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The time domain boundary element method (TBEM) to calculate the exterior sound field using the

Kirchhoff integral has difficulties in non-uniqueness and exponential divergence. In this work, a

method to stabilize TBEM calculation for the exterior problem is suggested. The time domain

CHIEF (Combined Helmholtz Integral Equation Formulation) method is newly formulated to

suppress low order fictitious internal modes. This method constrains the surface Kirchhoff integral

by forcing the pressures at the additional interior points to be zero when the shortest retarded time

between boundary nodes and an interior point elapses. However, even after using the CHIEF

method, the TBEM calculation suffers the exponential divergence due to the remaining unstable

high order fictitious modes at frequencies higher than the frequency limit of the boundary element

model. For complete stabilization, such troublesome modes are selectively adjusted by projecting

the time response onto the eigenspace. In a test example for a transiently pulsating sphere, the final

average error norm of the stabilized response compared to the analytic solution is 2.5%.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4774377]

PACS number(s): 43.20.Px, 43.20.Rz [NAG] Pages: 1237–1244

I. INTRODUCTION

The time domain boundary element method (TBEM),

which calculates the Kirchhoff integral based on the time

marching scheme, can directly solve various transient wave

propagation problems.1,2 However, this method suffers from

the well-known exponentially diverging instability due to

unstable high order eigenmodes, of which poles lie outside a

unit circle due to numerical approximation errors.3,4 Also, cal-

culation for the exterior problem is to be always associated

with the non-uniqueness problem, either frequency domain

boundary element method (BEM) or TBEM. It is because the

Kirchhoff integral includes fictitious internal modes of the

radiator in the same manner as the frequency domain calcula-

tion based on the Helmholtz integral.

To overcome both the non-uniqueness problem and expo-

nentially diverging instability in TBEM, the time domain

Burton-Miller approach has been proposed.5,6 This method

employs a linear combination of the Kirchhoff integral and its

normal derivative in the same way as the original frequency

domain method.7 This linear combination suppresses the ficti-

tious internal modes at all frequencies robustly and theoreti-

cally. However, the time domain Burton-Miller method still

adopts the recursive formulation in which poles can be located

outside a unit circle due to uncertain numerical errors. From

this reason, the numerical stability cannot be generally

assured. Besides, large calculation efforts are needed for exe-

cuting the hyper singular integral.

The simplest technique in the frequency domain calcula-

tion is the CHIEF (Combined Helmholtz Integral Equation

Formulation) method, which includes zero pressure constraint

equations for additional interior points.8 Although this method

is effective only on low and intermediate frequencies, i.e., in

the modal domain, the remaining fictitious internal modes in a

high frequency range are not crucial to the fidelity of the solu-

tion. It is because the fidelity of a high frequency solution has

already been degraded due to the finiteness of element size

that increases numerical approximation errors with frequency.

However, in the time domain calculation, the response often

suffers the exponentially diverging instability caused by some

unstable high order fictitious modes even if low order ficti-

tious modes are fully suppressed. Due to this reason, the

CHIEF method has been hardly realized in time domain. As a

rare trial, the CHIEF constraint equations at all time steps are

solved in the non-iterative one-step calculation.9 However, it

does not seem to be a proper method if it is to be used for the

time stepping calculation, and a much larger calculation effort

is required to deal with a huge overdetermined matrix.

Because the algorithm structure of this previous work is sim-

ple, further development of the computational method may

yield a promising result.

In this paper, a time domain CHIEF method is suggested

to stabilize the TBEM calculation for exterior problems.

This method includes additional zero pressure constraint

equations for the interior points inside the closed body con-

sidering the shortest retarded time between the boundary

nodes and an interior point. To stabilize the remaining unsta-

ble high order fictitious internal modes the filtering method

based on the eigen-analysis10 is used, in which troublesome

components are selectively adjusted after projecting the

TBEM response onto the eigenspace. In contrast to the previ-

ously suggested solution using the Burton-Miller approach,

the present method does not involve the hyper singularity

and always satisfies the necessary condition to stabilize

the unstable poles causing the exponential divergence. The
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suggested method is verified with the stabilized results from

the calculation of the transient sound field from an impul-

sively pulsating sphere.

II. TIME DOMAIN CHIEF APPROACH

The time domain acoustic BEM is based on the Kirchhoff

integral equation as1
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where c(r0) is the solid angle at field point r0, t0 is the current

time for calculation, p(r,t) is the pressure at location r and at

time t, S is the domain boundary, Rs is the distance between

the field point r0 and the surface point rs (Rs¼ jr0 � rsj), tret

is its corresponding retarded time (tret¼ t0 � Rs/c0), c0 is the

speed of sound, n is the unit normal vector toward the acous-

tic domain of concern, (@/@n) is the normal derivative on the

surface, and c is an external source function of the point

source located at s.

By using the conventional BEM technique and taking all

boundary nodes as field points, the surface Kirchhoff integral

equation can be approximated in a discrete form as follows:2
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Here, C is the diagonal matrix containing the solid angles at

boundary nodes, Pn and Un are the surface pressure and ve-

locity vectors at the discrete time nDt, respectively, Dt is a

time step size, ai, bi, and ci denote the coefficient matrices

for the surface variables at (n � i)Dt, W is the maximum re-

tarded time steps related to the longest distance between

boundary nodes, and Pi
n is an incident surface pressure vec-

tor from the external point source at nDt.
Similar to the frequency domain BEM case, the time do-

main CHIEF approach uses additional zero-pressure constraint

equations for some selected interior points inside the radiator

surface. However, the time domain approach does not constrain

the steady state surface variables but it constrains the responses

at the present time nDt by considering the shortest retarded

time, lCDt, between all boundary nodes and the interior CHIEF

point rC. In other words, the pressure at the additional interior

CHIEF point at (nþ lC)Dt is set to be zero as follows:
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Equation (3) can be discretized as
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where ai
C, bi

C, and cC
i denote the coefficient matrices for the

CHIEF equation. One can see that only the unknown surface

pressure vector Pn at the current time step can be constrained

by using a time delay lCDt. A longer or shorter time delay

than lCDt cannot be used in the time stepping TBEM algo-

rithm because their constrained equations include the

responses at the incoming time steps or already calculated

known responses at previous time steps. Combining Eqs. (2)

and (4), the overall equation can be formulated in an over-

determined form as
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Restructuring Eq. (5), one can obtain the following equation:
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Here, mDt is the maximum retarded time, which is related to

the geometric time delay of the longest distance between

boundary nodes and the numerical time delay due to both

temporal discretization and interpolation, and wi and ui are

rearranged non-square coefficient matrices. Equation (6) can

be expressed as

Pn ¼ w�1
0

�
�
Xm

i¼1

wiPn�i þ
Xm
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/iUn�i þ Pi
n

0

� ��
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It shows that the unknown radiated or scattered sound field

Pn at the current time step can be calculated from the inci-

dent surface pressure and velocity vector at the current time

step and the vectors of previous surface variables within the

maximum time step. Mathematically, this final formulation

adopts the recursive, discrete convolution sum of a multi-

input multi-output (MIMO) infinite impulse response (IIR)

system in the same manner as the original TBEM formula-

tion.10 Although this MIMO IIR system enables an efficient,

direct calculation of time response, the recursive structure

itself often causes the instability that diverges exponentially.

The eigensolutions of this MIMO IIR system represent natu-

ral internal modes for interior problems and the fictitious in-

ternal modes for exterior problems. When the numerical

approximation error exists, the poles of some of the eigenso-

lutions can be outside a unit circle in complex domain.

If the suggested CHIEF method is used, the low order

fictitious modes within the reliable frequency range, which

are determined by the characteristic size of the boundary ele-

ment, can be damped in full extent. In comparison with the

time domain Burton-Miller method,5 the present CHIEF
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method has a merit that the hyper singular integral needs not

to be evaluated. However, the TBEM calculation after using

the suggested CHIEF method may suffer the exponentially

diverging instability yet, due to remaining unstable high

order fictitious modes. High order fictitious modes are prone

to be amplified due to the additional numerical error by

expanding the system in an over-determined manner. Such

remaining instability at high order modes can be stabilized

by the filtering method in Sec. III.10

III. FILTERING METHOD BASED ON EIGEN-ANALYSIS

A. Eigen-analysis

The recursive MIMO IIR formulation of Eq. (7) can be

rewritten as11
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The above equation can be simply expressed as

hPin ¼ MhPin�1 þ hUin; (9)

where hUin is given by boundary conditions and the exter-

nal source function, hPin represents the sequence of surface

pressure vectors during the maximum time delay, and ()þ

represents a Moore-Penrose pseudoinverse. The eigensolu-

tions of the single iterative matrix M determine the charac-

teristics of the fictitious internal modes in TBEM

calculation. The eigenvector describes the time marching

radiation mode shape of the fictitious internal mode. Also,

the eigenvalue ki, which represents the change rate of the

corresponding mode per single time step, determines the

modal frequency and decay rate.4,10 Exponentially diverg-

ing instability occurs when the magnitude change rate jkj
becomes larger than 1 due to numerical approximation

errors.11

B. Filtering for stabilization

To stabilize the exponentially diverging instability

caused by the remaining unstable high order fictitious

modes, the filtering method based on the eigen-analysis10 is

used. The time response can be expanded into the eigenspace

and its complementary space as follows:

hPin ¼
XN

i¼1

diðnDtÞ � huii

" #
þ ðI � hUihUiþÞhPin:

(10)

Here, di(nDt) is the ith modal coefficient at nDt, huii is the ith
eigenvector, N is the number of total eigenmodes, hUi is the

eigenspace, i.e., the set of all eigenvectors, and (I-hUihUiþ) is

its complementary space. In this case, the modal components

can be filtered as

h ~Pin ¼
XN

i¼1

diðnDtÞ � Fi � huii

" #
þ ðI � hUihUiþÞhPin;

(11)

where f ~Pgn denotes the filtered response and Fi is the filter

coefficient representing an artificial damping to the ith eigen-

mode. Then, the sequential time response at the next time

step can be given by

hPinþ1 ¼ Mh~P~in ¼
XN

i¼1

diðFikiÞhuii

" #

þMðI � hUihUiþÞhPin: (12)

One can find that the magnitude change rate is replaced by

F�jkj. Thus, by setting F�jkj to be less than 1, the necessary

stability condition for the magnitude of the eigenvalue can

be generally satisfied. Equation (12) can be rewritten in a

matrix form as

hPinþ1 ¼ M0hPin ¼ M½hUiFhUiþ

þ ðI � hUihUiþÞ�hPin: (13)

Here, F is the diagonal filter matrix, of which diagonal

entries are Fi. It shows that the calculation at the next time

step can be progressed by only the modified single iterative

matrix. In other words, the procedure of modal decomposi-

tion, filtering, and expansion is not needed to be executed at

each time step.

If the troublesome eigenvalues are replaced by those

less than one, the exponentially diverging instability can be

avoided. In the viewpoint of fidelity, improvement can be

attained by modifying troublesome eigenvalues to be closer

to a unit circle. However, the amount of improvement is not

very influential because the finiteness of the element and

time step has already caused the degradation of fidelity of

solutions at such high frequencies. On the other hand, the

low order unstable modes could not be stabilized even after

using the spectral filtering because the proper determination

of their filter coefficient is nearly impossible without degrad-

ing the fidelity of the solution. More fine mesh and smaller

time step are needed to reduce the numerical discretization

errors further. With the same rationale, for the exterior prob-

lems the filtering method could not be used exclusively with-

out the proposed time domain CHIEF technique for

suppressing the low order fictitious modes. In this work, after
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using a sufficiently fine mesh and time step as well as apply-

ing the proposed CHIEF method, the eigenvalues of the

remaining unstable high order fictitious modes are selec-

tively adjusted to become 1 (F�jkj ¼ 1), and the other stable

modes are not changed at all (F¼ 1).

IV. TEST EXAMPLE AND DISCUSSIONS

Sound radiation from an impulsively pulsating sphere is

dealt with as a test example. The radius of a sphere is 0.25 m,

and the boundary element model is composed of 458 nodes and

228 quadratic triangular elements. The maximum element size is

0.150 m, so the high frequency limit for a reliable frequency

range is 0.77 kHz under the k/3 criterion with a maximum

modeling error of 5%.12 The time step size Dt is 0.0625 ms

(fs¼ 16 kHz), of which the ratio to the minimum distance

between nodes, i.e., c0Dt/Dhmin, is 1.03. An octave band impulse,

which is the inverse Fourier transform of an octave bandpass fil-

ter centered at 0.5 kHz, is given as the input normal velocities on

all boundary nodes. The analytically calculated modal parame-

ters of the lowest ten fictitious modes are summarized in Table I.

In Table I, the index (l,n,m) denotes the mode shape of a ficti-

tious internal mode expressed in spherical coordinate (r,h,w):

Ulmn¼ [c1�cos(mw)þ c2�sin(mw)]�Pn
m(cos(h))�jn(kr). Here, c1,

c2 are arbitrary constants, Pn
m denotes the associated Legendre

polynomials, a is the radius of spherical radiator, and ka is the

lth zero of the spherical Bessel function jn.
As an initial attempt to find any clue for the proper loca-

tion and number of CHIEF points, the sound radiation from a

harmonically pulsating sphere with a frequency of the (1,0,0)

fictitious mode is calculated. Figure 1 shows the magnitude of

the radiated sound varying the radial distance of a single

CHIEF point, and a comparison is made with the analytic

solution. In this calculation, the spectral filtering is used to

solve the exponentially diverging instability caused by the

remaining high order unstable modes. Like the frequency do-

main BEM, the suggested time domain CHIEF technique sup-

presses the target fictitious mode to be smaller and smaller as

the additional interior point becomes near the anti-nodal point,

i.e., the center of the sphere. The error becomes less than 5%

for r� 0.025 m. However, one can see that the effect of the

fictitious mode is minimum at r¼ 0.02 m, which is not an

anti-nodal point. It is perhaps due to the fact that the numeri-

cal dissipation stemmed from discretization still persists even

after the fictitious modes are fully eliminated by the CHIEF

method. Figure 2 shows the change of frequency and decay

rate of the first fictitious mode after employing the CHIEF

method with the variation of the position of a single CHIEF

point. As the CHIEF point approaches the anti-nodal point,

the fictitious mode of concern becomes more dissipative

and its modal frequency becomes lower, which is already

well known in the frequency domain CHIEF method. On

the other hand, as shown in Fig. 3, the exponentially

diverging instability becomes steeper and the frequency

range of unstable modes becomes lower as the radial posi-

tion of a CHIEF point comes near the center of the sphere.

Because their frequencies are nevertheless higher than the

high frequency limit of the boundary element model, the

spectral filtering is yet allowable.

TABLE I. Characteristics of the lowest ten fictitious internal modes.

(l, n, m) ka Freq. (Hz) Anti-node

(1,0,0) 3.142 687.0 jrj ¼ 0 m

(2,0,0) 6.283 1374.0 jrj ¼ 0, 0.179 m

(1,1,�1), (1,1,0), (1,1,1) 4.493 982.5 jrj ¼ 0.116 m

(1,2,�2), (1,2,�1),

(1,2,�1),(1,2,�1), (1,2,2) 5.763 1260.2 jrj ¼ 0.145 m

FIG. 1. Magnitude of TBEM response from a harmonically pulsating sphere

at a frequency of the first fictitious mode as a function of the radial distance

of a single CHIEF point from the center of sphere: �, TBEM; —, analytic

solution.

FIG. 2. Modal parameters of the first pulsating fictitious mode as a function

of the radial distance of a single CHIEF point from the center of sphere. (a)

Modal frequency and (b) decay rate.
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In Table II one can find that a single good CHIEF point

at r¼ 0.02 m is sufficient to suppress the first fictitious

mode. In this test, bad CHIEF points are located near the

nodal surface. With an increased number of bad CHIEF

points, the decay rate of the target fictitious mode increases

in a similar way to that of TBEM calculation with a single

good CHIEF point. However, the error is still higher than

10%, and the fictitious modal frequency is little changed.

Table II exhibits the computation results by exclusive use of

the spectral filtering focused on the lowest fictitious mode.

Although the decay rate is set to be identical to that for the

calculation with only good CHIEF points, most responses

are too much damped down. This is because there is no

physical based strategy on how to change the eigenvalues

related to such low order fictitious modes.

Anyway, this test result suggests that the number of

CHIEF points is an important factor for effectively suppress-

ing the fictitious modes although a large number of CHIEF

points would invoke an uneconomical computation. For

more complicated models in the majority of cases, there is

no choice but to use randomly distributed CHIEF points

because anti-nodal locations are usually unknown. Thus, in

this simulation, 30 randomly distributed CHIEF points are

tested based on the assumption that their optimal locations

are unknown. Figure 4 shows modal parameters of dominant

fictitious internal modes before and after applying the time

domain CHIEF approach with 30 randomly distributed addi-

tional points. One can observe that the fictitious modes cal-

culated by the original TBEM before employing the present

FIG. 3. Characteristics of unstable modes as a function of the radial distance

of a single CHIEF point from the center of sphere: �, TBEM with the

CHIEF method; —, TBEM without the CHIEF method. (a) The lowest fre-

quency and (b) diverging slope.

TABLE II. Performance according to the CHIEF point selection method and the exclusive use of spectral filtering.

First pulsating mode Unstable modes Harmonic response at 687 Hz

fi (Hz) Di (dB/s) min(fi) Diverging slope (dB/s) Analytic TBEM

Number and condition

of CHIEF points

0 bad, 0 good 687.0 841.3 1374.1 10.0 0.3960 0.8059

0 bad, 1 good 665.7 434.6 979.8 238.8 0.3962

1 bad, 0 good 687.4 14.2 1689.5 10.0 0.7681

3 bad, 0 good 684.6 349.7 1255.9 299.5 0.4570

5 bad, 0 good 686.2 451.9 1528.0 261.6 0.4532

5 bad, 1 good 665.8 841.3 1527.9 264.7 0.3991

Use of spectral filtering only 687.0 434.6 1374.1 10.0 0.1964

687.0 841.3 1374.1 10.0 0.0941

FIG. 4. Magnitudes of eigenvalues and frequencies of the eigenmodes of

TBEM calculation: �, the lowest ten modes in Table I; [�], the other high

order modes. (a) Without the CHIEF method and (b) with the CHIEF

method.
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CHIEF method appear at the analytically calculated modal

frequencies of the fictitious internal modes satisfying the

zero of the spherical Bessel function, jn(ka)¼ 0. It is also

noted that the low order fictitious modes are hardly dissi-

pated as the magnitudes of their eigenvalues are nearly 1.

However, the dissipation is increased gradually with fre-

quency due to the increasing numerical approximation

errors. The TBEM calculation without using the CHIEF

method involves 32 unstable modes for a frequency range of

1.4 to 2.8 kHz, which is far beyond the reliable calculation

range of the boundary element model. Moreover, because

the magnitudes of their eigenvalues are very close to 1, in

which jkjmax is 1þ 7.3� 10�5 and its corresponding decay

rate,10 D, is �10.1 dB/s, the onset of exponentially diverging

instability is delayed to a very late time.

After employing the suggested CHIEF method, the low

order fictitious modes are fully damped down, as the magni-

tudes of eigenvalues of the lowest 10 fictitious internal

modes range from 0.9517 to 0.9979, which corresponds to

the decay rate range of 295 to 6890 dB/s. It is also noted that

the frequencies of fictitious internal modes become lower

than those of the original TBEM calculation without using

CHIEF method. The number of unstable modes is 20 and the

slope of exponentially diverging instability becomes much

steeper than that of the original TBEM calculation without

using the CHIEF method: jkjmax¼ 1.0019, D¼�259 dB/s.

However, because their frequencies are in the range of 1.5 to

2.8 kHz, which is far higher than the high frequency limit of

the boundary element model, further stabilization can be

done by using the filtering method in Sec. III.9

Figure 5 represents the calculated time response for a

transiently pulsating sphere with an octave band impulse

excitation centered at 0.5 kHz and its frequency spectrum

before employing the suggested CHIEF method, which are

compared with the analytical solution, i.e., the inverse Fou-

rier transform of the analytical spectrum. Although the

calculated response in early time steps agrees well with the

analytical solution, the effect of fictitious internal resonance

can be seen clearly in the late time steps as a ringing. Such a

fictitious resonant component is also contained in the fre-

quency spectrum. The resonant frequencies are actually that

of the first pulsating fictitious mode, i.e., the (1,0,0) mode in

Table I. Because of very slowly diverging slopes of unstable

modes as previously mentioned in Fig. 4, the onset of expo-

nentially diverging instability is not observed. As a parame-

ter of precision, the relative error norm is given by

e¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

ðpA½iDt��pT ½iDt�Þ2
s , ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

ðpA½iDt�Þ2
s" #

�100ð%Þ; (14)

where pA and pT denote the analytic solution and the TBEM

result, respectively. In the results before applying the sug-

gested CHIEF method, the average of relative error norm of

the surface pressure at all boundary nodes is 31.4% due to

the presence of fictitious resonance in the late time steps.

FIG. 5. Comparison of the analytic solution with the calculated surface pres-

sure from the original formulation before using the time domain CHIEF

method: ——, TBEM; - - - - - -, analytic solution. (a) Time response and (b)

frequency spectrum.

FIG. 6. Comparison of the analytic solution with the calculated response of

TBEM by using the time-domain CHIEF technique: ——, TBEM; - - - - - -,

analytic solution. (a) Time response and (b) frequency spectrum.
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In Fig. 6(a), the calculated response after employing the

suggested CHIEF method is depicted in which the resonant

components of low order fictitious modes disappear. However,

it is observed that the enlarged maximum magnitude of the

eigenvalue causes the divergence at late times growing up very

rapidly after 0.4 s. Figure 6(b) also shows that their frequencies

are beyond the reliable frequency range of the selected bound-

ary element model. For a complete stabilization, such high

order unstable modes should be adjusted by using the filtering

method10 which hardly degrades the fidelity of the solution

because of their high frequencies. Figure 7 shows the stabilized

time response by nullifying the remaining high order unstable

modes and its frequency spectrum. The final response agrees

very well with the analytic solution and the exponentially

diverging instability disappears even at late time steps. The av-

erage of relative error norms of the surface pressures at all

boundary nodes becomes 3.4%. Figure 8 shows the stabilized

results by adjusting the eigenvalues of unstable high order

modes to be 1, i.e., F�jkj ¼ 1. In this case, the exponentially

diverging instability problem is also solved as mentioned in

Sec. III. In comparison with the results obtained by nullifying

unstable high order modes, the average of relative error norms

is reduced to 2.5% because the residue of spectral filtering

decreases as the modified eigenvalues become closer to a unit

circle in the complex plane.10 However, the errors in both cases

are within the margin of meshing error of k/3 criterion, 5%.

V. CONCLUSIONS

In this paper, a method to stabilize the TBEM calcula-

tion for exterior problems is suggested. To solve the non-

uniqueness difficulty related to the low order fictitious mode,

the time domain CHIEF method is suggested by considering

the shortest retarded time between boundary nodes and an

interior CHIEF point. In addition to the suggested CHIEF

method, the filtering method based on the eigen-analysis10 is

recommended to employ to stabilize the exponentially

diverging instability caused by the remaining unstable high

order fictitious modes at high frequencies.

In the test example, the low order fictitious internal

modes within the reliable frequency range are suppressed

completely by using the suggested CHIEF method. How-

ever, by introducing the CHIEF points, it is found that the

slope of exponentially diverging instability becomes much

steeper. Those are actually high order fictitious modes at fre-

quencies higher than the high frequency limit of the bound-

ary element model that become the source of the exponential

divergence at late times. By adjusting troublesome modes

beyond the reliable frequency range, a complete stabilization

could be achieved. The average of the relative error norm of

the stabilized final response is found to be 2.5%. In compari-

son with the previously suggested Burton-Miller approach,5

the present two-step stabilization method does not involve

the hyper singularity, and the necessary stability condition

for the magnitudes of eigenvalues can always be satisfied.
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FIG. 7. Comparison of the analytic solution with the stabilized response

of TBEM by nullifying the remaining unstable modes (Ref. 10) after using

the time domain CHIEF technique: ——, TBEM; - - - - - -, analytic solution.

(a) Time response and (b) frequency spectrum.

FIG. 8. Comparison of the analytic solution with the stabilized response

of TBEM by adjusting the eigenvalues of the remaining unstable modes to

be 1 after using the time domain CHIEF technique: ——, TBEM; - - - - - -,

analytic solution. (a) Time response and (b) frequency spectrum.
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