverage. The random algorithm is not able to provide any
information about how to modify the candidate input to
satisfy the coverage but is able to say whether or not the
candidate input satisfies the coverage. Therefore, the random
algorithm is not efficient in finding out the test input, though
itis a quite simple and widely used algorithm as a benchmark
target.

The local search algorithm or the metaheuristic search
algorithm can also be implemented. For the algorithms,
the representation and fitness functions of search targets
should be defined. For treating the state-based model, the
representation to describe the status of the state should be
employed. Therefore, a represented node should have the
status of the current model and the input sequence which
has inputs from the initial state to the current state. The
base node is used for the metaheuristic search algorithms as
well. The traditional branch distance or the approach level is
employed as the fitness function. The branch distance or the
approach level can be included in the feedback, which is given
by the executable model at the design level. A strong point
of the methods is that they provide accurate values for the
fitness function that can be obtained by computing the values
dynamically.

Algorithm 2 shows pseudocodes of the discrete space
hill climbing search method, which is one of local search
methods [33]. We employed the algorithm for the discrete
space because the fitness function may have discrete values
of true/false not by continuous values but by Boolean values
in the state-based model. A start node is a start position from
which the searching for the target coverage begins. For exam-
ple, to satisfy the transition coverage, the algorithm chooses a
node as a start node that includes the source state of the target
transition. The algorithm generates 100 neighbor nodes of the
current node and compares the current node and the best
neighbor which has the highest fitness among the generated
neighbor nodes. If the fitness of the best neighbor is higher
than the current node, then the best neighbor becomes the
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(16) Test casesetS = @

(17) for each coverage C do
(18) Find start node, Ng
(19) repeat

(28) S=SU(ZofNy)
(29) end for

(20) Finding 100 neighbors by adding one step into X of N
(21) Select the best fitness neighbor among the 100 neighbors
(22) If the best fitness neighbor is is useful then

(23) N¢ « the best fitness neighbor

(24) else

(25) break

(26) end if

(27)  until satisfy C or reach maximum iteration

ALGoRITHM 2: Pseudocode of local search algorithm.

(30) Test case set S = @

(31) for each coverage C do
(32)  Find start node, N
(33)  repeat

(45) end for

(34) for (i = 0;i < |Ng| /2; i++) do

(35) Select two parents in the population

(36) Generate two offspring by crossover operation between two parents
(37) Insert two offspring into new generation list

(38) if a new offspring satisfy the coverage, C then

(39) S = S U (Z of the offspfing)

(40) break

(41) end if

(42) end for

(43) Mutate some offspring in the new generation list

(44)  until satisfy C or reach maximum iteration

ALGoRrITHM 3: Pseudocode of genetic algorithm.

current node. The algorithm iterates until it cannot find out
any neighbor which has higher fitness than the current node.
As known already, the local search suffers from the local opti-
mum or plateau problems. The local search algorithm works
very effectively where local optimum or plateau does not
exist.

Genetic algorithms (GA) are one of the most studied
research algorithms on the metaheuristic search. In GA,
each individual in a population evolves from one generation
to more developed generations by following the selection,
crossover, and mutation stages. Various algorithms have been
presented in accordance with the type of operations. For
selections, linear ranking-based selections and tournament-
based selection are presented. Examples of the linear ranking-
based algorithm are roulette wheel selection, stochastic uni-
versal sampling, and trunk ranking selection. Examples of
the tournament-based selection are 2-way tournament, 3-way
tournament, or k-way tournament selections, each of which
compares 2 individuals, 3 individuals, and k individuals,
respectively. We can employ a general GA algorithm to MBT
because the selection algorithm selects better individuals

using the fitness function. Algorithm 3 shows the pseudocode
of the genetic algorithm.

The crossover operation is dependent on the representa-
tion of individuals. An individual has a chromosome, which
consists of several genes. Crossover operation is mixing up
genes. An individual has the status of a current model and
the input sequence from the initial state to the current state.
An input sequence is considered as a chromosome, and one
step is mapped to a gene of a chromosome. The crossover
is the operation crossing each step. Single point crossover is
different from multipoint crossover in that it has only one
crossover point. Uniform crossover, which selects a gene from
parents at each point, and cut-and-splice crossover, which
crosses over the steps at the different points of parents, can
be implemented in this framework.

The mutation operation mutates an individual to solve the
local optima or plateau problems. GA changes the values of
genes. Because a gene is mapped to an input step of MBT,
we can use the method of changing the value in a step. The
method of erasing or adding one step can be also used.
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TABLE 1: Source code sizes of efforts of each model (using genetic algorithm).

Model abstraction layer

Algorithm implementation layer

Test case generation layer
Algorithm support layer

EFSM
SL/SF

939 LOC (2.7 PM)
1466 LOC (4.5 PM)

432 LOC (L2 PM)
432 LOC (L2 PM)

989 LOC (2.9 PM)
991 LOC (2.9 PM)

3.2.2. The Algorithm Support Layer. The algorithm support
layer covers the common tool modules which can be used
with any algorithm. Just like libraries, this part can be
commonly used on various models. By reusing these com-
mon modules, the development time can be shortened and
the program is getting more reliable. Essential functions
which should be provided by the algorithm support layer
are coverage goal generation, executable model control,
and feedback analysis. Whereas traditional design pattern
techniques present at most forms of classes, the proposed
framework also provides useful functions for the generation
of test cases.

The coverage gives directions for test case generation.
State coverage and transition coverage are widely used for
state-based models. MC/DC (MC/DC is one of the standard
coverage factors required for DO-178B/C in the aerospace
domain and ISO 26262 in the automotive domain.) (mod-
ified condition/decision coverage) may be required for the
safety-critical software testing. One of the most important
performance matrices for a test case generator is how much
the coverage goal is satisfied by the generated test case. The
generated test cases should visit all states of the model for
the state coverage and all transitions of the model for the
transition coverage. MC/DC is for the test to see how each
condition (event and guard condition) in every transition
would independently affect the condition and decision.

The state coverage and transition coverage create a goal
as a list of all states and transitions included in the model,
respectively. The way to create the goal for MC/DC is that we
regard each condition in every transition as a predicate of a
branch condition.

The proposed framework provides the common func-
tions in the algorithm support layer to control the exe-
cutable model generated in the model abstraction layer.
The functions should support model initialization, model
execution, model termination, candidate test input setting,
execution results acquisition, and model status acquisition as
mentioned earlier.

The feedback of the executable model shows how the
candidate test input fits to the coverage goal. After executing
the model with the candidate test inputs, the executable
model should provide the visited transitions and the branch
distance values of the transition so that the test case generator
may calculate the fitness value. Based on the outputs of the
executable model, the generated test cases should be mapped
to the predefined coverage goal in order to check the coverage
with the test cases. Moreover, the software framework should
provide a function for calculating fitness values to be used in
the metaheuristic search algorithm.

4. Case Studies

The primary purpose of the proposed framework is to give
easy deployment of test case generator for the various types of
models and algorithms by reusing as many common modules
as possible. To show the effectiveness of the framework, test
cases for the EFSM model and the SL/SF model are generated
by using a random algorithm and a genetic algorithm.
EFSM is one of the most studied models, and SL/SF is the
most popular model used in the automotive and aerospace
industries. Generally, genetic algorithms and local searches
have been widely studied in SBST, and the random algorithm
is also popularly used as a benchmark. We set SL/SF as the
default type of a model and the genetic algorithm as the
default algorithm. That is to say, we use a genetic algorithm
while varying the types of models and an SL/SF model while
varying algorithms. We implemented the test case generation
program for each case based on the framework.

4.1. Case I: Changing Models (EFSM versus SL/SF). The exam-
ple of the EFSM model is an ATM model shown in Figure 2.
GA is employed as the test case generation algorithm. The
target model is generated with C code using a state machine
compiler (SMC), as described in Section 3.1. Interfaces are
added to the generated C code, and an executable model
is generated from the source code and the interfaces. The
generated test cases satisfy the transition coverage. Predefined
files are additionally used because events and data are not
defined in the input files. By using the predefined files, the
total event number and maximum/minimum of parameter
values can be obtained.

We assessed experiments by using the example shown in
Figure 3 for the SL/SF model. The presented example is widely
used as a hard example for analytical methods to find out
test inputs because the example includes a nested loop. The
identical GA algorithm used for EFSM is also used for an
SL/SF model. The target model is converted into C codes,
and the executable model is generated from the codes and
the interfaces. The test case generation layer runs by using the
generated executable model, and the test cases satisfying the
transition coverage are generated. Without additional files,
because the whole information can be obtained from the
SL/SF model, we can set the maximum and minimum on data
for the SL/SF model.

Table 1 shows the LOC (line of code) of each layer of
the program after implementing the test case generator for
the EFSM model and the SL/SF model. We counted the
number of executed lines of the code. The development efforts
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FIGURE 2: Sample of EFSM model: automatic teller machine.

are estimated as person-months (PM) using COCOMO 1I
(http://csse.usc.edu/csse/research/ COCOMOII). We employ
LOC for counting the number of lines, while comments
and blank lines are excluded. It took 939 LOC for EFSM
and 1466 LOC for SL/SF to convert the model into the
executable model and the data structure into the structure,
respectively. SL/SF model requires more source codes for the
model abstraction layer than the other model because SL/SF
has more complicate model structure. The ratios of the whole
source code are about 40% and 50%, respectively. Therefore,
we can reduce the time to market by about 50% if we employ
the framework presented in this paper to build a test case
generator for a new model. Moreover, the time to market will
be shortened much more if a parser for the target model exists
because most parts of the model abstraction layer are codes
for parsing the model files by using lex and yacc.

Equation (3) is the COCOMO II equation [34]:

n
PM = A x Size” x [ [EM,. 3)
i=1

The exponent E in (3) is an aggregation of five scale factors
(SF) that account for the relative economies or diseconomies
of scale encountered for software projects of different sizes
[35]. The EM in (3) is the effort multipliers to reflect the
software project environment characteristics. All scale factors
and effort multipliers are assumed as a nominal value. Size
is the size of software development, which is in units of
thousands of source lines of code (KSLOC). A is the constant
which is used to capture the multiplicative effects on effort
with projects of increasing size. n denotes the number of effort
multipliers. Table 1 shows the estimated efforts of each model
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FIGURE 3: Sample of SL/SF model: stopwatch.

TABLE 2: Test case generation results.

Models Coverage Number of Number of steps
test cases
Max. 83% 15ea 88 steps
EFSM  Min. 83% llea 55 steps
Ave. 83% 13ea 67.63 steps
Max. 100% 10 ea 7052 steps
SL/SF Min. 93% 6ea 131 steps
Ave. 97% 7.86 ea 3713.04 steps

to implement each part of the proposed framework. EFSM
model requires 6.8 PM, and SL/SF model requires 8.6 PM.
If SL/SF model is implemented after implementing EFSM
model, it takes only 4.5 PM to generate test cases because the
test case generation layer is used. Now, 4.1 PM is saved. So,
the proposed framework is efficient to implement a test case
generator for various models.

Table 2 shows the results of test case generation with
an identical GA for EFSM and SL/SE. It is meaningless to
directly compare the results for EFSM with those of SL/SF
because the two models are totally different. However, the
implementation of test cases generator for both models
using the proposed framework is successful. Therefore, the
proposed framework is effective to implement a test case.

4.2. Case II: Changing Algorithms (Random versus Meta-
heuristics). Three algorithms, such as a random algorithm, a
hill climbing (HC) algorithm, and a genetic algorithm (GA),
are implemented for an SL/SF model. Random, HC, and GA
are the most famous search algorithms. Table 3 shows LOCs
of the source codes by varying the algorithm. For each result,
the algorithm implementation layer possesses about 15% of
the total code, which means that our framework works very
efficiently even if the algorithm is changed. Hill climbing

and genetic algorithms have larger common parts than other
algorithms because they process the search by using the
fitness function.

Table 3 shows the estimated efforts of each algorithm to
implement each part of the proposed framework as well.
Random algorithm requires 8.6 PM, HC requires 8.2PM,
and GA requires 8.6 PM. If GA is implemented after HC
is implemented, it takes only 1.2PM to generate test cases
because the algorithm implementation layer only requires to
be reimplemented. Now, 7.4 PM is saved. This is the evidence
of the efficiency of the proposed framework to implement a
test case generator with various algorithms.

Table 4 shows results of test case generation with three
kinds of search-based algorithms for SL/SE. The implemen-
tation of a test case generator with the three algorithms
using the proposed framework is successful. Therefore, the
proposed framework is effective to implement a test case
generator with various algorithms.

5. Conclusion

In this paper, we proposed a model-independent software
framework, which is effective for changing of the types of
models or the algorithms. With the proposed framework,
we assessed experimental measurements by varying models
(e.g., EFSM and SL/SF) and algorithms (random, HC, and
GA). From the results of the measurement, the proposed
framework is able to generate test cases and to reduce the
development time. The proposed framework surpasses typi-
cal design patterns proposed by previous related works. Three
search algorithms are employed easily using the proposed
framework. For the future work, we have a plan to apply the
proposed framework to other various models such as FSM,
UML, and Markov model. More case studies will be carried
out with more complex models. The proposed framework can
be extended to the other areas of the Search-Based Software
Engineering such as requirement analysis, software design,
and software maintenance.
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TABLE 3: Source code sizes and efforts of each algorithm (using SL/SF model).
. . Test case generation layer
Algorithm Model abstraction layer
Algorithm implementation layer Algorithm support layer
Random 1466 LOC (4.5PM) 347 LOC (0.9 PM) 1066 LOC (3.2PM)
HC 1466 LOC (4.5PM) 299 LOC (0.8 PM) 991 LOC (2.9PM)
GA 1466 LOC (4.5PM) 432 LOC (1.2PM) 991 LOC (2.9PM)
TABLE 4: The result of test case generation. [7] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Transac-
Models Coverage Number of Number of steps tions on Programming Languages and Systems, vol. 9, no. 3, pp.
test cases 319-349, 1987.
Max. 80% Sea >4 steps [8] J. C. King, “Symbolic execution and program testing,” Commu-
Random  Min, 73% 3ea 20 steps nications of the ACM, vol. 19, no. 7, pp. 385-394, 1976.
Ave. 78% 4.6ea 35.67 steps [9] M. R. Garey and D. S. Johnson, Computers and Intractability:
Max. 73% 4ea 41 steps A Gui.de to the.Yheory of NP-Completeness, W. H. Freeman, San
HC Min. 40% lea 3 steps Francisco, Calif, USA, 1979.
Ave. 75% 2.06 ea 7.93 steps [10] R. S. Boyer, B._ Elspas, and K: N. Levitt, “SELECT-a formal
system for testing and debugging programs by symbolic exe-
Max. 100% 10ea 7052 steps cution,” ACM SigPlan Notices, vol. 10, no. 6, pp. 234-245, 1975.
s Min. 93% 6ea 131 steps [11] C. V. Ramamoorthy, S.-B. F. Ho, and W. T. Chen, “On the
Ave. 96% 7.86 ea 3713.04 steps automated generation of program test data,” IEEE Transactions
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