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Abstract

In (clerobot systems, visual servoing of a task object for a slave arm with an eye-in-hand camcra has drawn an
intcresting attention. As such a task is generally conducted in an unstructured environment, it is very difficuit to
define the inverse feature Jacobian matrix. To overcome this difficulty, this paper proposes an auto-tuning furzy rule-
based visual servo algovithm, In this algorithm, a visual servo controller composed of fuzzy rules, reccives feature
errors as inputs and generates the change of slave position as outputs, The fuzzy rules are tuned by using sieepest
eradient method of the cost function, which is defined as a quadratic function of feature errors. Since the fuzzy rules
arc tuncd automatically, this method can be applied to the visual servoing of a slave arm in real time. The
effectiveness of the proposed algorithm is verified through a series of simulations and experiments.

{. introduction slave arm autonomously without aid of the operator by
using the visual servo method|2].

The technology of teleoperation applies to various In the field of robotics the visual servo method can be
operations in hostile environments where human can classified into a position-based visual servoing, and a
hardly work.A telcoperation system is generally featurc-based visual servoing mecthod. in ihe position-
composed of a master arm which is controlled by a based visual servoing, 3-D position of larget objects is
human operator and a slave arm which performs actual calculated from the visual information, and then. the
operator and a slave arm which performs actual robot moved bascd upon the calculated position.
operations by duplicating the motions of the master In the feature-based visual servoing, the robot moves
arm. based on the simple image fcature obtained from the
Recently. owing to the brilliant advance of the robot camera image. As this method does not require
manipulator technology, many researchers have been calculation of the position of target, servoing can be
studicd 1o assign autonomous working ability for the conducted in real time. Thus. many rescarchers have
slave arm in order to improve the task performance. been studied this mecthod such as: the research of
Among the many scnsor information, such as visual choosing the method of model reference adaptive
information, force, tactile, voice, etc., visual control by Sanderson|3], of generating the visual scrvo
information can be effectively uscd for the autonomous system with information from the accuralc CAD model
tcleoperation. The method of using the visual of the target object[4]. of the visual servo system using
information in the telerobot system can be devided into the uncalibrated camera[5]. of visual scrvo using
two catagorics. The [irst one is (o construct a three- normalized feature matrix|6].

dimensional  image using the visual information In the above methods, it is required to obtain the
obtained from the camera mounted at the site of the fcature Jacobian matrix. which is a lincarized
slave arm. Then the three-dimensional image is fed relationship between the change of image [eatuics and
back to the operator[1]. The sccond one is to move the the corresponding motion of the robot manipulator.

However, it is very difficult to obtain the feature
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Jacobian precisely. Moreover, as the Jacobian is
obtained via a linearization, it contains linearization
crror. To overcome these problems a visual servo
algorithm which does not use the feature Jacobian is
proposed in this paper. In this algorithm, a visual servo
controller composed of fuzzy rules receives feature
errors as inputs and generates the change of slave
position as outputs. The fuzzy rules are tuned by using
steepest gradient method of the cost function, which is
defined as a quadratic function of feature errors.

The effectiveness of the proposed algorithm is verified
through a series of simulations and experiments.

This paper is composed as follows: A telerobot system
used in the study is descried in section 2, an auto-
tuning fuzzy rule-based visual servo algorithm is
described in section 3, experimental results are in
section 4. Finally some conclusions are made in
section 3.

2 Description of a telerobot system

Fig. 1 shows the configuration of a telerobot system
developed at the Laboratory for Control system and
Automation in the KAIST[8]. The telerobot system
consists of a force reflective master arm, a slave arm, a
visual sensor, an image processing system, and a
system controller. The master arm has a vertical
articulated structure with 3 degree of freedom(DOF),
the slave arm is an industrial robot(Samsung, FARA
Al1-U). The visual sensor is a CCD camera (SONY,
XC-77RR) and a CCTV camera. The image process
system is an industrial vision board(Samsung, MVB-
02) with a DSP chip .

The whole teleoperation procedure is divided into two
phases. In the first phase, the operator moves the
master the  working
cnvironments with the aid of a CCTV camera. Then
the slave arm moves near the object point, the second
phase starts. In the second phase, the slave arm does

arm  while monitoring

not duplicate the motion of the master arm, but moves
automatically according to the proposed servoing
algorithm.

3 The auto tuning fuzzy rule-based Visual
servoing algorithm
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To track a target object in real time, a visual algorithm
using an auto-tuning fuzzy rule is presented in this
paper.

3.1 Inputs and outputs of the fuzzy logic controller

The fuzzy controller shown in Fig. 2 receives the
feature error vector as inputs, and generates the
displacements for the slave arm (o moves outputs. Let
the desired image featurc vector, j?;? o be represented

by

<

Fref = (fl,rcf?f2./'e,/>f3.i‘cf)T‘ (4
where 7, .(i=1, 2. 3) is reference image feature. Also
iref 4

let the current image vector &' be represented by
act p -

I T
F;ecl = (fl,acz >f2,acr af3,act) (2)

where 1

© (1=1, 2, 3) is actval image feature. As

shown in Fig. 2, a feature error, [, that represents the

difference between the two vectors in (1) and (2) is
utilized as the input to the controller. The 7, is

expressed by

EF’ = Frcf - Facz )
The output of controller is represented by a vector, AY .
which is displacements for the slave arm to move, and
expressed by

AY =[Axy, Axy , A5 ]T *h
where AY is denoted the displacements by which the
slave arm is to be move.

3.2 Rule base

Let a fuzzy value for the feature error, ¢ I be denoted
i

as &.. The ¢, can be expressed by
: ; p )

él.:gixej; @)



where, ¢ / denoles the feature errors, and g is a scale
factor between the feature error and fuzzy rule
nput(e, ) .

The rule base is composed of the rule that define the
relationship of the feature error and the corresponding
motion of the robot manipulator.

RULE k: IF & isE{. & isE5.% isEj
THEN uy lsUi( 1y isU}:‘,' Jusy is U§ ©)
(k:1.2."-,/)

where, / is the number of rules. é (i=1,2,3) is a
feature error, E}‘ is the fuzzy value for the &, u; is the

output variable, and yk is the fuzzy value for each y, .

3.3 Fuzzy inference and defuzzification

The product sum method[9] is used as the fuzzy
inference in this study. This method has advantages
of both relatively short execution and simple learning.
As a defuzzification, the center of gravity method is
adapted. The displace Ay, (i=1,2,3) resulting from the

inference and the fuzzification can be expressed by

UL+ UZ e UL
/’I] +}12 +"‘+h[

o

X

where. denotes the direction of reference
coordinates, and hk denotes the product between each

degree of fitness when fuzzy input is éi (i=1, 2, 3), is
expressed by

hk = ;UEl/f (e) ‘#Eéc (52)1‘]55 (€3) ®
where 2 ok (&) (1i=1,2,3) is the degree of fitness when

fuzzy input is ¢,

3.4 The auto-tuning algorithm

To adjust the membership value of output variables, an
auto-tuning algorithm is used. In this algorithm, rule is
tuncd such that a cost function is minimized by the
steepest gradient method. The cost function, J, is
defined by
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1, .
J = E[al(el)z + 0y ((?2)2 +a3(63)27l (9)

where ¢; (i=1.2,3) is the weighting factor for each e..

To minimize the J, the output fuzzy valuc is updated as
follow:

o ) 0
Uk(t+1) = Uk (1) = n—220
D=t - KD

i

10)

where ; denotes positive learning rate. and ¢ s
a(t)

sampling time. The term —
Uk (1)

in the above

equation can be obtained by a chain rufe. i.c..

arit) ﬁ]({). (1) (?/(r). () N (?I(I)uéf_}v(l‘)ﬁ

kW) () AF@) an(t) AUk a(n) Uk
(D

() .
where the term —’il is expressed by
Uk

()

i

() _ (1) () () o) (1) ()
UKty  atg(r) SUE(1) dtey(r) dUF(tYy  adey(r) UK ()

(12)
Ax. (
using the equation (6). the term “ /, ( )‘ (i=1, 2. 3)
AU (1)
obtained by
ANAx; (1) _ 17/c (13)

auk (1) Ty et hy

By using equations(6), (11),(12) and (13), the output
fuzzy value U,-k in equation (10) is updated. Through
this procedure, the fuzzy oulput variable is tuned to
decrease the feature crror. In the next section, this
proposed algorithm is applied to the prescribed
telerobot system.

4 Results and discussions

The proposed visual servoing algorithm is applied to
track a cubic objective. To show the efficiency of the
proposed algorithm, the results are compared with
those of the inverse-feature Jacobian method.



4.1 The experimental conditions

Fig. 3 shows the reference coordinate and the camera
coordinate. The robot moves with respect to x, y, z-
coordinate at a fixed pose. Fig. 4 shows the image
features. The condition of experiment 1 is shown in
table. The fuzzy input membership function is shown
in Fig. 5. and the total number of the rules is 343. The
initial values of fuzzy output variable are randomly

chosen to be a value between -1 and 1.

+.2 The experimental results

To ‘learn the fuzzy rule, the 50 trials of tracking a
target were carried out at the same initial position. At
the first learning, the change in the feature error is
shown in Fig. 6(a)~(c). and the tracking path is shown
Fig. 6(d)~(f). It can be seen from the figures that the
feature error does not change not converge to zero and
the tracking path is not smooth. At the 20th learning,
the change in the features is shown in Fig. 7(a)~(c),
and tracking path is shown in Fig. 7(d)~(f). At the
50th learning, the change in the feature errors is
shown in Fig. 8(a)~(c), and the tracking path is shown
in Fig. 8(d)~(). It can be seen from figures 7 and 8
that the feature error converges to zero at the 20th and
50th learning steps. In the experiment, it is observed
that. form the initial to the final point of moving, 48
sec. and 8 sec are required at the first and 50th
learning step, respectively. Furthermore, as the
learning step increases, the moving path becomes

straight.

4.3 The comparison with a conventional method

The results of wvisual tracking using the feature
Jacobian matrix arc employed Fig. 9. The path is not
straight line. The reason is that the model of the pin
hole camera doesn't coincide with the real system.
When the result compares with that in Fig. 6, the

method of auto-tuning fuzzy rule have the shorten
path.

5 Conclusions

In this paper, the visual servo algorithm using the
auto-tuning fuzzy rule is proposed. The proposed
algorithm is applied to track the target object in space
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and from the results some conclusions can be made as
follows:

1) It takes much times to track the target object
with the initial rule, but with the learned rule
tracking does successfully in real time.

2) The error of measurement in the calibration and
the error generating when the feature Jacobian
matrix is calculated don't take place.
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Table 1 The condition of the experiment

Area of target 640 mm?
object(Area) (experimentation)
focal length 12mm

desired feature E,=(0,0,55)"

Task interactive system
H (Remaote system)

Human interactive system
(Local system)

Video Camera

[
‘@ Monitor
Zm

+ Master
LA oco
5 Camera
=Yg
T A
!‘ Main 1 Vision |
™ Controller i Board

rel’

Fig. | The configuration of the telerobot system

Auto
tuning
F
ngz' AX | Slave _
Controller
Visual
B B e —
i sensor

Fig. 2 The block diagram of an auto-tuning fuzzy
rule-based visual servo system
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Fig. 3 The reference coordinates and
the camera coordinates
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Fig. 4 features of the object image
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Fig. 5 Fuzzy mput menbership functions
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