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ABSTRACT: This paper deals with the local buckling characteristics and the energy absorption of thin-
walled expansion tubes during tube flaring processes. The local buckling load and the absorbed energy 
during the flaring process were calculated for various types of tubes and punch shapes by finite element 
analysis. The energy absorption capacity of the expansion tube is influenced by tubes and punch shapes. The 
parametric study shows that the absorbed energy of the expansion tube increases as the diameter and the 
wall thickness of tubes increase. Larger punch angle and expansion ratio also improve the energy absorption. 
However, local buckling takes place relatively easily at larger punch angle and expansion ratio. Local 
buckling loads are also influenced by both the tube radius and thickness. Accurate prediction of the local 
buckling load is important to improve the energy absorption of the expansion tube since the absorbed energy 
of an expansion tube decreases significantly when local buckling occurs. Local buckling loads were 
predicted by modification of the Plantema equation and compared with numerical results. A modified 
Plantema equation shows a good agreement with the numerical result. 
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1 INTRODUCTION  

Energy absorption mechanism of an expansion 
tube is mainly expansion of the tube diameter by 
pushing a conical punch into the tube while the 
bottom of the tube is fixed. It is noted that the 
specific energy absorption for an expansion tube is 
not efficient compared with the crushing energy 
absorber [1].  However, an expansion tube can 
reduce the crushing acceleration since the reaction 
force during expanding process increases gently 
compared to the other types of energy absorber. A 
smaller peak load can reduce the damage in the 
main equipment caused by the crushing 
acceleration. The other advantage of an expansion 
tube is that the total length of an expansion tube 
can be used for energy absorption. For that reason, 
an expansion tube can absorb the crash energy as 
much as a crushing energy absorber since the total 
length of a crushing energy absorber cannot be 
used for energy absorption. In spite of those 
advantages, an expansion tube cannot be used for 
the equipment which needs weight reduction 
because of the heavy weight of a punch for 
expanding a tube. Therefore, an expansion tube is 

being used for heavy equipments such as a train. 
Further study for space efficiency of an expansion 
tube should be carried out in order to overcome the 
disadvantage of an expansion tube. 
The tube expanding mechanism can be referred by 
a tube flaring process. Flaring is understood as a 
forming process involving the expansion of a 
cylindrical tube which is expanded by a conical 
punch pushed into the tube. Many researchers 
carried out studies for tube flaring processes. Hill 
[2] presented a mathematical model of stress flow 
during tube expansion. It can be a general method 
for many studies on tube flaring processes. Manabe 
et al. [3-4] conducted a series of experiments 
related to a tube flaring process using the rigid 
plastic finite element theory. They investigated the 
effects of the size and mechanical properties of 
tubes, lubricants and punch angle on the flaring 
process. Elasto-plastic finite element analyses for 
tube flaring processes were presented and 
compared with experimental results by Huang et al. 
[5]. Lu [6] investigated the expansion ratio and 
punch velocity in flaring process by finite element 
analysis. Failure due to plastic buckling or necking 
is not considered in these studies although those 
are the most important instability in tube flaring 
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process. Daxner et al. [7] investigated the effect of 
local buckling and necking on the tube end in 
flaring. They found out the forming loads for 
preventing buckling and necking by finite element 
analysis and compared with experimental results. 
Almeida et al. [8] considered the effect of lubricant 
on instability phenomena in flaring process by 
experiments. Analytical expressions were derived 
for determining stress and strain fields as well as 
the force required for driving the tube expansion 
and compared with finite element solutions by 
Fischer et al. [9]. 
This paper investigates mechanism of energy 
absorption during a tube flaring process. The effect 
of a tube and the punch shape on energy absorption 
is calculated using finite element analysis. Local 
buckling characteristics during a tube expanding 
process are evaluated since local buckling has a 
critical effect on energy absorption of an expansion 
tube. For enhancement of energy absorption, local 
buckling load is predicted by a modified Plantema 
equation with respect to the tube shape. 
 
2 ENERGY ABSORPTION OF 

EXPANSION TUBES 
2.1 FINITE ELEMENT MODEL AND 

BOUNDARY CONDITIONS 
Finite element analysis is carried out for 
considering the effect of a tube and the punch 
shape on energy absorption of an expansion tube. 
Energy absorption and the buckling load of an 
expansion tube are derived by finite element 
analysis with respect to a tube and the punch shape. 
An implicit elasto-plastic finite element code, 
ABAQUS/Standard, is used for parametric study. 
An expansion tube is being used as the energy 
absorber in a safety device for light collision in a 
train. The dimensions of a tube and the punch 
shown in Figure 1 are a typical example of 
expansion tubes in a train. Figure 1 shows a finite 
element model and the dimensions of a tube and a 
punch. The axi-symmetric condition is used for 
efficiency of analysis. Nodes on the tube bottom 
are all fixed. For parametric study, each parameter 
is changed from the reference dimension in Figure 
1. 
 

 
Figure 1: Finite element model of tube and punch 

 
(a) 

 
(b) 

Figure 2: Driving force of punch from experiment 
and numerical analysis: (a) SCM440; (b) SNCM439 

 
Figure 3: Engineering and true stress–strain curves 
of TWIP steel. 

2.1.1 Friction 
The friction condition is important in an expansion 
tube since the inner surface of a tube experiences 
sliding during the expanding process. Choi et al. 
[10] carried out experiments using two materials, 
SCM440 and SNCM439. Finite element analyses 
are performed with respect to various friction 
coefficients in order to find out the friction 
conditions of experiments. Figure 2 shows the 
comparison between experimental and analysis 
results. As shown in Figure 2, analysis results by 
using the friction coefficient of 0.05 give a good 
coincidence with experimental results. In this paper, 
the friction coefficient is selected as 0.05 for all 
analyses.  
 
2.1.2 Material Selection 
In order to enhance crashworthiness of an energy 
absorber, a high strain hardening material should 
be used. In case of an expansion tube, tearing in a 
tube end can occur during the tube expanding 
process. In order to avoid tearing phenomena, 
materials for an expansion tube should have high 
elongation characteristics as well as high strain 
hardening. In this paper, TWIP steel has been used 
for a tube material. TWIP steel has not only high 
strain hardening properties but also high elongation. 
Tensile tests are carried out in order to obtain the 
material properties of TWIP steel. Figure 3 shows 
engineering and true stress–strain curves of TWIP 
steel. 
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2.2 PARAMETRIC STUDIES FOR ENERGY 

ABSORPTION  
A parametric study is carried out with finite 
element analysis in order to evaluate the effect of a 
tube and the punch shape on energy absorption. 
Each parameter is changed from the reference 
dimension in Figure 1. Parameters for the 
parametric study are the tube wall thickness, the 
tube radius, the punch angle and the expansion 
ratio. The expansion ratio means the ratio of the 
punch radius to the tube inner radius. In this paper, 
a symbol, e, represents the expansion ratio. 
In accordance with the result of the parametric 
study, energy absorption capacity of an expansion 
tube increases as the tube wall thickness, the tube 
radius, the punch angle and the expansion ratio 
increase [11]. However, buckling can occur when 
all parameters increase excessively. Figure 4 shows 
the deformed shape when buckling occurs. 
Dimensions of all parameters in Figure 4 are larger 
than those of the reference shape. Figure 5 shows 
the effect of local buckling on energy absorption. 
As shown in Figure 5, absorbed energy decreases 
significantly when buckling occurs. Therefore, 
studies to prevent buckling are needed to enhance 
the energy absorbing capacity of an expansion tube.  

 
3 LOCAL BUCKLING OF 

EXPANSION TUBES  
In the previous results, buckling is a critical factor 
in energy absorption of an expansion tube. In order 
to predict the buckling load, buckling mode should 
be determined. There are four types of buckling 
behaviors, elastic column buckling, inelastic 
column buckling, elastic local buckling and 
inelastic local buckling [12]. Local buckling is 
used to define failures that involve a major change 
in the geometry of the cross section. Buckling 
mode of an expansion tube is inelastic local 
buckling since the buckling mode is an wrinkle 
shape as shown in Figure 4 and the stress flow 
exceeds the elastic limit. 
 
3.1 PLANTEMA EQUATION 
The equation most commonly used for predicting 
inelastic local buckling of a tube is the Plantema 
equation [12]. This relationship is given by: 
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in which α is the nondimensional local buckling 
parameter which can be expressed for a circular 
tube as follows: 
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Figure 6 shows comparison between the buckling 
load predicted by the Plantema equation and finite 
element analysis. The reference tube dimension for 
comparison has a thickness of 2 mm and a radius 
of 40 mm. The tube wall thickness and radius are 
changed from the reference dimension in order to 
verify the Plantema equation for various shapes of 
tubes. The tube shape for analysis is the same as 
the one in the previous chapter. The punch shape is, 
however, a flat type since the punch angle is not 
needed for buckling analysis. As shown in Figure 6, 
the Plantema equation cannot predict the accurate 
local buckling load for various tube shapes. Hollow 
symbols in Figure 6 mean the analysis result with 
perfectly plastic assumption and those results agree 
well with the result from the Plantema equation 
since the Plantema equation did not include the 
strain hardening effect.  

Figure 6: Local buckling load of expansion tubes 

Figure 4: Deformed shape when buckling occurs 
(t=9 mm, ri =113 mm, α=35°, e=1.4) 

 
(a) 

 
(b) 

Figure 5: Effects of buckling: (a) effects of tube 
radius when t=5 mm, α=45°, e=1.3; (b) effects of 
expansion ratio when t=7.5 mm, ri =93 mm, α=45° 
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3.2 MODIFIED PLANTEMA EQUATION 

CONSIDERING STRAIN HARDENING 
EFFECT 

In order to predict the accurate local buckling load, 
the strain hardening effect should be added to the 
Plantema equation. Figure 7 shows the result 
predicted by substituting averaged compressive 
stress on fixed nodes for the yield stress in the 
Plantema equation. The result shows a good 
agreement with numerical results since the 
compressive stress includes the strain hardening 
effect. For that reason, effects of averaged stress on 
fixed nodes have to be investigated in order to 
predict the accurate local buckling load. Figure 8 
shows the relation between the averaged stress and 
the equivalent strain. For the simplicity, the 
equivalent strain is defined by the ratio of the 
punch stroke to the tube length. Figure 8 shows 
that the averaged compressive stress on fixed nodes 
follows the stress–strain curve of the material. By 
considering these results, the local buckling load 
can be predicted as follows: 

( )2

where,  (Ludwik model)
            : buckling strain

= +

= +
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cr cr

n
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        (3) 

 
The buckling strain is the equivalent strain when 
buckling occurs. Figure 9 shows the analysis result 
of buckling strain for various shapes of tubes. The 
buckling strain for each shape is propotional to the 
square value of the ratio of the tube wall thickness 
to the tube radius. Therefore, equation (3) can be 
modified as follows: 
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where k is a fitting parameter determined by the 
material properties. In case of TWIP steel, k has a 
value of 6.8. By using equation (4), local buckling 
loads for various tube shapes can be predicted with 
the fitting parameter k of each material. The fitting 
parameter of each material has to be obtained from 
finite element analysis. Table 1 shows local 
buckling loads for various tube shapes. Numerical 
results show a good agreement with the results by 
the modified Plantema equation rather than the 
Plantema equation.  
 
Table 1: Buckling load predicted by each method 

Tube shape Buckling load (kN) 
r 

(mm)
t 

(mm)
ABAQUS
/Standard

Modified 
Plantema Plantema

30 

1.5 130.8 130.2 121.6 
2.0 187.8 188.6 162.1 
2.5 255.1 256.5 202.6 
3.0 333.4 337.6 243.2 

40 

1.5 164.6 162.8 158.1 
2.0 230.0 229.8 210.8 
2.5 302.7 305.4 263.4 
3.0 385.8 390.5 316.1 

50 

1.5 206.1 204.8 202.6 
2.0 282.3 282.7 270.2 
2.5 367.2 368.6 337.7 
3.0 458.8 462.9 405.3 

Averaged error 0.7 % 11.4 % 

 
Figure 8: Behavior of averaged compressive stress 
on fixed nodes 
 

 

Figure 9: Buckling strain w.r.t. the ratio of tube wall 
thickness to radius  

 
(a) 

 
(b) 

Figure 7: Local buckling load of expansion tubes 
using modified Plantema equation w.r.t.: (a) tube 
wall thickness; (b) tube radius 
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4 DESIGN OF EXPANSION TUBE 
In order to prevent local buckling, the maximum 
reaction force of the punch should not exceed the 
local buckling load. The maximum reaction force 
for each tube shape has to be verified to compare 
with local buckling load. Figure 10 and 11 show 
the reaction force of the punch with respect to 
various shapes of tubes and punches. As shown in 
Figure 10, the initial gradient of the reaction force 
to the punch stroke, / ZP u , is related to the tube 
wall thickness and the punch angle. The tube radius 
and the expansion ratio have no effect on the 
gradient of the reaction force as shown in Figure 11. 
In accordance with the analysis results, the gradient 
of the reaction force to the punch stroke is 
proportional to the product of the tube wall 
thickness and the punch angle. In case of TWIP 
steel, the reaction force of the punch increases with 
the relation of 

4.73= ZP tuα                              (5) 
 
When the radius of a tube end is fully expanded to 
the punch radius, the increment of the reaction 
force decreases. By geometry, the radius of the 
tube end is fully expanded when the punch stroke 
reaches to the value of 

 ( ) ( 1)/ 2
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Therefore, the maximum reaction force of a punch 
can be represented as follows: 

( )max
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         (7) 

 
Figure 12 shows the reaction force predicted by 
equation (5) and (7). In some case, as shown in 
Figure 12(b), the reaction force keep increasing 
after the radius of the tube end is fully expanded 

because of the effect of friction and the 
simplification of geometry in equation (6). In this 
paper, those effects are neglected since buckling 
hardly occurs in that region. 
Local buckling predicted by the modified Plantema 
equation is the value when the punch has a flat 
shape. In case of the expansion tube, however, the 
punch shape has an inclined angle for tube 
expansion. According to analysis results, local 
buckling load decreases by 10 % of the maximum 
when the punch has an inclined angle. Following 
safety factor has to be adopted to predict local 
buckling load of the expansion tube considering the 
effect of the punch angle. 
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(a) 

 
(b) 

Figure 11: Reaction force of punch w.r.t.: (a) tube 
radius; (b) expansion ratio  

 
(a) 

 
(b) 

Figure 12: Predicted reaction force of punch: (a) 
α=45o, e=1.15; (b) α=30o, e=1.2 
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(b) 

Figure 10: Reaction force of punch w.r.t.: (a) tube 
wall thickness; (b) punch angle  
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Figure 13 shows the example of design of the 
expansion tube. A new design is carried out in 
order to improve energy absorption of the 
expansion tube occupying the same space with the 
tube in Figure 1. The tube wall thickness and the 
radius are chosen as the maximum value in that 
space, since absorbed energy increases when both 
parameters increase. The first constraint, g1, is 
determined in order to prevent tearing of the tube 
end [9]. The second constraint, g2, is determined to 
prevent outward curling. When the punch angle 
increases, outward curling can occur [13] and it 
gives a significant decrease of energy absorption. 
In addition, the third constraint, g3, should be 
determined by the modified Plantema equation to 
prevent local buckling. Table 2 shows the absorbed 
energy for each design point. In point C, absorbed 
energy increases by 101.1 %. 
 
Table 2: Absorbed energy of newly designed model 

Design 
point 

Shape Absorbed 
energy (kJ) α e 

Ref. 30o 1.15 200.0 

A 10o 1.6 181.4 

B 25o 1.5 343.0 

C 40o 1.4 404.4 

D 45o 1.3 360.1 

E 40o 1.5 295.4 (buckling) 

 
5 CONCLUSIONS 
This paper suggests a guideline to prevent local 
buckling in expansion tube design. Local buckling 
load has to be predicted in order to improve energy 
absorption of the expansion tubes. The Plantema 
equation which used to be a most common 
equation for predicting inelastic local buckling load 
could not give the accurate local buckling load. 
The Plantema equation is currently modified by 
considering the strain hardening effect and the 
modified Plantema equation gives accurate local 
buckling loads corresponding to numerical results. 
The modified Plantema equation proposed in this 
paper is able to suggest a constraint for a tube 
design to avoid a local buckling. 
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