KESS 96 A& g2l

COBOL S OISO AICl AlbdllD]8t
AZEAN FAES XIE H2IIAMAE.

OlH &=, OIM3*, 2PF*x

2SS HIA-ZAMSY BAHSHT
o MEHED AEs

*
o

0

e

12

ADEYN RIBSE 2TEYN MAFIINAM It HIE0 B0l E= R20IC. DetM 0l
QIE4S CAMAMC MaAMO FA2 MUFIIHAM Ot 28 UYS2 SHLIOIL. OI8 2o
2 RN AS COBOL 2101 SHICIHAM RS2 & = A= 8 HEHFD UAH BEANLE
BMAAIHE T2 DY 2AIE 2ZNM 2HEC2M |KRIEFE XIAd=s Atdiel @YE
2 HASIZCE Ol YHE2 SIZMABAIS SSULSZ 8 AMIJIE =8 X M AL-CE
HETIACH

2 AAHNME SHLIC AtHIE 8 JI2tH LEE o2l RIS AIHE o2 Aoz H
Oj) OO [t AtMIE B&aIRC. O BESH et MAISE AAASH PSS MABIOILE
FABIULEH. ARIDIE ATEYN RXSS+ NFUFE OSU 22 Ul SHE =0 M, o
KO S21Q7 HEHQ 2AE JYUERZ RXES STAMEC JHUUES HSSIO. =N, 20
& ¥ =2 M8 086t £2 AN 2ASHM AMAS ML =ES0. AN, =&
AICl ZUEER 018510 AR £Z0| (A2 HUSICH WM, HMtsl AEANE 2ESFE))|
B AlARIOZ Pty 228 0 Ny A8 BH S2AH MBI HM3stz SXUE+ 89
S0 Ol A2 XHAdtE MEXC UEES B0,

Q19 S WHEN B 2 AP AZEYN SAES K@ MBI N2BE HEI A
A i PO UNIKE 0I8H0 HETIRACH

—287—-

Case Based Software Maintenance Supporting Expert System for COBOL Domain.
Lee Jae won*, Jae kyu Lee*, Woo ju Kim**,

* MIS Program, Graduate School of Management, KAIST
** Dept of Industrial Engineering, Chun-buk Univ.

ABSTRACT

Software maintenance is the most expensive
phase in the software life cycle. Enhancement of
productivity is one of the important issues in the
sofiware maintenance phase. For the reason, we
suggest a case based methodology for COBOL
fanguage domain to recommend the maintainable
targets and to show the IS altemation history at the
level of source code to recall the historical success
stories. We develop the case based reasoning and
retrieval system for software maintenance with
application domain, KEPCO (the Korea Electric
Power COmoration). In the system, we represent
the architecture of a case which is defined as one
event of software maintenance. With the case
architecturs, we index the cases and build the
case-base. The procedures for case based software
maintenance supporting is composed of the
following steps : 1) Requirement input with six unit
requirement types and its related keyword, 2) Case
retneval and reasoning with perfect and partial
malching algorithm , 3) Step recommendation with
the output part of retneved cases, 4) Post
processing which consisted with filtering out and
case sforage.

A prololype case based software maintenance
supporting expert system is implemented as a part
of SWMES (Software Maintenance Expert System)
using a expert system developement tool UNiK,

L. Introduction

Software maintenance is recognized as most
expensive phase of the software life cycle. The system
maintainer is frequently presented with code with little or
no supporting documentation, so that the understanding
required to modify the program carried out mainly by
code.

Real world business information systems are very
expensive to maintain. As soon as they are delivered to
the production field, they start on going through the
continuous process of evolution and modification. This
process is dictated by changes to the system environment
and user's requirements.

Software maintenance is defined to be any work that
is undertaken afler delivery of a software system
[Robinson et al, 1991]. It has been recognized that
software maintenance can consume as much as 70% of

the cost during the life cycle of the system [Leintz and
Swanson, 1980). Research effort has been almost
exclusively devoted to the development phase with the
goal of reducing the cost of maintenance by using new
development techniques, but the problem itself of the
maintenance of existing software is ignored many times.

Software maintenance has been split into three
subtasks, namely corrective, adaptive and perfective
maintenance [Swanson, 1976]. It is estimated that 65% of
the maintenance phase are taken up with perfective
maintenance and 17% is corrective maintenance [Leintz
and Swanson, 1980].

The documentation of system maintenance and
requirements may or may not be updated as the program
is modified. If not, this makes future maintenance
difficult. For the reason, case based reasoning system
using the previous maintenance cases can support
software maintenance works and make future
maintenance easier when there was no documentation.
CBR system can be regarded as one for the
documentation. Future maintenance activity can use the
cases with the codes.

L1. Problem Description in Real Business
World.

KEPCO is one of the largest company which has
information system infrastructure in Korea. In KEPCO,
as a monopolistic electric power supply corporation in
Korea, there are large and complex software systems
developed with or without the aid of modern software
engineering techniques. The program modification on
systems developed without the aid can be virtually
impossible without reading original code because there is
little documentation of maintenance.

KEPCO has already developed many large-scaled
software systems using COBOL language in large
portion and CASE tool in later period. In recent years,
KEPCO is in the process of constructing enterprise-wide
integrated system. Through this process many software's
resources are reused by standardization. Representative
example of reuse is the coding regulation and the use of
copy program for data field usage.

In the KEPCO's system already developed before
CASE tools become popular and its IS environments
such as COBOL domain without system documentation,
we can easily find the characteristics of S/W
maintenance. It is repetitive with similar requirements and

—288—

has used similar codes at each time. These characteristics
are suitable for using case based technique.

The large portion of software maintenance and
management is carried out in the department of software
development. The COBOL-used software system
developed in earlier period is the major target of software
maintenance in KEPCO. The bulk of this maintenance
work is the perfective maintenance task classified in
[Swanson, 1976]. Most time consuming and difficult part
in this maintenance process are the maintainable target
recognition or comprehension. Even when there is
documentation exists, it has found that the time spent
studying the code took up more than three and a half time
the amount of time studying the documentation
[Fieldstrad et al, 1983]. It is especially serious for novice
engineer.

1.2. Objectives and Scope of Research

we will consider and do the followings as our
research objectives.

1. Suggest a methodology to recommend maintainable
targets using CBR.

2. Show the IS alternation history at the procedure level
of source code to recall the historical success stories.

3. Development case based reasoning and retrieval
system for S/W maintenance.

For the above objectives of our research, we will
carry out the development of a case based expert system
which can do next listed things as our approaches for
supporting S/W maintenance.

1. Case representation of S/W maintenance.

2. Case indexing and Case-Base building.

3. Query to Case-Base (CB).

4. Reasoning of a maintainable S/W target using CB.

2. Case Based Reasoning

There are many similar definitions about case based
reasoning.

A case based reasoner solves new problem by
adapting solutions that were used to solve old problems
[Risebeck and Schank,1989]. Case based planning is the
idea of planning as remembering [Hammond, 1989].
Case based reasoning is a general paradigm for reasoning
from experience. It assumes a memory model of
representing , indexing, and organization previous cases
and process model for retrieving and modifying old case
and assimilating new ones [Slade, 1991]. Case based
reasoning can mean adapting old solutions to meet new
demands, using old cases to explain new situations, using
old cases to critique new solutions, or reasoning from
precedents to interpret a new situation or create an
equitable solution to a new problem ([Kolodner, 1992].
But we know that. CBR are not completely new types of

expert system building method, they represent a new,
higher level knowledge representation environment and
collection of new search algorithms that sit on top of
existing hybrid ES building tools [Harmon, 1991].

[Risebeck et al, 1987] and [Slade, 1991] described the
representative memory model and process model of
CBR. For the process model, variuos types of knowledge
structures are supported.
- Indexing rules [Schank et al, 1986].
- Case memory
- Similarity metrics
+ Modification rules

Repair rules

We use the method of building blocks of matching
and ranking process. In this we construct parallel
representation by finding structural correspondences
between new case and old stored cases [Kolodner, 1993].
Computing similarity method of corresponding features
using abstraction hierarchy is quoted and hierarchical
network, but it is based on nearest neighbor method.
Requirement engineering in [Renzhang et al, 1995] was
referenced somewhat. Most similar related work to our
domain, software maintenance, is SQUAD, Software
quality control advisor [Kitano et al. 1992]. It collects
cases from throughout NEC corporation and emphasize
the cost effectiveness of case base.

2.1. Software Reuse

Reusable software asset is any software-related and,
non-hardware item seemed valuable. Example software
asset are software part (e.g. systems, function, procedures,
package, data type definitions, variable definition,
"objects’), designs (e.g. structure charts, DFDs),
specifications (e.g. business models, and proposals for
building software), test data, code templates, and
notebooks of software documentation.

Reusability of software asset has been defined as a
general engineering principle whose importance derives
from the desire to avoid duplication and to capture
commonality in undertaking classes of inherently similar
tasks [Ramesh and Rao, 1994). Part based software reuse
is the use of parts from previous systems to build new
one. It is widely seen as key technology for improving
software flexibility, quality and productivity [Amold and
Frakes, 1991].

Our research are largely related on program
comprehension and code analysis/parsing [Robinson et
al, 1991] for automatic frame generator from COBOL.
Inverse (reverse) engineering, annotation and
documentation on existing program and so on are
software reengineering and related to our research too.
There are researches on software learning /maintenance
using CBR [Williams, 1988] and software reuse using
CBR [Fouque and Matwin, 1993].

—289—

3. Knowledge and Case Representation

Through a analysis of maintenance requirement with
representative 19 official documents of case management
in low tension charge system of KEPCO, we could refine
the maintenance type and a representation method of that
maintenance requirement. All cases are classified in new,
modify and deleting with their maintenance work type.
We also could find a requirement content can be
represented with rule typed structure and formula
treatment typed structure. This rule type and formula type
structure can be represented with composition of
requirement type and its keyword on that requirement
type. Requirement types are six types like /O, If-clause,
assignment, DB-interface, constants dealing and
supplementary others.

With historical contents of seriesal and single
software updating event , we could get maintenance
cases and KEPCO's maintaining method of their
information system. There are many requirement style
like regulation altenation, process or work flow
improvement, simple formula alternation and so on. We
found representative two requirement structure for a
case's maintenance requirement representation such as
rule type and formula type structure. Rule type can be
said as IF-THEN structure and formula type can be said
only THEN structure. These classification of requirement
structure is important in case memory organization and
reasoning, It will be dealt more in case representation
section and in reasoning process below.

A classified event representation method with the
maintenance working types can be differentiated for a
requirement representation of case.

On this analysis, we first construct basic framework
for IS analysis and representation. We basically build
blocks for representation of IS and its requirement
requirements with own type and syntax.

- Keyword Base construction in focus of related
regulation, work process and forms of official
documents,

Representation of software maintenance requirements
using rule, formula treatment structure which
composed with requirement types and related
keywords for S/W maintenance.

Representation of IS using related keywords and IS
representation methodology with own syntax.
Construction of relation represent method between IS
and keyword.

3.1. Representation of system knowledge

Representation method of IS knowledge is originated
from the research of our overall system named SWMES.

All Information systems have its task. This task has
hierarchical relationship with program and data base. We
consider here the task of our system as example the low
tension charge system of KEPCO.

A program have steps and each step can have its
steps. Each step contents has their own function. Data
base has similar structure to program. It have attributes
contrast to the step in program but attribute contents is
only the content which do not has its own function,

HAS
(REL-DB, DB)

HAS
(PROGRAM, SUB-PROGRAM)

DATABASE PROGRAM
DATABASE PROGRAM
HAS-STEPS
SEGMENT
HAS-
ATTRIBUTES

ATTRIBUTE STEP
HABSTEP
EXISTS-IN EXISTS-IN

Figure 3-1. Structure of information systems

All steps in program can be classified with six step
types by their functional roll. COBOL syntax in our
consideration, 'ADD', 'MOVE,, 'COMPUTE', 'DIVIDE’
and so on, can be a example. We can classifyas a
'ASSIGNMENT type with its own related reserved
words. 'LOOP' type has a reserved word like
‘PERFORM, 'UNTIL', 'BY’ in the order. "Tnput/ Output
(VO) type has a reserved word 'DISPLAY'. DB-
INTERFACE' type has a reserved words 'OPEN,
‘READ, 'WRITE' and so on. The other types are similar
to above type with their finctional roll.

~ 15+
rmss«;umlmqtluzumsej caL | Loor
L.

Figure 3-2. Categorization of a step by functional roll.

We are considering a system knowledge
representation method. A task is represented as a example
with our exemplary service of 'low tension charge
system'.

{{ Low tension-Charge SYSTEM

IS-A: TASK

PROGRAM : CAUI1JOJ CAM30JO] ...

SUB-PROGRAM : CAKEYED1 LOWDBSET

CADBXUPS CAFLDEXM CACHKYMD

CADA YCALCAM3OEXT CALSHIFT

CAMSGSET CAJ94101 CAJ92201 ...,

REL-DB : Low tension-Charge DB ...

—290-

DB : CAPMEDNG ...

)}
COBOL program structured with the four division

named identification division, environment division, data
division and procedure division. We used only procedure
division in our system. Procedure division has the
instruction statements executing functional capability in
the its section or paragraph. Section and paragraph name
is attached with that module name to step representation
name.

COBOL program structure
IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.

PROCEDURE DIVISION.
SECTION.
PARAGRAPH.
Instruction with reserved word,

Each functional instruction statements in step have six
categorized step types and own steps named as a
representation frame. CAM30J0OJ-3000-OVER- FARE-
COMPUTE is a example of section name. Paragraph
name is similar. Like this named section or paragraph has
step of instruction statement. These step name is
composed with upper section name and serial step
number.

{{ PROGRAM

REL-TASK :

LANGUAGE :

MAIN-SUB : (MAIN | SUB)

TYPE : (ON-LINE | BATCH)

INPUT-DB :

OUTPUT-DB :

CALLED-MODULE :

INPUT-PARAMETER :

OUTPUT-PARAMETER :

HAS-STEPS :

KEYWORD :

1}

Each slot value in above frame is the program
specification. 'REL-TASK', 'LANGUAGE, 'MAIN-
SUB', TYPE' slots are environmental descriptions.
'INPUT-DB' and 'OUTPUT-DB' are program related DB
name and its attributes which are field name or variable
name in the program defined or copied in the data
division. ' CALLED-MODULE ' is the subprogram name
called by this named program or other main program
executed. A 'CALLED-MODULE ' is called by a INPUT
PARAMETER' and 'OUTPUT PARAMETER' which
defined DB name in the data division. 'HAS-STEPS' slot
has all step name of six type and its own type appeared in
the procedure division of program. 'KEYWORD' slot has
all keywords appeared in the program.

We will deal 'STEP' and six step type representations.
These steps are appeared in the section or paragraph of
COBOL structure.

{{ STEP

A-STEP-OF :

HAS-STEPS :

1

Step is for the section and paragraph representation.
Each section will be a step of upper level program frame
and paragraph will be a step of section appeared with the
step.

{{ ASSIGNMENT

IS-A : STEP

LHS-KW ;

RHSKW:

1

ASSIGNMENT step is made with the reserved words
such as 'ADD, 'MOVE, 'COMPUTE, 'DIVIDE,
‘'MULTIPLY' and so on. 'LHS-KW' is the assigned
keyword and ‘RHS-KW! is the assigning keyword.

{{ IF-CLAUSE

IS-A : STEP

KEYWORD :

1

It represent a conditional step. Related reserved words
are 'lIF, 'ELSE', THEN!, 'WHEN', 'SEARCH' and so on.

{{Loopr

IS-A : STEP

KEYWORD :

1}

Related reserved words for this loop representation is
'PERFORM following "UNTIL.".

{{ 1O

IS-A: STEP

TARGET-OBJECT :

INPUT-KW :

OUTPUT-KW ;

1

VO step is appeared with the reserved word
'DISPLAY’, 'PRINT and so on. "TARGET-OBJECT is
the instrument or object for input or output.

{{ DB-INTERFACE

IS-A : STEP

R/W-TYPE:

REL-DB:

KEYWORD:

H

DB interface is executed for the DB reading or
writing,

{{ CALL

IS-A : STEP

INPUT-PARAMETER :

OUTPUT-PARAMETER :

CALLED-MODULE :

1}

CALL is for a subprogram call or executing other
main program with the parameter. The parameters are in
INPUT' or 'OUTPUT PARAMETER' 'CALLED-
MODULE' is the subprogram or other main program
name. These all steps and system knowledge
representation are systematically have the inverse

—291—

relationt to the relation of all frames like A-STEP-OF to
the slot HAS-STEPS.

{{ KEYWORD

FORWARD :

BACKWARD :

SYNONYM :

EXISTS-IN:

1

Keyword representation is constructed with parent
and child relation of 'FORWARD' and 'BACKWARD',
'SYNONYM' is for the same keyword in its meaning.
Keywords were gathered from rule, regulation, DB
dictionary and other screen and table.

DB and its segment, attribute have a lot of slots but
explanation on each slot will be omitted.

{{ DATABASE

REL-TASK :

DB-STRUCTURE : (HIDAM | HDAM)

ACCESS-METHOD :

KEY-FIELD :

USED-PROGRAM :

HAS-SEGMENT :

1)

{{ SEGMENT

REL-TASK :

A-SEGMENT-OF :

PARENT :

CHILD :

KEY-FIELD :

HAS-ATTRIBUTES :

LENGTH:

USED-PROGRAM :

1)

{{ ATTRIBUTE

ATTRIBUTE-OF :

HAS-ATTRIBUTES :

LENGTH :

TYPE:

KEYWORD:

USED-PROGRAM :

3

Other system knowledges of 'FILE' similiar to DB
knowledge is exist. Above all structure is used for
automatic knowledge acquisition from COBOL source
codes

3.2. Case representation

Case representation method is very important part of
case based reasoning as it decided the efficiency of CBR
and so various.

We can assume and use one case document to one
software maintenance. One case management document
is the set of whole case report which was worked at the
same period by a request for system maintenance. Each
case management document has single or multiple
requirement name of maintenance. Requirement name of
maintenance have elemental requirement expressions in
its structure with the requirement representation type.
Most requirement names of maintenance in one case

management document has no relation to each others.
Single or multiple result module name of maintenance is
connected to the upper written requirement name of
maintenance.

ase management
document name

PARTl A case

input requirements
for CBR

Case Based Inferencing Area

Explanation Area

Requirement name
of maintsnance

expression

RESULT

Figure 3-3. Structure of software maintenance
requirement and case.

One case is defined as a requirement name of
maintenance. It has a upper level case management
document name of S/W maintenance as event's
supplementary explanation of all for the circumstances
and lower level related maintenance module names as
event's resulis. The elemental requirement expressions
have the most important case indexing vocabulary for
case representation as slots of that frame. This case
indexing vocabulary is basically constructed with the
contents of maintenance work in the requirement name of
maintenance frame. As cases are blocked by using
requirement representation types like rule and formula
type structure, many works like finding correspondence
between input case and retrieved case was solved with the
block's structure.

Structures of requirement representation are like rule,
formula, parameter and other process improving activity
type. But we have defined the representative requirement
structure as rule type with IF-THEN style and formula
type with only THEN style.

We can construct requirement structure with example
case KEPCO(IS)109.05 -2754.

" If over usage hour per month is greater than 450,

additional extra 50% of electric power charge is

applied to the over usage quantity for the next electric
power contract category such as (General, Industry,

Temporary (B)) "

" Cut 50% basic usage charge off in the month for no

electric power usage.”

Above requirement representation contents are the
rule type expression so it can be represented with
IF-THEN structure of the rule.

A case must have input data area (problem
description part) and output area (solution description
part) which will be applied through the overall system
procedure. Requirement representation in our system will
be the input area and related module and step
representation frame will be the output area.

—-292—

Requirements for a maintenance work are described
with one or more unit requirement which have one within
six requirement types. Each unit requirement with one
requirement type and only the IF-CLAUSE type have to
be duplicated for representation of conjunctive and
disjunctive requirement keyword value. For the
representation, If A and (B or C) then CALCULATE D
and A, We need next four unit requirement expressions
in its requirement name frame with [F-THEN structure.
Unit requirement with type IF-CLAUSE with keyword A.

Unit requirement with type IF-CLAUSE with keyword B or C.
Unit requirement with type ASSIGNMENT with keyword A .
Unit requirement with type ASSIGNMENT with keyword D.

Case representation is based on own block's structural
correspondence between input case and refrieved case.
Case structure is from Fig 3-3.

{{ Case Management Name for Maintenance

ACCEPTED _DEPT:

DATE_OF ENFORCEMENT :

REFERENCE_DEPT :

TITLE:

REQUEST DEPT :

PART :

1

Case management name for maintenance act the role
of explanation for the case's request background of
maintenance.

{{ Requirement Name for Maintenance

IS-A : CASE

PART-OF :

UNIT_OPERATION_NAME :

REQUIREMENT UNIT :

RELATED CASE NAME:

CONTENTS :

RESULT:

1

'UNIT OPERATION NAME' is defined within the
task, low tension charge system, like our ‘charge control'
If our system is enlarged to cover overall company wide
scaled information system, it will be the important
classification dimension and case indexing vocabulary.
'REQUIREMENT UNIT is a set of elemental
expressions for case based inference and case indexing
vocabulary selection process. When requirement of
maintenance is rule type, it will be filled with
'[F-CLAUSE' and then part like 'ASSIGNMENT, '/O" or
‘DB-INTERFACE' and so on. When requirement of
maintenance is formula type, it will be filled with non
'IF-CLAUSE' elemental requirement expression.

{{ Elemental(unit) requirement type

IS-A : REQUIREMENT_UNIT

REQUIREMENT _TYPE:

REQUIREMENT-KEYWORD :

RELATED-KEYWORD :

MAINTENANCE_WORK _TYPE:

PART-OF :

3}

'MAINTENANCE WORK TYPE' and has one of
three type, NEW', 'MOD' or 'DEL. 'REQUIREMENT
CONTENTS' is the one case’ whole request contents in
text. ‘MAINTENANCE WORK TYPE,
‘REQUIREMENT TYPE' in six type and
'REQUIREMENT KEYWORD' are major case indexing
vocabularies in our case representation. One case of
requirement can have more than one elemental
requirement expression. All elemental requirement
expressions are represented to each other with
conjunctive relationship on their requirement keyword.
Disjunctive relationship are represented with keywords
overloading. 'REQUIREMENT KEYWORD' is the
keyword which have used in our system's semantic
network for case indexing, If the input keyword is not
enrolled, we must check the synonyms of past used ones
at first and there are no such keyword on semantic
network then inference on that keyword is impossible.
Later it enrolled on network by the automatic keyword
indexing management system in our system at the end of
case inference work.

{{ Related Result Module of Maintenance

RESULT-OF :

MODULE_WORK_TYPE :

PROGRAM _TYPE :

MAIN-SUB :

STEP:

RELATED_STEP_NAME :

MANIPULATION_CONTENTS :

1

Output result of case conceives the all maintenance
step information of the related result module regard of ail
maintenance work types. 'RELATED_STEP_NAME' is
constructed with step name, step type, step work type and
matching variable to the requirement keyword in the
related program source code. Step name consist with
program name, section or paragraph name in COBOL
syntax and the serial number of checking reserved word
within one sentence in that section or paragraph.

Example document 'KEPC((IS)190.05-2754'
contain two major cases and two supplementary modified
cases. Most of all, elemental requirement name of case
detailed more than other parts. Related result module of
maintenance part are briefly described with most related
two modules as there are too many related modules to
cover all contents in this paper.

{{ KEPC(X(1S)190.05-2754

IS-A : Case Management Name for Maintenance

ACCEPTED_DRPT. : Dept. Manager of Data processing

DATE_OF _ENFORCEMENT : 94/01/01

REFERENCE_DEPT: Chief of Electronic data processing

center, Seoul.

TITLE : Complementation of the rules for electric power

supply.

REQUEST _DEPT: Dept. of business and operation.

The office of business.
PART : KEPC(O(15)190.05-2754-1,
KEPCO(15)190.05-2754-2,

—293—

KEPCO(IS)190.05-2754-3,
KEPCO(1S)190.05-2754-4

1

EPCO(18)190.05-2754-1 EPCO(15)190.08-2754-2
(Unit requirement IF-CLAUSE) Uit requirement IR-CLAUSE)
{Unif requirement ASSIGNMENT) (Unit requirement ASSIGNMENT),

Fig 3-4. example of case representation.
{{ KEPCO(IS)190.05-2754-1
IS-A : Requirement Name for Maintenance
PART-OF : KEPC((IS)150.05-2754
UNIT_OPERATION NAME : Charge Control.
REQUIREMENT_UNIT :
(IF-CLAUSE, NEW, (450 hour over usage quantity per

month))
(IF-CLAUSE, MOD, (Contract category))
(ASSIGNMENT, MOD, (Electric power charge, Over

usage quantity charge))
RELATED_CASE_NAME:

KEPCO(1S)190.05-2754-3
KEPC(XIS)190.05-2754-5
REQUIREMWNT_CONTENTS : " If over usage hour per
month is greater than 450, additional extra 50% of electric power
charge is applied to the over usage quantity for the next electric
power contract category such as (General, Industry, Temporary
By
RESULT : KEPCOX(1S)190.05-2754-1-CAM30J0)
KEPCO(15)190.05-2754-1-CAMS5]0]
KEPC((1S)190.05-2754-1-CAJ94101
1
{{ KEPCO(1S)190.05-2754-1-CAM30]0J
IS-A : Related Result Module of Maintenance
RESULT-OF : KEPCO(1S)190.05-2754-1
MODULE_WORK_TYPE : MOD
PROGRAM_TYPE : COBOL
MAIN-SUB : MAIN
STEP: 130
RELATED_STEP NAME :
(CAM30]J0J-3321-FARE-COMPUTE-5-1, CALL,
NEW, (CAJ94101), (CADANLD, CAOVERFLD))
(CAM30JOJ-3321-FARE-COMPUTE-5-2, CALL,
MOD, (CAJ92201), (CADANLDY)

(CAM30J0J-3321-FARE-COMPUTE-5-2, CALL, DEL,
(CAJ91601), (CADANLDY))

MANIPULATION_CONTENTS : "Append extra electric
power charge calculation for 450 hour over usage quantity per
month "

1

{{ KEPCO(1S)190.05-2754-1-CAJ94101

IS-A : Related Result Module of Maintenance

RESULT-OF : KEPCO(1S)190.05-2754-1

MODULE_WORK_TYPE : NEW

PROGRAM _TYPE : COBOL

MAIN-SUB : SUB

STEP: 351

RELATED STEP_NAME :

(CAJ94101-0000-MAIN-PROCESS-2, ASSIGNMENT,
NEW, (CAJOJ-OVER-KWH-FARE, CAJOJ-OV-KWH,
CAJOJ-OV-KWH-BASE))

(CAJ94101-3200-K WH-FARE-COMPUTE-3,
[F-CLAUSE, NEW, (CAJOJ-OVER-SIGNY)

(CAI94101-3210-OVER-FARE-COMPUTE-1,
ASSIGNMENT, NEW, (CAJOJ-OV-KWH-BASE))

(CAI94101-3210-OVER-FARE-COMPUTE-2,
IF-CLAUSE, NEW, (CAJOJ-OV-KWH-BASE))

(CAJ94101-3210-OVER-FARE-COMPUTE-2-1,
ASSIGNMENT, NEW, (CAJOJ-OV-KWH-BASE,
CAJOJ-OV-KWH))

(CAI94101-3210-OVER-FARE-COMPUTE-2-2,
ASSIGNMENT, NEW, (CAJOJ-OV-KWH-BASE,
CAJOJ-OV-KWH, CAJOJ-OVER-KWH-FARE))

MANIPULATION_CONTENTS : "Extra electric power
charge calculation for 450 hour over usage quantity per month :
Sub-module "

B

4. Case Based S/W Maintenance Supporting
Methodology

We will consider case based inference methodology
for maintainable step recommendation process, perfect
matching, partial matching process and post processing.

|. Requirement input - A new case input with
incomplete requirement contents are entered as natural
language format. It formalized within our structure like
rule type, formula type. Through the requirement
structure, requirement contents are expressed with one
of six typed unit requirement or multiple ones. Each
clemental requirement are expressed with
consideration of rule, keyword through user interface
and are grouped within the upper requirement
structure. All these requirement input process will be
carried out with requirement representation flow for
case indexing. Go to step 2.

2. Perfect matching process - We first try exact
matching case retrieval on their unit requirement
expressions. The case based inference engine try to
match new case to old ones by comparing requirement
type and keyword of unit requirement expression of

—294—

requirement maintenance exactly. If this matching
process are completed then go to step 4, else go to step
3.

3. Partial matching process.- If there are more than one
matched elemental requirement expression, we
perform matching. We abstracted the keyword of the
unmatched requirement type in the semantic network
with similarity. We select all partial matched cases in
the case memory through this way and cut off same,
duplicated case or one of series of maintenance case.
And we more cut off and modify cases to fit to the
requirement structured unit requirement. Go to step 4.

4.Step recommendation - After the case retrieval
process of perfect and partial matching, this process
offer maintainable step recommendation with retrieved
case's related result module of maintenance frame. In
this process, we narrow the target steps in the related
result module by step processing. Step processing are
briefly constructed with related step name. Go to step
5.

5. Post processing - 1f step recommendation results are
input in this process, the results are filtered with
module search inference once more then the result
offered to user. If it is incomplete, then post processing
that contained the full-scaled module search inference
for the same requirement input will offer the
maintainable step recommendation with step level.
The user will manipulate the related COBOL program
code to fit to the original maintenance requirements.
After all this maintenance process, another case will be
indexed and stored in the case memory. Stop process.

Incomplete requiremant
{natursl language)

Requirement | input

Structure
Formalizing

Unit requirement
Construction

Anu Retrisval & Reasoning

rd
Perfect Partial |, Semantic
Matching |“| Matching network
> inference
strategy
i
E
o
if

US$ER, .COBOL code
manipulation

Figure 4-1. Layout of case based S/W maintenance
supporting process.
We can consider another requirement representation
of KEPCO(1S)193.09-292-3.
{{ KEPCO(1S)193.09-292-3

IS-A : Requirement Name for Maintenance
PART-OF : KEPCO(1S)193.09-292
UNIT_OPERATION_NAME : Charge Control.
REQUIREMENT UNIT:
(IF-CLAUSE, MOD, (450 hour over usage
quantity per month))
(IF-CLAUSE, MOD, (Contract category))
(IF-CLAUSE, NEW, (Combined apartment))
(ASSIGNMENT, MOD, (Electric power charge
, Over usage quantity charge))
REQUIREMENT _CONTENTS : " When apply 450
hour over usage charge per month, except customer of
the combined apartment from collecting a charge for the
next electric power contract category such as (General,
Industry, Temporary (B)) "
1}

4.1. Partial Matching Process

Failed at perfect matching process to find suitable
case, we try for another case retrieval process with the
same requirement input.

Finding correspondence enables the partial matching,
If we didn't find matching case on that unit requirement
with the same REQUIREMENT TYPE and
REQUIREMENT KEYWORD, we can validate that
there is no suitable case in that keyword node in that case
indexing. So we then try at first to search all partial
matched cases on that case memory node with the
requirement structure and UNIT OPERATION NAME.

Most of case's requirement structure of partial
matching process is rule type structure. As all
requirement types are independent to each other type
except for IF-CLAUSE, we can example the
representative requirement input with THEN part
description of ASSIGNMENT type.

With this requirement input, we search all cases on
the branch of case memory with the UNIT OPERATION
NAME and IF-THEN arc. Related cases are retrieved
with IF part's keyword comparison regard of THEN part's
coverage or THEN part's keyword comparison on that
requirement type. Retrieving with joint IF-THEN part's
keyword is already tried in previous perfect matching and
failed. If we assume abstracted keyword on the semantic
network conceive their specified keyword's result step
then this trial is possible. We will not consider this trial
with semantic network but the concept will be dealt.

Selecting suitable cases from partial matched cases is
executed with inference strategy. Selected cases are
verified with elemental requirement’s maintenance work
type, NEW, MOD, DEL.

These verified cases are delivered to the next process,
maintainable step recommendation process. Step
processing is the process to show or output the related
step infromation to user. As our case based inference is
based on parallel representation make computation of

—295—

correspondence easy, recommendation is cared out
easily with the description of requirement input.

4.2. Inference Strategy

Followed assumption or heuristics are dealt as rule in
the case retrieval process. There are five assumptions for
case based inference like followings.

Assumption 1. Only IF-THEN and THEN styled
requirement input is permitted.

So the requirement input with only IF part is
impossible for case retrieval processing. There are no
requirements for S/W maintenance with only condition.
Requirement must have action description.

Assumption 2. conjunctive relation between and
within requirements types is not permitted

Assumption 3. Keyword selection in representation of
elemental requirement must be specified within semantic
network as possible as.

Assumption 3-1. One keyword can have one to many
relations with related variables by the COBOL data
definition levelized, but one variable must have one to one
relation with keyword

Assumption 3-2. If overloading condition part of
requirement input can be sustituted with one specified
level keyword with more than one elemental requirement,
then it must be.

In requirement input process, there are four primitive
rerequirement input types.
1) Only THEN part type
(ASSIGNMENT, MOD, (keyword))
2) Simple IF-THEN type
(IF-CLAUSE, MOD, (keyword!))
(ASSIGNMENT, MOD, (keyword2))
3) Duplicated IF part type
(IF-CLAUSE, MOD, (keyword 1))
(IF-CLAUSE, MOD, (keyword 2))
(ASSIGNMENT, MOD, (keyword 3))
4) Complex type
(IF-CLAUSE, MOD, (keyword 1))
(IF-CLAUSE, MOD, (keyword 2))
(ASSIGNMENT, MOD, (keyword 3))
(DB-INTERFACE, MOD, (ketword 4))

This complex type is the mixed type of the second
and third types. We will consider inference strategies
which is most important in this case based S/W
supporting process. We classified this inference strategy
into two groups, basic inference strategies and infernece
strategies.

Basic Strategy 1) Beside the types within IF-THEN
structured representation of requirement, all requirement
Yype is basically independent to each other type.

Because one instruction statement by the requirement
type is basically constructed with one reserved word in
source code.

Basic Strategy 2) For more than one keyword
although with same requirement type, only the
IF-CLAUSE type is duplicated for the conjunctive
relation between keyword

So to say duplication of IF-CLAUSE type is the
narrowing search space to intersection set concept. Other
requirement types' duplication and overloading do the
same role as union concept to enlarge the search space.
Addition to these basic inference strategy 2, another
consideration is needed.

Basic Strategy 2)-i) If there is intersection, then the
intersection is recommended as maintainable step result
else then two primitive tpe's step results are
recommended.

Strategy 1. Duplications of IF-CLAUSE requirement
types make diminish the related result space in
intersection between related case'’s result space.

Strategy 2. Duplication or overloading of
requirement types except for IF-CLAUSE make broaden
the related result space to union space.

Strategy 3. If NEW maintenance work typed
requirements are inpul, then case retrievals try partial
matching with its elemental requirements excepted the
NEW maintenance work typed elemental requirement

Strategy 3-1. If NEW maintenance work typed
requirements in its THEN part are input, then case
retrievals try partial matching with its unit requirements
excepted the NEW maintenance work typed elemeraal
requirement. If there are more than one partial matched
cases, then similarity measured by abstraction hierarchy
with requirement keyword on semantic network.

Strategy 4. If there is no perfect matching cases for
the complex requirement input with conjunctive and
disjunctive elemental requirement relationship, then
pratial matching is carried out with decomposed
primitive set of requirement input within non disjunctive
relationship.

Strategy 4-1. Similarity in partial matching measures
with the number of matched elemental requiement and
the requirement type of each unit requirement.

Strategy 5. THEN part of requirement input must be
matched for partial matching process, unless
maintenance work type of THEN part's elemental
requirement is NEW.

Strategy 6. If requirement input is more general than
exist case, then related all specific cases are retrieved,

The mean of specificity in requirement representation
is more condition part existing, so to say more
'TF-CLAUSE' overloading, for the same then part. For
example, 'TF A(MMOD) and B(MOD) THEN C(MODY is
more specific than 'IF AMMOD) THEN C(MODY.

Strategy 7. If MOD maintenance work typed
requirement are input, then case retrieval proceass try the
latest MOD typed case.

—296—

If up to now processing description of requirement
input and matching process was called by requirement
processing, next processing which called in process flow
explanation as maintainable step recommendation can be
called step processing.

To the examples of earlier part of this paper, we can
refer another case in the series of maintenance events as a
example for inference.

{{ KEPCO(1S)193.09-986-1

IS-A : Requirement Name for Maintenance

PART-OF : KEPCO(IS)193.09-986

UNIT_OPERATION_NAME : Charge Control.

REQUIREMENT _UNIT :

(IF-CLAUSE, MOD, (450 hour over usage
quantity per month))
(IF-CLAUSE, MOD, (Contract category)]
(IF-CLAUSE, NEW, (Control code))
(ASSIGNMENT, MOD, (Over usage quantity

charge

REQUIREMENT CONTENTS : " When apply 450
hour over usage charge per month, make new control
code for exception, 'EV', from collecting a charge for the
next electric power contract category such as (General,

Industry, Temporary (B)) "
1}

For the above requirement input, we can apply
inference strategiy 5 and 9. As a result of partial matching
process with searching the branch of case memory,
IF-CLAUSE & IF-CLAUSE & ASSIGNMENT, we can
find two most related cases. That two cases are followed
without related result part such as KEPCO(IS)
190.05-2754-1 and KEPCO(IS)193.09-292-3.

From these cases, related result modules of that cases
are derived but it is not need to modify the results because
all elemental requirements are identical except for NEW
typed unit requirement with keyword, control code.

We can here compare the performance with the full
scaled module search inference and keyword based
search utility in IBM machine for the above example
case. In table 4-1, result number is the searched step
number.

scale(8/17)
3

of searched 23,476 295 569
step
of precise 12 295 12
step (Not Correct)
Search time 6 minute
Table 4-1. Comparision of performance with other
systems.

Another evaluation result table, table 4-2, is the
applicable inference strategy number to the various
condition of requirement input. In the table 4-2, deep

shaded area in the region which is not applicable area of
inference strategy. Full-scaled module search inference
must be applied to this area. Shaded area with 'P' is the

perfect matching applicable area.
Primitive Requirement Input Condition
requi only | Simple |Duplicated|Complex] IF |IF- F-THEN
input type {THEN[IF-THEN| JFpart | type |(NEW) (NEW) fother type]
part | type type THEN (same
type keyword)
only THEN] P [5 245 | 35
part type
Simple | 56 P 1 24, 1 35 | 3
[F-THEN 56
type
Duplicated | 5.6 6 P 246 | 3.56 | 316 6
IF part type
Complex |4.56] 46 3 P 34 | 3-i4 | 456
type

Table 4-2. Result of Applying inference strategies to
various requirement input condition.

4.3. Case Memory

We consider here the case organizing method in
memory, 50 to say our cases will be indexed at the time of
case storage. It is for more efficient retrieval. However the
method will be, the organization of cases is important
consideration in building a case based reasoning system.
The method of case representation is too. It influence the
efficiency and capacity of the system.

We found followed characteristics for case
organization. Each lited element can be the dichotomising
point in their order to index cases maintenaned.

Unit operation name - classification by operation like
daily processing, charge control, movement control.
Requirement structure - with rule structure and
formula structure.

Structure classification - global classification with
elemental requirement like IF & ASSIGNMENT, IF
& 1/0, IF & DB-INTERFACE, ASSIGNMENT, /O,
DB-INTEFACE, and so on.

Case structure with elemental requirement.
Maintenance work type - with NEW, MOD, DEL. It
always be the right upper index to the case storage in
case memory.

Above all upper written characteristics are the meta
knowlwedge for case organization and case based
reasoning. Case memory organization is compared to flat
memory construction. So to say upper written five
characteristics are the dimensions for goal seeking of
related case retrieval. All cases are stored in this case
memory structure by the dimension. If there are requests
for case retrieval with the dimensions later, then we
match keywords within their unit requirement expression
and retrive related cases. Among the retrieved cases, latest
case is the most suitable case for the request of case
retrieval.

Next figure is the depiction for case memory
organization with example document 'KEPCO(IS)

—297—

190.05-2754'.

Figure 4-2. Case memory construction.

4.4. Post Processing

If upper case retrieval processes didn't find any cases
related to the requirement input, then module search
inference must be executed with the same requirement
input. If not, the recommendation results are further
filtered with full-scaled module search inference to
specified procedure level and then delivered to user. The
user manipulates the recommended COBOL code to
maintain with the requirement input. Those manipulated
results are stored as case with system aid like indexing
rule.

In this process we consider automatic generation of
related step information by using awtomatic frame
generator. Automatic frame generator makes the
program knowledge consisted with step representation of
six step types, IF-CLAUSE, ASSIGNMENT, LO,
DB-INTERFACE, CALL, LOOP using original
compiled COBOL code. Those step representations aiso
use the step work type, NEW, MOD, DEL. Automatic
frame generator is a kind of program parser. The parsing
of program to step frame used the COBOL reserved
words.

Step representations in above paragraph comprise the
process of maintaining consistency of case base. Above
all it is important for historical series of maintenance
event. Maintaining consistency of case representation in
case base can be camied out with result step
representation. The result step representation is followed
code manipulation with recommenation. Full result step
information is attatched to the related result module in
case representation.

Let's see this process with KEPCO(IS)190.05-2754.
A example is a pat of KEPCO(IS)190.05-2754-
CAM30JOIJ as followed.

(CAM30J0OJ-3321-FARE-COMPUTE-5-1, CALL,
NEW, (CAJ94101), (CADANLD, CAOVERFLD))

(CAM30JOJ-3321-FARE-COMPUTE-5-2, CALL,
MOD, (CAJ92201), (CADANLD))

(CAM30J0OJ-3321-FARE-COMPUTE-5-2, CALL,
DEL, (CAJ91601), (CADANLD))

Remarkable condition or constraint in above
representation is, reswlt representation in the related
result moulde frame must be written with only modified
parts of the module then or new created parts on new
requirement. From this remark, if requirement input is
entered with the same scope as previous creation case,
then not only the past creation case but also later modified
cases on that requirement input must be considered.

5. &’W Maintenance Supporting ES

Cased based supporting expert system is embedded to
the module based full scale search expert system of
KEPCO software maintenance supporting systems
project (SWMES project) with UNiK-FRAME and C
language.

Our SWMES was implemented thorough the
environment of UNiK (UNified Knowledge). It
constructed with 5 knowledge base on UNiK-FRAME
and 2 inference machine, case based inference engine and
module search inference engine.

Program-knowledge Base - It is derived from
KEPCO system's compiled COBOL codes through the
automatic frame generator. Source codes are like RUN
JCL code, PSB Gen code, DBD Gen code, MFS code,
COPY IO(DB, file), table and screen inluding
compiled codes.

Rule Base - It is acquired from company regulation
and so on.

Keyword Base - It is extracted from various text like
rule, regulation, convention and so on. Each keyword
is connected to one or more variables of COBOL
program.

Data Base

Case Base

Addition to theses knowledge bases, there is another
one knowledge base.

S/W source code Base which contain the compiled

IMS COBOL source code which run in IBM hardware

environment. It is the input data for automatic frame
generator.

USER COBOL
source
code
)
Rule Data eyword Automatic
Base Base Base Frame
Generator

Requirements

USER for maintenance

Partial Match

P m
=
Base

Cass
e Case Output Module
Based Search
Inference
cass input

Inference

Figure 5-1. Architecture of SWMES

—298—

Our case based S/W maintenance supporting expert
system is composed with the variations of the following
CBR concepts written in UNIK and C language.

Discrimination network [Hammond, 1989] for case
memory construction.

Parallel representation [Hinrichs, Kolodner, 1992] for
finding correspondences.

Abstraction hierarchy [Kolodner, 1993] for similarity
between keywords.

Module search inference machine as one inference
machine in SWMES except for case based inference
engine find matching steps by full scaled search on
COBOL program knowledge base with interaction of
keyword base. It make requirement input with the similar
process like in case based inference.

Automatic frame generator is a kind of program
parser which extracted step frame consisted with six step
type and its keywords, variables and parameters from the
compiled COBOL code. For the purpose of easy
comprehension of step framed information, SWMES
provides this automatically generated step frames of one
program with the step diagram of GUI(Graphic User
Interface).

6. Conclusion and Future Works

We analyze and represent the case of software
maintenance in COBOL domain. We organize the cases
in memory construction and develop case based software
maintenance supporting expert system.

The major contributions of this research can be
summarized as follows. For the purpose of efficient result
generation with past maintenance case,

1. Suggest methodology for case representation and
organization of case memory on software maintenance
hardly depended on keywords using requirement
types, framework of IS and others.

2. Design and develop a expert system which has the
following characteristics.

Diminish search space compared to only keyword
based system and module search inference system in
SWMES.

Parallel representation for easy finding
comrespondences between input case and stored cases.
Organize case memory for efficient case retrieval to
the requirement input.

Generate the maintainable step results.

Followings are further research direction on this
research.

1) Extend language domain addition to the current
COBOL domain.

If we extend the domain language from which is used
in the automatic frame generator to the applicable
language, it will be very useful to support the software
maintenance work on that language domain. It can be a

suggestion for another or more powerful automatic frame
generator on another language domain.

2) Extend the case's capability to program knowledge
whcih has the capability of direct reuse case's contents.

It can be the hybrid system of CBR and /W reuse
concept. If this is possible, It can be powerful system
which has the some capability of automatic
programming.

ACKNOWLEDGEMENT

SWMES project was supported by KEPCO. Thanks
to the business manager of KEPCO, Sang-Kyu Chun, for
this paper’s real world configuration data and information
providing,

References

1. Bonnie W. Morris, "SCAN: A Case-Based Reasoning
Model for Generating Information System Control
Recommendation”, Intelligent Systems in Accounting,
Finance and Management, Vol 3, 47-63, 1994.

2.DJ.Robinson, K.H.Bennett, B.J.Comelius, and
M.Munro, "Approaches to program Comprehension”,
Journal of systems and software, Feb, 79-84, 1991.

3. D.Ourston, "Program Recognition”, TEEE Expert,
Winter, 3649, 1989.

4.E. Youdon, "Reengineering, Restructuring and
Reverse Engineering.” Amercan Programmer, Apr.
1989, 14-20

5. Gilles.Fouque and Stan Matwin, "4 case based
approach to software reuse", Journal of Intelligent
Information Systems, Vol 1, 165-197, 1993.

6. Golding,A.R. and Rosenbloom,P.S., "Improving Rule
Based Systems Through Case Based Reasoning.”,
AAAI-91 Case Based Reasoning, 1991

7.Jae-Kyu Lee and Min-Yong Kim, ‘Case-Based
Learning for Knowledge-Based Optimization
Modeling System: UNIK-CASE", Expert System with
Application, Vol. 6, 1993.

8. Janet L. Kolodner. "An Introduction to Case-Based
Reasoning”, Attificial Intelligence Review 6, 3-34,
1992.

9.Janet L. Kolodner. "Extending Problem Solver
Capabilities Through Case-Based Interface”,
Proceeding of Machine learning Workshop,
167-178,1987.

10.Janet L. Kolodner. "Improving Human Decision
Making through Case-Based Decision Aiding”, Al
Magazine, 52-68, summer, 1991.

11.Janet Kolodner. "Case-Based Reasoning”, Morgan
Kaufmannn Publishers, Inc. 1993.

12Juan EVagars and Savita Raj "Developement
maintainable expert systems using case base
reasoning”, Expert Systems, Vol 10, No 4, November
1993

—299—

13.Katia P. Sycara and D. Navinchandra “Infegrating
Case Based Reasoning and Qualitative Reasoning in
Engineering Design", Al in Design JS Gero(ed)
Springer-verlag, NewYork, 1989

14 KEPCO, "A study on the efficient computer system
management - Module Bank" KEPCO, 1989.

15Kristian J. Hammond. "Case-based Planning:
Viewing Planning as a Memory Task Perspective in
Artificial Intelligence”, Academic Press,Boston, MA.
1989

16 Kristian J. Hammond. "CHEF: A Model of
Case-based Planning”, AAAI, 267-271, 1986

17 Kuipers, BJ. "Qualitative simulation” Artificial
Intelligence, Vol 29, 1986

18 M.F.Dunn and J.CKnight, "Sofiware Reuse in an
Industrial Setting: A Case Study”, Proc. 13th Int
Conf. on Software Engineering, 1991, 329-338

19.M.Ramesh and H.Raghav Rao, “Software reuse:
Issues and an example”, Decision Support Systems,
Vol 12, 57-77, 1994,

20.Mark Kriegsman, Ralph Barletta "Building a Case
Based Help Desk Application”, IEEE Expert 1993,12.

2IMTHarandi and J.QNing, "Knowledge-Based
Program Analysis”, IEEE Software, Jan. 1990, 74-81

22 Navinchadra, D., "Case Based Reasoning in
CYCLOPS, a design problem solver”, Proceedings of
the DARPA Workshop on Case based Reasoning,
May 10-13 1988, 286-301

23.Paul Harmon. "Case Based Reasoning I, Intelligent
Software strategies Vol. 7, No 11, 1991 NOV.

24.Paul Harmon. "Case Based Reasoning 11", Intelligent
Software strategies Vol. 7, No 12, 1991 DEC.

25RAmold and W.Frakes, "Soffware Reuse and
Reengineering”, CASE Trends, Feb, 1992.

26.Robert S.Amold, "Software Reengineering” |EEE
computer society press, 1993.

27 Rissland,E.L. and Sakalak,D. "Combining case based
and rule based reasoning : A heuristic approach”
Proceeding of IJCAI-89 San Mateo, CA:Morgan
Kaufmann.

28.Robert S.Williams, “Learning to program by examing
and modifying cases”, Machine learning, 318-324,
1988.

29.Robert T.Chi, Minder Chen, Melody Y, Kiang
"Generalized Case Based Reasoning System for
Portfolio Management”, Expert Systems with
applications, Vol.6, 67-76, 1993,

30.Schank,R. and C, Risebeck. "Inside Case-Based
Reasoning". Lawrence Erlbaum Assoc., Hillslad, NJ,
1989.

31.Simoudis,E., and Miller,).S. "Validated retrieval in
case based reasoning”, Proceedings of AAAI-90.
Cambridge, MA:AAALI press/MIT press.1990

32.Stephen Slade. “Case-Based Reasoning: A Research
Paradigm", Al Magazine, 42-55, spring, 1991.

33.Sycara K. and Navinchadra, D., “Index transformation
and generation for case retrieval”, Proceeding of the
Case Based Reasoning Workshop, Pensacola Beach,
Fla., May 1989, 324-328.

34.Thomas J. Schult and Dietmar Janetzko "“Case Based
Expert System Shells : First and Second generation”,
proceeding on WCES '94, 1994

35.T.) Biggerstaff, "Design Recovery for Maintenance
and Reuse", IEEE Computer, Jul. 1989, 36-49

