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In this Note, we show that the size of the perimeter of (α,β)-covered objects is a linear
function of the diameter. Specifically, for an (α,β)-covered object O , per(O ) � c diam(O )

αβ sin2 α
,

for a positive constant c. One easy consequence of the result is that every point on the
boundary of such an object sees a constant fraction of the boundary. Locally γ -fat objects
are a generalization of (α,β)-covered objects. We show that no such relationship between
perimeter and diameter can hold for locally γ -fat objects.

Crown Copyright © 2010 Published by Elsevier B.V. All rights reserved.

1. Introduction

Often, the worst case lower bound for a geometric algorithm occurs when the input consists of ‘long’ and ‘skinny’ objects.
However, such artificial configurations do not occur in many ‘realistic’ inputs. This motivates the study of objects considered
to be more likely to occur in real-life applications. A number of realistic models have been introduced and studied in
the literature (see [5] for a survey). We consider four such classes of objects, namely (α,β)-covered objects, locally γ -fat
objects, ε-area-good objects, and ε-boundary-good objects. (α,β)-covered objects and locally γ -fat objects are classes of fat
objects, that is, objects that cannot be arbitrarily long and skinny. ε-area-good and ε-boundary-good objects are ‘realistic’ in
a different sense which is expressed in terms of visibility. We briefly describe the four models.

(α,β)-covered objects were introduced by Efrat [6] as a generalization of convex fat objects to a class of non-convex
objects. Roughly speaking, an object O is (α,β)-covered if for every point p on the boundary, ∂ O , of O there is a large fat
triangle contained in O that has p as a vertex. Locally γ -fat objects were introduced by de Berg [4] as a generalization of
(α,β)-covered objects. An object O is locally γ -fat if for any disk D with center p in O and not completely containing O ,
the connected component of D ∩ O containing p has area at least γ times the area of D .

An ε-good object O , introduced by Valtr [10], has the property that every point p ∈ O can see a constant fraction of
the area of O . We require this only of the points p ∈ ∂ O , and call such objects ε-area-good (this is a strictly larger class of
objects, see Fig. 7). Kirkpatrick [8] introduced a similar class of ε-boundary-good objects O , where every point p ∈ ∂ O can
see a constant fraction of the length of the boundary of O .

Table 1 shows the relations between these four classes of objects. The way to interpret the table is as follows. A YES
entry in the table means that the class of objects quantified by a constant c in the row of Table 1 belongs to the class
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Table 1
Pairwise relationships between four classes of objects.

Object class (α′, β ′)-covered Locally γ ′-fat ε′-area-good ε′-boundary-good

(α,β)-covered YES YES [4] YES (Observation 1) YES (Corollary 1)
locally γ -fat NO [4] (Fig. 6) YES NO (Fig. 6) NO (Fig. 6)
ε-area-good NO NO YES NO (Observation 2)
ε-boundary-good NO NO NO (Observation 2) YES

Table 2
Properties of the four classes of objects.

Object class Good union-complexity Good guardability Good perimeter-length

(α,β)-covered YES [6] YES [1,2], also [8] and Corollary 1 YES (Theorem 1)
locally γ -fat YES [4] NO (Fig. 6) NO (Theorem 2)
ε-area-good NO YES [1,10] ?
ε-boundary-good NO YES [1,8] ?

of objects quantified by c′ in the column of Table 1, where c′ is some function of c. The entry NO means that no such
constant exists. Trivially, all the entries on the diagonal of the table are YES. The four NO entries that are not justified by
any references are implied by the fact that thin triangles are ε-area-good and ε-boundary-good objects with ε = 1, yet they
are neither (α,β)-covered, nor locally γ -fat for any α, β , γ .

Various properties have been proven for realistic objects under various models, in particular good union complexity, good
guardability, and good perimeter-length.

The complexity of the union of n general (constant-complexity) objects can be Θ(n2), but this can only be achieved with
objects that are long and skinny (such as n triangles or line segments). The union complexity of a set of n pseudo-disks
is O(n) [7], and we consider a class of objects to have good union complexity if the union of n objects from that class has
near-linear size.

Fat objects behave more like disks as opposed to line segments, and indeed the union complexity of n fat triangles—that
is, triangles having no angle smaller than some constant α—is O(n log logn) [9]. Efrat generalized this result by showing
that the union complexity of n (α,β)-covered objects (of constant description complexity) is at most O(λs(n) log2 n log log n)

[6]. This result was later improved and generalized to locally γ -fat objects by de Berg [4]. On the other hand, since every
convex object is ε-area-good and ε-boundary-good, these classes do not have good union complexity. This is summarized
in the second column of Table 2.

A convex object can be guarded with a single guard, and we say that a class of objects has good guardability if any object
in the class can be guarded by a constant number of guards. Valtr [10] showed that ε-good objects have good guardability.
His proof, together with the main theorem of Addario-Berry et al. [1], implies the same result for ε-area-good objects.
Kirkpatrick [8] showed that ε-boundary-good objects have good guardability. Locally γ -fat objects are known not to have
good guardability, while (α,β)-covered objects have good guardability, see the third column of Table 2.

The perimeter of a convex object is at most π times its diameter, while for general objects, the perimeter length cannot
be bounded by a function of the diameter. We consider a class of objects to have good perimeter-length if the length of the
perimeter of an object is at most a constant times its diameter.

Our main result is to show that (α,β)-covered objects have good perimeter length. As a corollary, we obtain that each
point on the boundary of an (α,β)-covered object O sees a constant fraction of the length of the boundary of O , and
so (α,β)-covered objects are ε-boundary-good for some ε that depends only on α and β . On the other hand, we show
that a family of curves that converges to the Koch snowflake [11] defines a family of objects that is locally γ -fat for
γ = 3

√
3/(128π), has diameter one, but contains objects of arbitrarily large perimeter length. We leave open the question

of whether ε-area-good and ε-boundary-good objects have good perimeter-length, see the last column of Table 2.

2. Preliminaries

In this paper, by an object we mean a closed region, O , of the plane, E
2, such that O is connected and E

2\O is connected.
For an object O , ∂ O denotes the boundary of O . We say that an object O 1 is contained in object O 2, if O 1⊆O 2. The diameter
of O , denoted by diam(O ), is the maximum Euclidean distance between any two points in O . If J is a collection of Jordan
curves in the plane, the perimeter of J , denoted by per( J ), is the sum of the lengths of all the curves in J . The perimeter,
per(O ), of an object O , is per(O ) := per(∂ O ). If O is a simple polygon3 then we refer to the line-segments and their
intersection points in ∂ O as edges and vertices of ∂ O (and O ) respectively. For a simple polygon P and a vertex v ∈ ∂ P ,
the angle at v is the angle in the interior of P , determined by the two edges of ∂ P that are incident to v . For an edge with
endpoints v and w , v w denotes both the edge of ∂ P , and the line segment v w in the plane. For two points, s and t , in the
plane, st denotes the line segment with s and t as its endpoints.

3 All the polygons considered in this paper are simple.
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Fig. 1. Illustration of d-directional r-long tile at p.

Fig. 2. Illustration for the proof of Lemma 1.

An object O is (α,β)-covered if for each point p ∈ ∂ O there exists a triangle T (p), called a good triangle of p, such that:

1. p is a vertex of T (p), T (p)⊆O , and
2. each angle of T is at least α, and the length of each edge of T is at least β · diam(O ).

Notice that this immediately implies that α � π/3. For a point p in the plane, a ray at p is a half-line with endpoint at
p that is oriented away from p. The direction of a ray R is the counter-clockwise angle between the positive x-axis (rooted
at p) and ray R .

3. Perimeter of (α,β)-covered objects

Consider a parallelogram having as one of its vertices a point p in the plane and having angle α
2 at p, 0 < α � π/3. Let

d be the direction of the ray at p that bisects the angle at p. We call such a parallelogram a d-directional tile at p. If the four
edges of a d-directional tile at p have the same length r—that is, it is a rhombus—then we call it a d-directional r-long tile
at p (see Fig. 1). Let Γ denote the set of directions, Γ = {di := i α

5 | i ∈ Z,0 � i < 10π
α }. Let r(α,β) := 1

2 β sinα · diam(O ).

Lemma 1. Let O be an (α,β)-covered object. For every point p ∈ ∂ O , there exists a direction d ∈ Γ such that the d-directional
r(α,β)-long tile at p is contained in {O \ ∂ O } ∪ {p}.

Proof. Let T (p) be a good triangle at p. Since each angle of T (p) is at least α, there are three consecutive directions
di,di+1,di+2 in Γ such that for each of the three directions, the ray at p with that direction intersects the interior of T (p).
Consider the intersection, I , of the disk of radius 2r(α,β) centered at p and the region of the plane bounded by two rays at
p with directions di and di+2, as illustrated in Fig. 2. The height of T (p) is greater than 2r(α,β). Thus I⊂{T (p)\∂T (p)}∪{p}.
This completes the proof, since the di+1-directional r(α,β)-long tile at p is contained in I . �

For a fixed direction d ∈ Γ , let O d denote the set of points in ∂ O , such that for each point p ∈ O d , the d-directional
r(α,β)-long tile at p is contained in {O\∂ O } ∪ {p}. Since O is (α,β)-covered object, Lemma 1 implies that

⋃
d∈Γ O d = ∂ O .
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Fig. 3. Illustration for the proof of Lemma 2.

Lemma 2. Let O be an (α,β)-covered object. For any d ∈ Γ and any point � in the plane, let L be a d-directional r(α,β)-long tile at �.
Let �′ be the vertex of ∂L that is not adjacent to �. Then the following two statements hold.

1. If O d ∩ L 
= ∅, then �′ ∈ O and for every point p ∈ O d ∩ L, �′ is in a good triangle of p.
2. per(O d ∩ L) � 2r(α,β).

Proof. Both statements are trivial if O d ∩ L = ∅. Assume now that O d ∩ L 
= ∅ and consider a point p ∈ O d ∩ L. Since there
are at most two intersection points of the boundaries of translates of two congruent convex polygons, the d-directional
r(α,β)-long tile at p, denoted S p contains �′ . By definition of O d , S p⊂O and thus �′ ∈ O . Furthermore, S p is contained in
a good triangle of p, and thus �′ is in a good triangle of p. This completes the proof of the first claim. We now prove the
second claim.

Consider two lines that intersect at a point p ∈ O d ∩ L, one with slope d1 := d − α
5 and the other with slope d2 := d + α

5 .
The two lines divide L into four regions. Denote by L1 the region that contains � and L2 the region that contains �′ , as
illustrated in Fig. 3(a). (Note that when p lies on the boundary of L, any of the four regions may have zero area.) Since
L2 ⊆ S p ⊂ {O \ ∂ O } ∪ {p}, it follows that for all points q ∈ L2 \ p, q /∈ O d (and in fact, q /∈ ∂ O ). Similarly, for any point
q ∈ L1 \ p, p is contained in the d-directional r(α,β)-long tile at q, and thus q /∈ O d . We refer to this observation as the
empty region property of p. Each point in O d ∩ L has the empty region property. Notice that this implies that O d ∩ L is a
collection of Jordan curves such that there is at most one intersection between a line in direction d1 with O d ∩ L and
similarly there is at most one intersection between a line in direction d2 with O d ∩ L.

For a point p ∈ L, let x(p) be the intersection point of the line of slope d2 that contains p, and the ray at � with direc-
tion d1. Similarly, y(p) is the intersection point of the line with slope d1 that contains p and the ray at � with direction d2,
as illustrated in Fig. 3(a). We now show that the sum of the lengths of these Jordan curves in O d ∩ L is at most 2r(α,β).

Consider any set of n � 2 distinct points {v1, . . . , vn} on the curves O d ∩ L, sorted by increasing order of their d1-co-
ordinate, where v1 is the point in O d ∩ L with smallest d1-coordinate and vn is the one with largest d1-coordinate. By
the above, we know that they are also sorted in decreasing d2-coordinate. Let Cn be the polygonal chain with vertex set
{v1, . . . , vn} and edge set vi vi+1, 1 � i < n, as illustrated in Fig. 3(b). In what follows, we prove that for all integers n � 2
the length of Cn is at most 2r(α,β). As n goes to infinity, Cn tends to a Jordan curve C that contains O d ∩ L, thus providing
an upper bound of 2r(α,β) on the length of the curves in O d ∩ L as well.

By the triangle inequality, for each 1 � i < n,

per(vi vi+1 ) � per
(
x(vi)x(vi+1)

) + per
(
y(vi)y(vi+1)

)
.

Since each point in O d ∩ L has the empty region property, each point on Cn has a unique d1- and d2-coordinate, that is,
∀s,t∈Cn :s 
=t x(s) 
= x(t) and ∀s,t∈Cn :s 
=t y(s) 
= y(t). Therefore, since the sides of L have length r(α,β),

per(Cn) �
n−1∑

i=1

(
per

(
x(vi)x(vi+1)

) + per
(
y(vi)y(vi+1)

))
� 2r(α,β),

which completes the proof. �
Lemma 3. Let O be an (α,β)-covered object. For each d ∈ Γ , per(O d) � c diam(O )

β sin2 α
, for some positive constant c.

Proof. By Lemma 2, the portion of O d that is inside a d-directional r(α,β)-long tile, has perimeter at most 2r(α,β). Thus
to bound the perimeter of O d , it is enough to bound the number of d-directional r(α,β)-long tiles that cover O d .

Let D1 and D2 be two concentric disks with radii diam(O ) and diam(O ) + 2r(α,β), respectively. Since the radius of D1
is diam(O ), place D1 such that O ⊆ D1. Let S be a minimum cardinality set of d-directional r(α,β)-long tiles that covers
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Fig. 4. The first three objects K1, K2, and K3.

D1 (and thus O ). Note that any pair of distinct elements, Si and S j of S , must be non-overlapping, that is, the interiors
of Si and S j do not have a point in common. Such a set S exists, since d-directional r(α,β)-long tiles can tile the plane.
Thus O⊂D1⊂⋃

Si∈S Si⊂D2. The latter inclusion follows from the fact that the diameter of a d-directional r(α,β)-long tile
is at most 2r(α,β). The ratio of the area of D2 and the area of a d-directional r(α,β)-long tile, gives the desired bound on
the area |S| of S . In particular, the smaller of the two angles in a d-directional r(α,β)-long tile is 2α

5 , thus the area of each

element in S is r(α,β)2 sin 2α
5 . Since O ⊂ ⋃

Si∈S Si⊂D2, |S| � π(2r(α,β)+diam(O ))2

r(α,β)2 sin(2α/5)
= π(4+4diam(O )/r(α,β)+diam(O )2/r(α,β)2)

sin(2α/5)
.

Thus per(O d) � 2r(α,β)|S| = 2π(4r(α,β)+4diam(O )+diam(O )2/r(α,β))
sin(2α/5)

, which is at most c diam(O )

β sin2 α
, for some positive con-

stant c. �
Lemmas 1 and 3 and the fact that |Γ | = 
 10π

α �, imply the following theorem.

Theorem 1. The perimeter of every (α,β)-covered object O is at most per(O ) � c diam(O )

αβ sin2 α
, for some positive constant c.

This theorem in turn implies the following corollary. (A point x ∈ O sees a point y ∈ O if the line segment xy is contained
in O .)

Corollary 1. For every fixed α and β , every point on the boundary of an (α,β)-covered object sees a constant fraction of the length of
the boundary. In particular, every (α,β)-covered object is cαβ2 sin4 α-boundary-good, for some positive constant c.

Proof. Consider the region I from the proof of Lemma 1. An isosceles triangle with p as one of its vertices, two edges of
length 2r(α,β) incident to p and the angle 2α

5 at p, is contained in I and thus it is contained in O . Therefore, per(O p) �
4r(α,β) sinα/5, where O p denotes the set of all the points of ∂ O that p sees. By Theorem 1, per(O ) � c′ diam(O )

αβ sin2 α
, for some

positive constant c′ . Therefore, per(O p)/per(O ) � cαβ2 sin4 α, for some positive constant c. �
The above corollary, coupled with the result of Kirkpatrick [8], implies that the boundary of every (α,β)-covered polygon

can be guarded with a constant number (that depends on α and β) of guards. This result had already been shown with
constant 8

√
2π 1

αβ2 by Aloupis et al. [2]. A recent result by Addario-Berry et al. [1] states that if the boundary of a polygon

can be guarded with g guards then its interior can be guarded with an additional 4g − 6 guards. Thus both the boundary

and the interior of every (α,β)-covered polygon can be guarded with at most 40
√

2π
αβ2 guards.

4. Perimeter of locally γ -fat objects

We now show that locally γ -fat objects do not have good perimeter-length, by constructing a family of objects that are
locally γ -fat with γ = 3

√
3/(128π), have diameter at most one, and contain objects of arbitrarily large perimeter length.

Our family is comprised of the objects bounded by the curves that converge to the Koch snowflake [11]. Object K1 is an
equilateral triangle, whose circumcircle C1 has diameter one. We obtain Ki+1 from Ki by dividing each edge of Ki into three
segments of equal length, and attaching an equilateral triangle to the middle segment. Fig. 4 shows the first three objects
of this sequence. The perimeter of the objects Ki grows to infinity [11]. Every Ki is contained in the circumcircle of K1, and
so their diameter is bounded by one. It remains to show that all Ki are locally γ -fat for γ = 3

√
3/(128π) (a conservative

bound).
The Koch construction can be represented as a tree T as follows: The root of the tree is the triangle K1. The children

of a node are the triangles that are attached to it in a later stage of the construction. (So the root node has three children
added in the construction of K2, six nodes added in the construction of K3, etc.) It is known that a triangle � is contained
in the circumcircle of all its ancestor triangles in T . We let r(�) denote the radius of the circumcircle of triangle �.
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Fig. 5. Illustration for Observation 2.

Consider now a disk D with radius r and center p in Kn , for some n, such that D does not completely contain Kn . Let
�p be the first triangle during the construction that contains p. If D does not completely contain �p , then we are done as
the equilateral triangle �p is locally γ -fat.

So assume �p ⊂ D , and let �1 be the smallest ancestor of �p such that r < 4r(�1). There must be such a triangle as
otherwise Kn ⊂ D . We distinguish two cases.

If �1 = �p , then D ’s area |D| = 2πr2 < 2π(4r(�p))2 = 32π(r(�p))2. The area of an equilateral triangle with circumcircle
radius ρ is (3

√
3/4)ρ2, and so

|�p|
|D| >

(3
√

3/4)(r(�p))2

32π(r(�p))2
= 3

√
3

128π
= γ .

Consider now the case that �1 
= �p . All triangles � that are ancestors of �p and descendants of �1 have r � 4r(�),
which implies that � ⊂ D . It follows that the union of these triangles is connected, and connects p to D ∩ �1. We will
complete the proof by showing that |D ∩ �1| > γ |D|.

If �1 ⊂ D , we can argue as in the first case, and so we assume now that D does not contain �1. Let �2 be the child
of �1 that is an ancestor of �p . Since p lies in the circumcircle of �2, and �1 intersects this circumcircle, the distance d
between p and �1 is at most 2r(�2). On the other hand, we have r � 4r(�2), implying that d � r/2. It follows that �1
contains a point in D at distance r/2 from the center p, and also intersects the boundary of D . Then �1 ∩ D must contain
an equilateral triangle of side length r/2, and therefore of area (

√
3/4)(r/2)2, and so we have

|D ∩ �1|
|D| � (

√
3/4)(r/2)2

2πr2
=

√
3

32
> γ .

We summarize this section in the following theorem.

Theorem 2. For every L > 0 there is a locally γ -fat object O of diameter at most one and perimeter larger than L, with γ =
3
√

3/(128π).

5. Conclusions and open problems

Corollary 1 states that (α,β)-covered objects are ε′-boundary good, for some ε′ := ε(α,β). It is simple to see that
(α,β)-covered objects are also ε′-area-good:

Observation 1. For every fixed α and β , every point on the boundary of an (α,β)-covered object O sees a constant fraction of the area
of O .

Proof. Every (α,β)-covered object O contains a good triangle, thus the area of O is at least the area of a good triangle,
1
2 (βdiam(O ))2 sinα. Furthermore, O is contained in a disk of radius diam(O ), and thus the area of O is at most πdiam(O )2.

Therefore, for ε = β2 sinα
2π , every point on the boundary of an (α,β)-covered object O sees an ε fraction of the area of O ,

thus (α,β)-covered objects are ε-area good. �
This raises the question if ε-area-good objects are ε-boundary-good for some ε′ := ε′(ε), or vice versa. As stated in the

following observation, the answer is no.

Observation 2. There exists no ε′ := ε′(ε) such that every ε-good object is ε′-boundary good. Similarly, there exists no ε′ := ε′(ε)

such that every ε-boundary good object is ε′-area-good.

To see this, consider the object in Fig. 5. It is the union of a square and a long thin rectangle. If the square and rectangle
have the same area, then every point can see at least half the area of the object, however the top right corner of the square
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Fig. 6. A locally fat object.

Fig. 7. An ε-area-good object that is neither ε-good nor ε-boundary good.

does not see a constant fraction of the perimeter. Thus every object in this class is 1/2-good, but there exists no constant
ε′ such that every object in the class is ε′-boundary-good. Similarly, if the square and rectangle have the same perimeter,
then every point can see at least half the perimeter, however the top right corner of the rectangle does not see a constant
fraction of the area. Thus every object in this class is 1/2-boundary-good, but there exists no constant ε′ such that every
object in the class is ε′-area-good.

De Berg [4] introduced the class of locally γ -fat objects and proved that, for some γ := γ (α,β), every (α,β)-covered
object is locally γ -fat; and that there exists no α := α(γ ) and β := β(γ ) such that every locally γ -fat object is (α,β)-
covered. Thus locally γ -fat objects are generalizations of (α,β)-covered objects. Locally γ -fat objects are not ε-area-good
or ε-boundary-good for any ε := ε(γ ). To see this, consider the object in Fig. 6 (which is an adaptation of a similar example
by de Berg).

The class of objects depicted in Fig. 6 also shows that locally γ -fat objects cannot be guarded by a constant number of
guards for any constant that depends on γ only.

We end with two open problems, the question marks in Table 2:

Open Problem 1.

(a) Does there exist a c := c(ε) such that for every ε-area-good object O , per(O ) � c · diam(O )?
(b) Does there exist an c := c(ε) such that for every ε-boundary-good object O , per(O ) � c · diam(O )?

Note that these questions are easy for convex objects, since every convex object has its perimeter bounded by π times
its diameter. A much stronger property is known for locally γ -fat convex objects O . Namely, Chew et al. [3] proved that for
any two points p and q on ∂ O , there is a path on ∂ O from p to q whose length is bounded by the length of the segment
pq times a constant γ ′ := γ ′(γ ).

We conclude the paper with the following figure, which demonstrates that a property that applies to every point on the
boundary of an object does not necessarily extend to the points in its interior. In particular, ε-area-good objects are not
necessarily ε-good. Consider the object in Fig. 7. It is a polygon that is the union of four rectangles, with the hole in the
middle filled in. Each point on the boundary can see at least a quarter of the area and perimeter. However, the point in the
center can only see a negligible fraction of the boundary and area.
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