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Negative regulation of NF-kB activity by
brain-specific TRIpartite Motif protein 9
Mude Shi1, Hyelim Cho1, Kyung-Soo Inn1,2, Aerin Yang3, Zhen Zhao4, Qiming Liang1, Gijs A. Versteeg5,6,

Samad Amini-Bavil-Olyaee1, Lai-Yee Wong1, Berislav V. Zlokovic4, Hee-Sung Park3, Adolfo Garcı́a-Sastre6,7

& Jae U. Jung1,8

The TRIpartite Motif (TRIM) family of RING-domain-containing proteins participate in

a variety of cellular functions. The b-transducin repeat-containing protein (b-TrCP), a

component of the Skp–Cullin–F-box-containing (SCF) E3 ubiquitin ligase complex, recognizes

the NF-kB inhibitor IkBa and precursor p100 for proteasomal degradation and processing,

respectively. b-TrCP thus plays a critical role in both canonical and non-canonical NF-kB

activation. Here we report that TRIM9 is a negative regulator of NF-kB activation. Interaction

between the phosphorylated degron motif of TRIM9 and the WD40 repeat region of b-TrCP

prevented b-TrCP from binding its substrates, stabilizing IkBa and p100 and thereby blocking

NF-kB activation. Consequently, expression or depletion of the TRIM9 gene significantly

affected NF-kB-induced inflammatory cytokine production. This study not only elucidates

a mechanism for TRIM9-mediated regulation of the b-TrCP SCF complex activity but

also identifies TRIM9 as a brain-specific negative regulator of the NF-kB pro-inflammatory

signalling pathway.
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T
he nuclear factor-kB (NF-kB) transcription factor is a
critical regulator of immediate responses to pathogens and
also plays an important role in regulating cell proliferation

and survival1–3. Since unchecked regulation of NF-kB is linked to
inflammation, cancer, autoimmune diseases and viral infection,
both positive and negative regulation of the NF-kB pathway have
been the subjects of intense study4–6. NF-kB signalling is divided
into the canonical and non-canonical pathways7,8. Most NF-kB-
activating stimuli engage distinct cell-surface receptors
(for example, toll-like receptors, interleukin-1 (IL-1) receptor
and tumour necrosis factor receptor) or cytoplasmic sensors
(retinoic acid-inducible gene I (RIG-I)-like receptors and
nucleotide-binding oligomerization domain receptors) through
a canonical response, which is dependent on the IkB kinase (IKK)
complex. This IKK complex contains the catalytic subunits IKKa
and IKKb, and the scaffold protein NF-kB essential modulator
(NEMO; also called IKK-g)9. In non-stimulated cells, NF-kB is
held in the cytoplasm in its latent form by a family
of inhibitory factors, IkB. Upon stimulation, the IKK complex
is activated and phosphorylates the two N-terminal serine
residues (S32 and S36) of the inhibitory IkBa protein,
triggering recognition and ubiquitination by a complex
composed of SKP1–CUL1–F-box protein (SCF) and b-
transducin repeat-containing protein (b-TrCP). Ubiquitinated
IkBa is consequently degraded through the 26S-proteasome
pathway10,11. Degradation of IkB releases the NF-kB p50/p65
complex from its latent form, allowing nuclear translocation to
ultimately result in NF-kB-mediated gene expression. The non-
canonical NF-kB pathway involves different signalling molecules
that depend on NF-kB2 (p100) processing12. Genetic studies
show that NF-kB-inducing kinase (NIK) and IKKa13 are critical
kinases for phosphorylation of the C-terminal S866 and S870
residues of p100 to generate the binding motif for b-TrCP14.
Subsequently, p100 undergoes ubiquitination at its C terminus
and degradation, which not only generates the p52 subunit, but
also leads to the nuclear translocation of NF-kB to turn on a large
number of target genes. Therefore, the SCF-b-TrCP complex
plays a central role in both the canonical and non-canonical NF-
kB activation pathways.

b-TrCP belongs to the F-box protein family. It contains seven
C-terminal WD40 repeats that recognize substrates, and an N-
terminal F-box that recruits SKP1 to form the so-called SCF E3
complex. b-TrCP is a critical regulator of many cellular processes
such as cell cycle, proliferation and development11. Mammals
have two b-TrCP paralogues with indistinguishable biochemical
properties: b-TrCP1 (also known as FBXW1, FBW1A and
FWD1) and b-TrCP2 (also known as FBXW11, FBW11,
FBXW1B, FBX1B and HOS) and herein b-TrCP is used to
represent both of them. b-TrCP is known to recognize the
consensus degron (DSGX(2þ n)S) motif and its variants in which
the serine residues are phosphorylated by specific kinases. A
number of growth controlling factors have been identified as b-
TrCP substrates15, including IkBa NF-kB inhibitor, p100 NF-kB
precursor, FOXO3 tumour suppressor, Cdc25A cell cycle
regulator, b-catenin and Mdm2 oncogenes11. In addition, a
number of viral proteins are reported to directly or indirectly
target b-TrCP. These include the rotavirus protein NSP1 (ref. 16),
human papilloma virus E7 (ref. 17), JC virus large T antigen18

and human immunodeficiency virus-1 (HIV-1) Vpu19.
Specifically, HIV-1 Vpu accessory protein downregulates the
cell-surface expression of host proteins CD4 and BST-2/tetherin,
and subsequently induces their proteolysis via a mechanism
involving a b-TrCP SCF E3 ubiquitin ligase complex. While the
host regulates b-TrCP activity by modulating its expression,
localization or substrate abundance20, the direct regulatory
mechanisms of b-TrCP activity have not been well elucidated.

TRIpartite Motif proteins (TRIMs) are an expanding family
containing more than 70 members in humans and mice that are
characterized by the presence of a conserved RBCC region: a
Really Interesting New Gene (RING) domain, one or two B-Box
domains and a predicted Coiled-Coil (CC) domain. They have
variable domains at their C termini. TRIM family proteins have
been shown to be involved in multiple biological processes and
are related to some disorders and diseases21,22. The N-terminal
RING domain is thought to be critical for their ubiquitin E3 ligase
activity, and the central B-Box is structurally similar to RING,
suggesting that it is also involved in ubiquitination, while the CC
domain contributes to homo-oligomeric and hetero-oligomeric
interactions. Recent studies have shown that several TRIM
proteins play important roles in innate and adaptive immunity,
ultimately contributing to intracellular antiviral restriction and
regulation of type I interferon (IFN) and NF-kB signalling23–25.
Among the most interesting and well-characterized TRIMs,
TRIM5 is a restriction factor of HIV in old world monkeys26;
TRIM25 is essential for RIG-I signal transduction27; TRIM56
positively regulates STING-mediated, double-strand DNA-
induced IFN production28; TRIM30 negatively regulates TLR-
mediated NF-kB activity29 and NLRP3 inflammasome30; and
TRIM27 negatively regulates IKK-mediated NF-kB activation31.
Thus, TRIM family proteins play either positive or negative roles
in infection-induced host immunity.

In order to explore the roles of TRIM family proteins in host
innate immune regulation, we screened 62 different TRIM
proteins for their activity in the NF-kB signalling pathway and
identified TRIM9 as a potent negative regulator of NF-kB
activation. TRIM9 is predominantly expressed in the proximal
dendrites of neurons in the cerebral cortex and hippocampus, and
the Purkinje cells of the cerebellum. Its expression is severely
reduced in the affected brain areas in Parkinson’s disease and
dementia patients32,33. Consistent with its potential roles in
axonal development, TRIM9 (ref. 6) is also highly expressed in
the mantle layer of the spinal cord33, and its homologues in
Caenorhabditis elegans and Drosophila melanogaster have been
shown to contribute to neuron development34,35. In this report,
we demonstrate that TRIM9 interacts with the WD repeat region
of b-TrCP through its N-terminal degron motif depending on the
phosphorylation status. This ultimately stabilizes b-TrCP
substrates (IkBa and p100), thereby blocking both canonical
and non-canonical NF-kB activation. Our study identifies a novel
brain-specific TRIM9-mediated regulatory mechanism of b-TrCP
activity that turns off the NF-kB signalling pathway to potentially
contribute to brain immune surveillance.

Results
TRIM9 efficiently inhibits NF-jB activation. We initially
investigated the roles of TRIM family proteins in nucleotide-
binding oligomerization domain-containing protein 2 (NOD2)-
mediated NF-kB activation. To do this, we co-transfected
expression vectors for individual TRIM proteins with a NF-kB-
luciferase reporter into HEK293-NOD2 cells, followed by sti-
mulation with the NOD2 ligand (L18-MDP) for 24 h. While none
of the TRIM proteins robustly stimulated NOD2-mediated NF-
kB activation, several of them showed apparent inhibition of NF-
kB activation to various degrees (Fig. 1a). Specifically, TRIM9
expression showed nearly 10- to 20-fold reduction of NOD2-
mediated NF-kB activation (Fig. 1a). Further analysis showed that
TRIM9 also blocked NF-kB activation induced by various sti-
mulations such as phorbol myristate acetate (PMA)/Ionomycin,
IL-1b and tumour necrosis factor (TNF)-a in a dosage-dependent
manner (Fig. 1b), as well as upon expression of the constitutively
active form of intracellular viral RNA receptor RIG-I (RIG-I-
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2CARD; Fig. 1c). In contrast, it showed little or no effect on
PMA/Ionomycin-induced AP-1 or NF-AT activation, nor on
RIG-I-mediated ISRE activation (Supplementary Fig. 1). These
results indicate that TRIM9 specifically blocks NF-kB activation
from various stimuli.

Canonical NF-kB signalling converges on the NEMO/IKKa/
IKKb complex that phosphorylates IkBa4; therefore,
overexpression of some critical signalling molecules in this
pathway strongly activates NF-kB activity. To determine at which
step of the NF-kB activation pathway TRIM9 blocks signalling,
we co-expressed TRIM9 with several known mediators of
canonical NF-kB signalling, including RIP2, TRAF6, TAB2,
TBK1, IKKa, IKKb, IKKe, p50 and p65, and then measured the
effect of TRIM9 expression on NF-kB activation. This showed
that TRIM9 expression effectively blocked NF-kB activation
induced by RIP2, TRAF6, TAB2, TBK1, IKKa, IKKb or IKKe;
however, it showed nearly no effect on p50- or p65-mediated NF-
kB activation (Fig. 1d), suggesting that TRIM9 may function
upstream of the p65/p50 NF-kB factor, but downstream of the
NEMO/IKK complex.

TRIM9 N-terminus is required for NF-jB inhibition. TRIM9
contains a RING domain at its N terminus, two B-box domains
(B-box1 and B-box2) and a CC domain in its central region and a
C-terminal subgroup one signature (COS) box, a Fibronectin III
(FN3) domain and a PRY-SPRY domain (also known as B30.2) at
its C terminus (Supplementary Fig. 2a)32,33. To map which
domain(s) of TRIM9 are required for inhibition of NF-kB
activation, various TRIM9 mutants were generated and tested for
their ability to block IKKb-mediated NF-kB activation (Fig. 1e
and Supplementary Fig. 2a). The N-terminal deletion mutants
(DN1–DN6) of TRIM9 lost their ability to block NF-kB
activation, whereas most of the C-terminal deletion mutants

(DC2–DC6) of TRIM9, with the exception of the DC1 mutant,
were able to block NF-kB activation as strongly as TRIM9 wild
type (WT; Fig. 1e). Furthermore, the D54, DB1 and DB2 mutants
showed similar levels of NF-kB inhibitory activity to WT
(Fig. 1e). By contrast, the D77 mutant (deletion of 1–77 aa),
D59 mutant (deletion of 59–77 aa) and D78 mutant (deletion of
78–136 aa) lost their ability to block NF-kB activation (Fig. 1e).
Similar levels of NF-kB inhibition were observed upon
stimulation with PMA/Ionomycin, IL-1b or TNF-a, or co-
expression with TRAF6, IKKe or TBK1 for TRIM9 WT and D54
mutant, but not for D77, D59 and D78 mutants (Supplementary
Fig. 2b,c). Surprisingly, the E3 ligase-dead CA mutant carrying
the C30A/C33A mutations at the N-terminal RING domain still
significantly inhibited NF-kB activation, suggesting that the
TRIM9 E3 ligase activity is not required for the inhibition of
NF-kB activity (Supplementary Fig. 2d). These indicate that the
N-terminal 54–136 aa region of TRIM9 is necessary for its
inhibition of NF-kB activation.

TRIM9 interacts with b-TrCP. Mass spectrometry analysis of the
V5-TRIM9 complex identified b-TrCP1 (also called FBW1A) and
b-TrCP2 (also called FBW1B, FBW11) as binding partners
(Fig. 2a). Co-immunoprecipitation (co-IP) with anti-b-TrCP
antibody that reacts with both b-TrCP1 and b-TrCP2 showed the
specific interaction between TRIM9 and b-TrCP (Fig. 2b). Fur-
thermore, endogenous TRIM9 and b-TrCP interaction was
readily detected in neuroblastoma SK-N-AS cells, whereas their
interactions were reduced upon depletion of TRIM9 expression
(Fig. 2c,d). Precise inspection revealed that the N-terminal 54–
136 aa region of TRIM9 contains the 75DSGYGS80 sequence that
matches very well with the degron motif (DSGXXS) recognized
by b-TrCP where the two serines are phosphorylated (Fig. 2e).
Specifically, the C-terminal region of b-TrCP containing seven
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Figure 1 | TRIM9 expression inhibits NF-jB activation. (a) NOD2-HEK293 cells were transfected with NF-kB and TK-Renilla reporter plasmids together

with individual TRIM expression vector for 24 h, stimulated with 10 ng ml� 1 L18-MDP for 16 h and subjected to dual-luciferase assay. H9: Human

TRIM9. (b) At 24 h post transfection with TK-Renilla luciferase transfection control plasmid, NF-kB reporter plasmid and increasing amounts of TRIM9

plasmid (0, 10, 50 and 200 ng), HEK293T cells were stimulated with 50 ng ml� 1 PMA plus 1mg ml� 1 Ionomycin (PMA/Iono), 100 pg ml� 1 IL-1b or

1 ng ml� 1 TNF-a overnight and then used for dual-luciferase assay. (c,d) At 24 h post transfection with TK-Renilla luciferase transfection control plasmid,

NF-kB reporter plasmid and TRIM9 or vector control, plus plasmids expressing RIG-I 2 CARD (c) or RIP2, TRAF6, TAB2, IKKa, IKKb, TBK1, IKKe, p50, p65

(d). HEK293T cells were used for dual-luciferase assay. White bar: Vector control; black bar: TRIM9. (e,f) At 24 h post transfection with TK-Renilla

luciferase transfection control plasmid, NF-kB reporter plasmid and TRIM9 WT or mutants together with IKKb, HEK293T cells were used for dual-luciferase

assay. Results are presented as a percent relative to the activity of cells transfected with vector only. Data (mean and s.e.m.) are representative of

at least three independent experiments.
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WD40 repeats recognizes the phosphorylated degron motif of
IkBa, and results in its degradation, thereby inducing NF-kB
activation11. Indeed, TRIM9 WT and D54 mutant, which
efficiently inhibited NF-kB activity, apparently bound b-TrCP,
whereas the TRIM9 mutants (D59, D78 and DN1) that were not
able to inhibit NF-kB activity did not bind b-TrCP
(Supplementary Fig. 3a). Furthermore, the TRIM9 SA mutant,
in which the serine residues of the putative degron motif were
replaced with alanines (S76-A and S80-A), neither bound to
b-TrCP nor inhibited NF-kB activation induced by PMA/
Ionomycin, IL-1b or TNF-a (Fig. 2e–g). As also seen with
p100, the non-canonical NF-kB pathway substrate of b-TrCP
whose S866D/S870D mutant loses b-TrCP-binding activity36, the
S76D/S80D mutant (SD) of TRIM9 showed the lack of b-TrCP-
binding activity, thereby lack of inhibition of NF-kB activation
(Supplementary Fig. 4). The C-terminal region of b-TrCP
containing seven WD40 repeats bound to TRIM9 WT but not
the SA mutant, while the truncated WD40 mutants failed to
interact with TRIM9 (Fig. 2h and Supplementary Fig. 3b,c).
Immunofluorescence microscopy showed that as previously
reported37, both the TRIM9 WT and the SA mutant appeared

to be associated with intracellular cytoskeletons through its COS
box region, while b-TrCP was diffuse in the cytoplasm (Fig. 2i).
Upon co-expression, however, TRIM9 WT and b-TrCP were
redistributed into punctate compartments, which were not
observed upon with SA mutant expression (Fig. 2i). These
results demonstrate that TRIM9 and b-TrCP interact through the
N-terminal degron motif of TRIM9 and the C-terminal WD40
repeats region of b-TrCP.

Degron motif phosphorylation is critical for TRIM9 function.
To test whether serine phosphorylation of the TRIM9 degron
motif is required for its interaction with b-TrCP, immunopurified
HA-TRIM9 complexes were treated with mock or l-phosphatase,
incubated with lysates containing Flag-b-TrCP and then sub-
jected to immunoblotting with anti-Flag antibody. This showed
that treatment of immunopurified TRIM9 with l-phosphatase
drastically abrogated its b-TrCP-binding ability (Fig. 3a). Phos-
phoserine (Sep), the most abundant phosphoamino acid in the
eukaryotic phosphoproteome, is not encoded in the genetic code
but is synthesized post translationally. Since our attempts
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to generate the pS76pS80 phospho-specific TRIM9 antibodies
failed twice, we utilized the specific cotranslational Sep
incorporation system38,39 to study the Ser76 residue of TRIM9.
An Escherichia coli strain was genetically engineered to harbour a
Sep-accepting transfer RNA (tRNASep), its cognate Sep–tRNA
synthetase (SepRS) and an engineered EF-Tu (EF-Sep) of
Methanocaldococcus jannaschii, and then transformed with
bacterial expression vector containing the N-terminal HA-
tagged RING domain (1–160 aa) of TRIM9 WT, the SA
mutant and the non-natural Sep-incorporated pS76 (directed by
UAG) mutant (Fig. 3b). These HA-TRIM9 proteins were purified
from genetically engineered E. coli and used for in vitro pulldown
(PD) assay with Flag-b-TrCP. This showed that the pS76 TRIM9
protein specifically and efficiently bound b-TrCP in vitro,
whereas the WT and SA TRIM9 proteins did not bind
(Fig. 3c,d), suggesting that the serine phosphorylation of
the TRIM9 degron motif is necessary for binding the WD40
domain of b-TrCP.

Upon TNFa stimulation, the phosphorylated IkBa protein is
recognized and ubiquitinated by the SCF-b-TrCP complex and
consequently degraded through a proteasome pathway11. To
investigate the kinetics of TRIM9 and b-TrCP interaction,
HEK293T cells stably expressing V5-TRIM9 were stimulated
with TNFa, followed by immunoprecipitation for TRIM9 and
b-TrCP interaction. While the TRIM9 and b-TrCP interaction
was readily detected under no stimulation, it was immediately
diminished at 5–15 min following TNFa stimulation and then

recovered at 30–60 min following TNFa stimulation (Fig. 3e).
Conversely, the IkBa phosphorylation was initially undetected
without stimulation but robustly increased at 15–30 min after
TNFa stimulation (Fig. 3e). Ultimately, IkBa degradation was
observed at 30–60 min following TNFa stimulation (Fig. 3e).
Finally, treatment with Calyculin A, an inhibitor for PPase1, 2A
and 4/5, considerably increased the TRIM9 and b-TrCP
interaction, while other PPase inhibitors, such as FK-506
(PP2B inhibitor), Sanguinarine (PP2C inhibitor) or Fostriecin
(PP2A, 4/5 inhibitor), did not do so (Fig. 3f). Furthermore, even a
marginal depletion of PP1 expression led to an apparent increase
in the TRIM9 and b-TrCP interaction (Fig. 3g), suggesting
that PPase 1 is a primary candidate phosphatase to remove the
phosphorylation from the TRIM9 degron motif upon TNF-a
stimulation. These data further support that TRIM9 interacts
with b-TrCP in a phosphorylation-dependent manner.

Effects of TRIM9 on IjBa binding and degradation of b-TrCP.
To address whether TRIM9 competes with IkBa for b-TrCP
binding, TRIM9, b-TrCP and IkBa were expressed in HEK293T
cells, followed by an examination of the interaction of b-TrCP
with IkBa and TRIM9. This showed that TRIM9 WT, but not the
TRIM9 SA mutant, impaired b-TrCP interaction with IkBa in a
dosage-dependent manner (Fig. 4a). On the contrary, increased
expression of IkBa did not significantly block the b-TrCP and
TRIM9 interaction (Supplementary Fig. 5). Similarly, when
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endogenous b-TrCP was immunopurified, its interaction with
endogenous phosphorylated IkBa was also diminished in the
presence of the TRIM9 WT but not the SA mutant (Fig. 4b).
Moreover, this reduction was more pronounced upon TNF-a
stimulation. Indeed, expression of the TRIM9 WT suppressed the
TNF-a-induced ubiquitination of IkBa, whereas expression of the
SA mutant did not do so (Fig. 4c).

To further delineate the mechanism of TRIM9-mediated
inhibition of b-TrCP function, we examined IkBa degradation
and phosphorylation upon expression of the TRIM9 WT, the SA
mutant or genetic depletion of the TRIM9 expression. The IL-1b-
induced degradation of IkBa in SK-N-AS neuroblastoma cells
was readily suppressed by expression of the TRIM9 WT but not
by the SA mutant (Fig. 4d). It should be noted that the IL-1b
stimulation-induced phosphorylation of IkBa was not signi-
ficantly changed by expression of either the TRIM9 WT or the SA
mutant, suggesting that the IKK activity is not affected by the

TRIM9 expression. Conversely, the IL-1b-induced degradation of
IkBa was facilitated by the specific short hairpin RNA (shRNA)-
mediated depletion of the TRIM9 expression in human SK-N-AS
cells (Fig. 4e). The S536 phosphorylation levels of p65, a NF-kB
active subunit, were suppressed by TRIM9 expression but
enhanced by TRIM9 depletion (Fig. 4d,e). Similar results were
obtained with human HEK293T cells upon expression of TRIM9
WT or SA mutant (Supplementary Fig. 6a) and with human A549
lung epithelial cells upon depletion of the TRIM9 expression
(Supplementary Fig. 6b,c). These data show that TRIM9 inhibits
NF-kB activity by suppressing IkBa degradation.

TRIM9 inhibits non-canonical pathways of NF-jB activation.
As b-TrCP also plays a critical function in non-canonical NF-kB
activation by converting the NF-kB precursor p100 to p52
(ref. 14), we tested the effect of TRIM9 expression on the master
NIK-induced activation of non-canonical NF-kB signalling.
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In correlation with b-TrCP interaction, TRIM9 WT and the
DN54 mutant effectively blocked NIK-induced NF-kB activation;
however, the SA and DN1 mutants failed to do so (Fig. 5a). As
previously reported12, NIK expression induced b-TrCP-mediated
processing of p100 to p52 in HEK293T cells; however, TRIM9
expression considerably blocked this process in a b-TrCP-
binding-dependent manner (Fig. 5b,c). Finally, b-TrCP also
bound to p100 in the presence of NIK expression, but this was
abrogated by the expression of TRIM9 WT and enhanced by
expression of the SA mutant (Fig. 5c). Furthermore, upon
stimulation of Raji cells with a-CD40 antibody (Fig. 5d) or
stimulation of A549 cells with LTb (Fig. 5e), overexpression of
WT TRIM9, but not the SA mutant, decreased IL-6 production
while depletion of TRIM9 expression increased IL-6 production.
These results collectively demonstrate that TRIM9 effectively
blocks b-TrCP-mediated canonical and non-canonical NF-kB
activation.

TRIM9 blocks NF-jB-induced inflammatory cytokine
production. We then tested whether TRIM9 expression affected
NF-kB-mediated production of inflammatory cytokine IL-6.
HEK293T cells were transfected with TRIM9 or the SA mutant,
stimulated with TNF-a, IL-1b or PMA/Ionomycin for 24 h,
followed by enzyme-linked immunosorbent assay (ELISA) to
detect IL-6 production. This showed that TRIM9 WT but not the
SA mutant inhibited stimulation-induced IL-6 production
(Fig. 6a). Conversely, shRNA-mediated depletion of TRIM9
expression in A549 cells increased IL-6 production upon IL-1b,
TNF-a or PMA/Ionomycin stimulation (Fig. 6b). Similar results
were obtained with SK-N-AS cells upon TRIM9 expression or
depletion (Supplementary Fig. 7).

TRIM9 is predominantly expressed in neurons in the cerebral
cortex and hippocampus33, and its homologues in C. elegans and
D. melanogaster have been shown to contribute to neuron
development34,35. To test whether TRIM9 expression also blocks
NF-kB activation in neurons, primary neurons from rat brains
were isolated and infected with lentivirus containing scrambled
shRNA or TRIM9-specific shRNA (Fig. 6c). The shRNA-
mediated depletion of TRIM9 expression in primary rat neural
cells led to the reduced accumulation of p-IkBa, the enhanced
degradation of IkBa, the augmented S536 phosphorylation of p65
and the increased expression of il6, tnfa and neuronal nitric oxide
synthase 1 (nos1) mRNAs upon TNF-a stimulation (Fig. 6c–e
and Supplementary Fig. 8). These results indicate that TRIM9
expression effectively suppresses the stimulation-induced
production of inflammatory cytokines in neurons, which may
contribute to brain immune surveillance.

Discussion
Owing to its central role in NF-kB signalling, activity of the b-
TrCP SCF complex has to be tightly regulated. So far, expression,
localization and substrate abundance have been identified to be
the primary means of regulating b-TrCP SCF complex activity.
Over 40 proteins have been identified as substrates recognized by
the b-TrCP SCF complex15; however, it remains to be determined
whether these substrates compete with each other for b-TrCP
binding and whether these substrates or other molecules
regulate b-TrCP SCF complex E3 enzymatic activity. Here we
identify TRIM9 as a negative regulator of b-TrCP SCF complex
activity, comprehensively blocking canonical and non-canonical
NF-kB activation. Thus, similar to other TRIM family members,
TRIM9 restricts host immunity; otherwise, continuous
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NF-kB-mediated signalling could lead to deleterious effects on
the host such as inflammation, cancer, autoimmune diseases and
viral infection.

TRIM9 is highly expressed in embryonic and adult stages
of the brain32 and its expression is not significantly affected by
TNF-a, IL-1b lipopolysaccharide, influenza virus or type I IFN
challenge40 (Fig. 4e and Supplementary Fig. 6b,c). Although
TRIM9 is recognized as a substrate by b-TrCP, rather than
functioning as a substrate, it competes with other substrates for b-
TrCP binding, thereby deregulating b-TrCP SCF complex
activity. This feature of TRIM9 is similar to that of hnRNP-U41

and HIV-1 Vpu accessory protein19, which are also recognized by
b-TrCP through their degron motifs. In fact, Vpu has also been
shown to inhibit IkBa degradation in a manner similar to TRIM9
(ref. 42). A common feature of TRIM9 and b-TrCP is that their
interaction did not lead to a reduction in their protein levels but
rather an alteration in the intracellular localization of TRIM9 and
b-TrCP: specifically, upon binding, TRIM9 and b-TrCP were
redistributed into punctate cytoplasmic compartments. TRIM9
has been shown to be a neuron-specific component of a SNARE
(soluble N-ethylmaleimide-sensitive fusion protein-attachment
protein receptor) complex associated with synaptic vesicle release

control43 as well as with the cytoskeleton through its COS box
region37. These associations may ultimately contribute to their
intracellular relocalizations in a manner reminiscent of RIG-I,
which is also associated with the actin cytoskeleton. It is tempting
to speculate that TRIM9-mediated recruitment of the b-TrCP
SCF complex to cytoplasmic bodies plays two complementary
roles. On one hand, it physically separates the b-TrCP SCF
complex from its known substrates such as IkBa and p100 NF-kB
inhibitors. On the other hand, movement enables b-TrCP SCF
complex to encounter a different set of substrates recruited by
TRIM9 for ubiquitination, as HIV-1 Vpu accessory protein
does19. Further study is necessary to prove or disprove this
hypothesis.

Phosphorylation of the serine residues of the TRIM9 degron is
required for b-TrCP interaction since the dephosphorylation
(SA) mutation of TRIM9 impaired its ability to bind b-TrCP.
In vitro treatment of phosphatase completely eliminated the
interaction between TRIM9 and b-TrCP. These suggest that the
phosphorylation and dephosphorylation of the degron motif may
be potential regulatory mechanisms for TRIM9 function. Indeed,
while the interaction between TRIM9 and b-TrCP was detected
under normal conditions, it was rapidly diminished and
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recovered upon stimulation. It is intriguing that the dissociation
of TRIM9 and b-TrCP complex occurred before the IkBa
phosphorylation and degradation, suggesting that the depho-
sphorylation of TRIM9 appears to play an important role
in its function as a NF-kB regulator. In fact, Calyculin A
(inhibitor of PP1, PP2A, PP4 and PP5) or PPase 1 KD
dramatically enhanced the interaction of TRIM9 and b-TrCP.
This is correlated with the previous findings44–46 that PP1 activity
is increased after TNFa stimulation, and that depleted expression
of PP1a decreases NF-kB activity while increased expression of
PP1a augments NF-kB activity upon T-cell receptor engagement.
Thus, the phosphorylated TRIM9 may be a substrate for
PP1a, which ultimately contributes to the regulation of NF-kB
activation.

Interestingly, TRIM67, which is also selectively expressed in
the cerebellum, shows significant structural and sequence
homology to TRIM9 (ref. 47): both TRIMs have the same
structural organization and exhibit 62% identity and 73%
homology. More interestingly, it also carries a degron motif at
its N-terminal RING domain and efficiently blocks NF-kB
activation upon stimulation with PMA/Ionomycin, IL-1b or
TNF-a as we showed with TRIM9 (unpublished results). This
suggests that targeting and blocking b-TrCP function in the brain
may be a common feature of TRIM9 and TRIM67 as checkpoints
for NF-kB activation.

TRIM9 expression is decreased in the damaged brains of
patients with Parkinson’s disease and Lewy body dementia32,33.
Consistently, NF-kB plays important roles in disorders such as
epilepsy, stroke, Parkinson’s disease and Alzheimer’s disease48

and in inflammation49. Indeed, NF-kB activity has been reported
to be dramatically increased in Parkinson’s disease patients and
Alzheimer disease patients compared with that of age-matched
healthy controls50,51. Furthermore, NF-kB signalling has been
implicated in the regulation of neuronal axon initiation,
elongation, guidance and branching, and dendrite arbor size
and complexity52. In fact, the C. elegans TRIM9 homologue
(MADD-2) was reported to be involved in axon attraction and
branching34. Thus, the brain-specific expression of TRIM9, and
likely TRIM67, may target the b-TrCP SCF complex to tightly
regulate NF-kB activity, contributing to immune balance and
neuronal axon growth in the brain. Future functional analysis
of TRIM9 may provide potential therapeutic benefits for
neurodegenerative diseases.

Methods
Plasmids. TRIM1-TRIM32 and TRIM37 were obtained from Dr Andrea Ballabio
(Texas Children’s Hospital)53; TRIM35, 39, 41, 43, 44, 46, 47, 52, 58 and 62 were
from Dr Walther Mothes (Yale University)54; and TRIM36, 48, 49, 56 59, 60, 61, 63
and 72 were from Open Biosystems and Invitrogen. The expression plasmids for
RIG-I-2CARD and TRIM25 were described previously27 and TRIM34 was
obtained from Dr Paul D. Bieniasz (Howard Hughes Medical Institute)55, HA-NIK
(Addgene plasmid 27554) was from Dr Shao-Cong Sun (MD Anderson Cancer
Center) 12.
b-TrCP and NF-kB2 (p100) were received from Dr Michele Pagano (New York
University)56. TRIM9 and b-TrCP mutants were generated using a PCR site-
directed mutagenesis kit (Stratagene) and subcloned into pCDH vector (System
Biosciences) or pEBG vector. Lentivirus-shRNAs against TRIM9 were purchased
from OpenBiosystem. The plasmid pRL-TK constitutively expressing Renilla
luciferase was purchased from Promega. IKKa, IKKb, p65, p50 and IkBa were
gifted by Dr Ebrahim Zandi (University of Southern California)57. Firefly luciferase
reporter plasmids under the ISRE (ISG54), NF-AT, AP-1 or NF-kB promoters
were purchased from Stratagene. TRAF6, TAB2, IKKe, TBK1 and ubiquitin-
expressing plasmids were described previously29.

Cells and reagents. HEK293T, A549, SK-N-AS and HeLa cells were purchased
from ATCC. HEK293-NOD2 stable cells were purchased from Invivogen.
HEK293T, A549 and HeLa cells were maintained in DMEM supplemented with
10% fetal bovine serum (FBS) and 100 U ml� 1 penicillin–streptomycin. HEK293-
NOD2 cells were maintained with 1 mg ml� 1 Blasticidin (Invivogen Inc). SK-N-AS
cells were maintained in Eagle’s Minimum Essential Medium (ATCC). Polyclonal

TRIM9 antibody (Dilution: 1/20,000) was generated by immunization of rabbits
with the TRIM9 N-terminal 1–261 aa purified from E. coli. Antibody sources are:
TRIM9 mouse monoclonal antibody (6300-1F12; ABNOVA; Dilution: 1/2,000),
b-TrCP rabbit monoclonal antibody (D13F10; Cell Signaling; Dilution: 1/2,000),
IkBa mouse monoclonal antibody (L35A5; Cell Signaling; Dilution: 1/2,000),
phosphorylated IkBa (5A5; Cell Signaling, Dilution: 1/2,000), NF-kB p65 (93H1;
Cell Signaling; Dilution: 1/2,000), IkBa rabbit polyclonal antibody (CalBiochem,
Dilution: 1/2,000), p100/p52 mouse monoclonal antibody (9D2; Abcam; Dilution:
1/1,000), HA mouse monoclonal (16B12, Dilution: 1/2,000) and rabbit polyclonal
antibodies (Covance, Dilution: 1/2,000), Flag mouse monoclonal (M2; Dilution:
1/5,000) and rabbit polyclonal antibodies (Sigma; Dilution: 1/2,000), V5 mouse
antibody (Life Technologies; 2F11F7; Dilution: 1/5,000) and rabbit polyclonal
antibodies (Bethyl Laboratories; Dilution: 1/2,000), GST polyclonal antibody
(Sigma; Dilution: 1/2,000) and Ubiquitin monoclonal antibody (P4D1; Santa Cruz;
Dilution: 1/1,000). IL-1b and TNF-a were purchased from R&D; PMA and
Ionomycin were purchased from Sigma; siRNA against PPase 1 was purchased
from Santa Cruz Biotechnology, Inc.

Construction of TRIM9-expressing and knockdown cells. A549 and SK-N-AS
cells were seeded into six-well clusters overnight and culture medium was replaced
with complete growth medium containing 8 mg ml� 1 polybrene (Sigma) and
5� 105 infectious units of lentiviruses containing scrambled shRNA, trim9-
specific shRNAs (target sequence for human: 50-CGATGCCCTCAACAGAAG
AAA-30 ; for mouse and rat: 50-AATGTCTTTCTGTTTAAGTCG-30) or pCDH
lentivirus expressing HA-TRIM9 WT or the SA mutant. At 48 h post infection,
cells were trypsinized and seeded into 60-mm dishes with complete growth
medium containing 2 mg ml� 1 puromycin (Invivogen Inc). Puromycin-resistant
cells were maintained in growth medium containing puromycin for a maximum
of 15 passages.

Reporter assays. Cells were transfected with the indicated reporters together with
pRL-TK transfection control reporter. At 24 h post transfection, cells were treated
as indicated in the figure legends, followed by luciferase assay. For TRIM protein
screening, HEK293 NOD2 stable cells were seeded in 48-well plates at 2.5� 104

cells per well. At 16 h post seeding, cells from each well were transfected with a total
of 250 ng DNA containing 48 ng firefly luciferase reporter plasmid, 2 ng renilla
luciferase reporter plasmid (pRL-TK) and individual TRIM plasmids using Lipo-
fectamine 2000 (Invitrogen). All samples were transfected in triplicate. At 24 h post
transfection, cells were stimulated with 100 pg ml� 1 L18-MDP (Invivogen) for 16 h
and then lysed in passive lysis buffer (Promega), and luciferase activity was mea-
sured using the Dual-Luciferase Reporter Assay System (Promega) using a Beck-
man Coulter DTX880 plate reader. Firefly luciferase values were normalized to
renilla luciferase values. Fold increase in the firefly reporter was calculated relative
to the vector control in each experiment. In addition, HEK293T cells were trans-
fected with the indicated plasmids combined with NF-kB-Luc, AP-1-Luc, NF-AT-
Luc or pISRE-Luc reporter (Stratagene), and pRL-TK (Clontech). At 24 h post
transfection, cells were lysed or treated with IL-1b, TNF-a and PMA/Ionomycin
for 16 h and then reporter luciferase activity was analysed with the Dual-Luciferase
Reporter Assay System (Promega).

Immunoprecipitation, GST pulldown and immunoblot analysis. For co-IPs, cells
were lysed with RIPA minimum lysis buffer (Millipore). After clarification and
preclearing, protein amounts were determined using BCA assay. Cell extracts were
incubated for 12–16 h with the indicated antibodies, followed by additional incu-
bation with protein A/G beads for 2–4 h. Immune complexes were washed with
lysis buffer with 400 mM NaCl and subjected to immunoblot analysis. For endo-
genous co-IP, antibodies were conjugated to resin using the Co-IP kit (Pierce). For
ubiquitination assay, cells were initially lysed with RIPA buffer containing 1% SDS,
and cell extracts were diluted with RIPA buffer to 0.1% SDS concentration and
then subjected to IP and IB. Full scan image of the western blots are provided in
Supplementary Fig. 9.

Confocal microscopy. At 24 h post transfection, HeLa cells were fixed with 2%
paraformaldehyde solution at room temperature for 20 min, permeabilized and
stained with antibodies for confocal microscopy (Nikon Eclipse Ti). Anti-mouse
HA (TRIM9), anti-rabbit Flag (b–TrCP) anti-mouse and/or anti-rabbit Alexa
Fluor-488, and Alexa Fluor-568 antibodies (Invitrogen) were used. Hoechst dye
(Invitrogen) was used to stain nuclei.

ELISA. For overexpression, HEK293T cells were transfected for 24 h with TRIM9
WT, TRIM9 SA or vector. Cells were then stimulated for 24 h with IL-1b, TNF-a
or PMA/Ionomycin. SK-N-AS cells stably expressing TRIM9 WT, SA mutant or
vector were stimulated with IL-1b for 24 h. For knockdown assay, SK-N-AS and
A549 stable knocked down TRIM9 or control cells were stimulated with IL-1b,
TNF-a or PMA/Ionomycin, respectively. Supernatants were collected and their
concentration of IL-6 or TNF-a was determined with a human-specific ELISA kit
(BD Biosciences), followed by analysis with a Beckman Coulter DTX880 plate
reader.
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Q-PCR. Total RNAs were extracted from cultured cells with the RNeasy Mini Kit
(Qiagen) according to the manufacturer’s instructions. Oligo(dT) priming and
Superscript III reverse transcriptase (Invitrogen) were used for reverse trans-
cription of purified RNA. All gene transcripts were quantified by quantitative PCR
with iQ SYBR Green supermix and CFX96 real-time PCR system (Bio-Rad).
Primers for nos1: Forward, 50-GGCGTCCGTGACTACTGT-30 , Reverse, 50-ATG
AAGGACTCCGTGGC-30; il6: Forward, 50-TCCTACCCCAACTTCCAATG
CTC-30 , Reverse, 50-TTGGATGGTCTTGGTCCTTAGCC-30 ; tnfa Forward,
50-AAATGGGCTCCCTCTCATCAGTTC-30 , Reverse, 50-TCTGCTTGGTGGTTT
GCTACGAC-30 ; hprt Forward, 50-CTCATGGACTGATTATGGACAGGAC-30 ,
Reverse, 50-GCAGGTCAGCAAAGAACTTATAGCC-30 .

Protein purification and mass spectrometry. HEK293T cells stable expressing
V5-TRIM9 were collected and lysed with NP40 buffer (50 mM HEPES, pH 7.4,
150 mM NaCl, 1 mM EDTA, 1% (v/v) NP40) supplemented with a complete
protease inhibitor cocktail (Roche) and phosphatase inhibitors cocktail 3 (Sigma).
Post-centrifuged supernatants were pre-cleared with protein A/G beads at 4 �C
for 2 h and mixed with mouse anti-V5 and protein A/G beads for 4 h at 4 �C.
Precipitates were washed extensively with lysis buffer and separated by SDS–PAGE.
After silver staining, specific protein bands were excised and analysed using
ion-trap mass spectrometry at the Harvard Taplin Biological Mass Spectrometry
facility, and amino-acid sequences were determined using tandem mass
spectrometry and database searches.

Unnatural amino-acid protein expression. The production of HA-tagged TRIM9
N-terminal (1–160 aa)-His6 WT, the Ser76 phosphorylated form or the SA mutant
was followed as described previously in detail39. Briefly, the Ser76 (TCG) codon
was replaced by the pSer76 (UAG) amber codon or the SA (CGG) mutation codon
by site-directed mutategenesis (Stratagene). The expression clones were
transformed into E. coli BL21DSerB with pKD-SepRS-EF-Tu. E. coli were grown at
25 �C supplemented with 100 mg ml� 1 of Amp, 50 mg ml� 1 Kan, 12mg ml� 1 Tet,
2 mM Sep, 5,052 solution and phosphate buffer for autoinduction. After induction,
E. coli was harvested, lysed, subjected to Ni2þ -NTA agarose column purification
and anion exchange column purification. Finally, purified proteins were separated
through SDS–PAGE and stained with Coomassie brilliant blue.

Rat neural cell isolation, culture and transfection. Sprague–Dawley rats were
raised, bred, and maintained in accordance with protocols approved by the USC
Institutional Animal Care and Use Committee until euthanasia for neuron isola-
tion. Rat neural precursor cells were obtained from the brain cortex as described
elsewhere58. Briefly, telencephalons of E14 rat fetuses were dissected and the tissues
were incubated with trypsin-EDTA solution (Gibco) for 10 min at 37 �C and then
dissociated mechanically. Neural precursor cells were cultured in passaging
medium: DMEM/F12 (Gibco), 0.6% glucose, 10 mg Insulin-Transferrin-Sodium
Selenite Supplement (Roche), 1% penicillin/streptomycin, 20 ng ml� 1 EGF
(Sigma); 5 ng ml� 1 FGF-2 (Sigma), 5 mg ml� 1 heparin (Sigma) and 2% B27
supplement (Gibco) and grown as neurospheres. Then, neurospheres were
digested with Accutase (Life Technologies) and plated on coverslips coated with the
poly-L-lysine (Sigma) and laminin (Sigma) in differentiation medium (Neurobasal,
2% B27 supplement from Gibco), allowing them to migrate and differentiate
for 7 days. Cells were then maintained in an incubator at 37 �C with a 5% CO2

atmosphere and 95% humidity. For TRIM9 knockdown, neurospheres were
digested with Accutase and cultured in passaging medium containing 8 mg ml� 1

polybrene (Sigma) and 5� 105 infectious units of lentiviruses containing scrambled
shRNA or rat TRIM9-specific shRNA. After 48 h, differentiation medium was
added to allow cells to differentiate for 7 days.

Statistics. One-way analysis of variance was used for multiple-group comparisons,
followed by Bonferroni procedure for comparison of means. Student’s t-test was
used for the comparison of two independent groups. For all tests, a P value of less
than 0.05 was considered statistically significant.
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