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Abstract: X-ray computed laminography is widely used in nondestructive 
testing of relatively flat objects using an oblique scanning configuration for 
data acquisition. In this work, a new scanning scheme is proposed in 
conjunction with the compressive-sensing-based image reconstruction for 
reducing imaging radiation dose and scanning time. We performed a 
numerical study comparing image qualities acquired by various scanning 
configurations that are practically implementable: single-arc, double-arc, 
oblique, and spherical-sinusoidal trajectories. A compressive-sensing-
inspired total-variation (TV) minimization algorithm was used to 
reconstruct the images from the data acquired at only 40 projection views in 
those trajectories. It was successfully demonstrated that the proposed 
scanning scheme outperforms the others in terms of image contrast and 
spatial resolution, although the oblique scanning scheme showed a 
comparable resolution property. We believe that the proposed scanning 
method may provide a solution to fast and low-dose nondestructive testing 
of radiation-sensitive and highly integrated devices such as multilayer 
microelectronic circuit boards. 
©2014 Optical Society of America 
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1. Introduction 

X-ray computed laminography (CL), also known as oblique computed tomography (CT), is 
an imaging modality that is usually employed in nondestructive testing (NDT) of the laterally 
extended objects such as microelectronic circuit boards. Due to the limited penetration power 
of x-rays in conventional scanners, the object is scanned in a tilted angle to the rotation axis 
so that the penetration thickness of the object always stays within the possible range of x-ray 
penetration. Although accurate tomographic image reconstruction of the object therefore is 
limited, the images obtained by CL technique are often acceptable for various inspection 
applications. Currently, in the electronic industry for example, devices like microchips for 
cell phones are undergoing miniaturization and high-density packaging [1,2]. CL enables the 
manufacturers to visualize soldering defects and to indicate missing components in such 
devices [3–6]. A number of projection data, e.g., 300 views, are required for image 
reconstruction in conventional CL which uses an analytic algorithm like Feldkamp, Davis, 
and Kress (FDK) algorithm [7]. This requirement results in undesirable features of CL that 
include a prohibitively long scanning time and high radiation dose to the devices. It may pose 
an overload problem on the x-ray tube. Particularly, the radiation damage issue is critical in 
that it may cause gross failure of commercial devices such as dynamic random-access 
memory, microprocessors, flash memories, and etc [8,9]. One possible solution to overcome 
these issues is scanning the object for a limited range of angles, which is often referred to 
digital tomosynthesis (DTS) in medical imaging area. However, Xu et al. [10] confirmed that 
image quality of DTS is inferior to that of CL. 

As an alternative, one can scan the object by taking sparse-view data during a complete 
rotation. In other words, one can take much less number of projections than is required 
conventionally. Compressive sensing (CS) theory enables us to obtain acceptable image 
quality from the incomplete data [11,12]. Unlike Nyquist sampling theory, CS theory exploits 
the sparsity of the object image function and allows image reconstruction from much less 
sampled data than is required by the Nyquist condition. The CS theory assumes that the 
objective function can be sparsely represented in some basis or in the sparsifying 
transformation of the objective function. In the CT applications, the magnitude of image 
derivative is corresponding to such a sparsifying transform. Sparsity and incoherence of data 
sampling have been exploited in the context of x-ray cone-beam CT [13]. Additionally, in the 

#212038 - $15.00 USD Received 14 May 2014; revised 20 Jun 2014; accepted 20 Jun 2014; published 14 Jul 2014
(C) 2014 OSA 28 July 2014 | Vol. 22,  No. 15 | DOI:10.1364/OE.22.017745 | OPTICS EXPRESS  17746



CS-based image reconstruction framework, the amount of sampled data can be further 
reduced by use of a prior data in some NDT applications [14]. 

In this work, we proposed a new scanning scheme namely a spherical-sinusoidal scan for 
the NDT of flat objects, and performed a comparison study by simulating four scanning 
configurations: single-arc, double-arc, oblique, and spherical-sinusoidal. The schematic 
illustrations of all the scanning configurations are shown in Fig. 1. Figure 1(a) shows a single-
arc configuration that is equivalent to CT with a limited angle or digital tomosynthesis [15–
17]. Figure 1(b) illustrates a double-arc configuration. In addition to a single-arc, the double-
arc contains one more source trajectory which intersects the first one by 90 degrees. Figure 
1(c) shows a conventional CL configuration i.e. an oblique CT, which is actively used in the 
industry for NDT of laterally extended objects. Figure 1(d) shows our proposed configuration. 
It is similar to the oblique CT with an addition that the source to rotation axis distance is 
changing in a sinusoidal fashion with respect to the source rotation angle. For all the 
configurations, the total number of views was fixed by a constant, e.g. 40 in this study. We 
implemented a total-variation minimization algorithm for image reconstruction from the data 
acquired by the above mentioned scanning schemes. Contrast and resolution property of the 
reconstructed images were analyzed both qualitatively and quantitatively particularly to the 
depth direction of the object. 

2. Methods 

In each of the four scanning schemes, for a fair comparison, we restrict the source to span on 
a spherical surface within 30 degrees with respect to the x-axis as shown in Fig. 1. It is also 
noted that detector surface always faces normal to the source position. Practically, the source 
and detector units are stationary while the object is moving in a way that can produce such a 
scanning geometry in the object-fixed coordinates. In our simulation study, the source-to-
detector and source-to-object distances were fixed by 55 cm and 25 cm, respectively. The 
detector array size was 512 by 512 with the size of each pixel of 0.62 mm. The data for image 
reconstruction was collected at 40 views on regular angular intervals in each case. Compared 
to a single-arc scan, the double-arc scan therefore contains 20 views per each arc trajectory. 
In the oblique trajectory, the source is tilted to an angle 30 degrees away from the x-axis and 
is rotating around the x-axis. We added a rocking motion to the source in the spherical 
sinusoidal scan so that the source moves toward the x-axis up to the angle θ1 while rotating 
around the x-axis. We used 5 degrees for θ1 in this work, and a six periods of sinusoidal 
motion per rotation was implemented. 

For image reconstruction, we implemented CS-inspired adaptive-steepest-descent 
projection-onto convex-sets (ASD-POCS) algorithm that has been proposed by Sidky et al. 
[18,19] which we will refer to total-variation (TV) minimization algorithm in this paper. It is 
to be noted that TV in this work was not implemented as an edge-preserving, denoising 
regularization. As has been fully discussed by Sidky et al. [18,19], TV was used to seek an 
exact image solution among the set of possible images which satisfy the data consistency 
constraint. To do so the TV minimization algorithm minimizes the 1l −  norm of magnitude of 
image derivative and seeks the solution to the following: 

 argmin s. t .
TV

z M z pz δ= − <
  


 (1) 

where z
 is the solution of the optimization problem constrained by data fidelity. Data fidelity 

term insures that the difference between calculated projection data M z


 and measured 
projection data p


  should be less than δ . The value of δ  can be found empirically and is 

task-dependent. The TV minimization algorithm consists of two steps. First step is projection-
onto convex-sets which respects the data fidelity and image pixel positivity condition. The 
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second step is adaptive-steepest-decent operation to find the minimum-TV image. The 
optimization algorithm that was utilized for minimizing the image TV is gradient decent 
method. In an attempt to move toward the minimum image TV solution, in each TV step 
gradient decent method calculates the new search direction or gradient vector by taking the 
derivative of the image TV. 

 

Fig. 1. Geometric illustration of CL configurations in 3D Cartesian coordinate: (a) Single-arc, 
(b) Double-arc, (c) Oblique, and (d) Spherical sinusoidal. 

In order to compare image quality from the four scanning configurations, spatial 
resolution and contrast of the reconstructed images were analyzed quantitatively. We 
developed a resolution-test phantom which is similar to the one that has been used in Xu’s 
work [10]. The phantom consists of a large rectangular box in which fourteen high contrast 
boxes are placed along the x-axis. The dimensions of the phantom are 2.0cm x 4.0cm x 4.0 
cm. The largest high contrast box in the phantom is a cube with each side of 1.56 mm. The 
height of rest of the boxes varied between 0.46 mm to 1.56 mm. The attenuation values of 
high contrast boxes and the background were set to be 3.0 cm−1 and 1.0 cm−1, respectively. In 
current simulation, we discretized the reconstructed image volume in 64 pixels/cm. The 
detector grid size was actually selected to be finer than that of image reconstruction grid in 
our simulation avoiding the so-called inverse crime [20]. 

 

Fig. 2. Numerical resolution-test phantom in: (a) increasing and (b) decreasing aspect ratio. 
The arrow represents the x-axis directed toward the source. 

In order to check the spatial resolution of the images in the depth direction, we placed the 
phantom in an increasing order of aspect ratio along the x-axis and also in a decreasing order 
as well. Trimmed cross-sectional images of the phantom are shown in Fig. 2. Another 
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phantom named box phantom was also developed to quantitatively analyze the depth spatial 
resolution by calculating the modulation transfer function (MTF). It was difficult to 
accurately calculate the MTF from the previously mentioned resolution-test phantom due to 
the limited number of pixels between the high contrast boxes. The box phantom is similar to 
the resolution-test phantom except that, instead of fourteen high contrast boxes, it contains 
only four equally spaced cubes. 

 

Fig. 3. Reconstructed images and midline profiles of resolution-test phantom aligned along x-
axis in different orientation: i.e. (a) increasing and (b) decreasing aspect ratio. The left top 
corner corresponds to the single-arc and the left bottom to the double-arc scans. The right top 
corresponds to the oblique and the right bottom to the spherical sinusoidal scans. 
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Fig. 4. Reconstructed images and midline profiles of the resolution-test phantom acquired by 
all the scanning schemes in different phantom orientations: i.e. aligned along (a) y-axis and (b) 
z-axis. In each first row, images arranged in an order starting from left to right with ground 
truth image, reconstructed images from 40 views in single-arc and double-arc scanning 
schemes. Similarly, in second row reconstructed images are arranged in an order starting from 
360 view in oblique, and from 40 views in oblique and spherical sinusoidal scanning schemes. 
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Fig. 5. Reconstructed images of the resolution-test phantom aligned along the x-axis in 
decreasing aspect ratio from noisy data by all the scanning schemes: (a) single-arc, (b) double-
arc, (c) oblique, and (d) spherical sinusoidal scan. 

3. Results 

The reconstructed images of the resolution-test phantom and their midline profiles for all the 
four scanning geometries are shown in Fig. 3. Note that the reconstructed images are trimmed 
vertically for a better visualization. In Fig. 3, it can be visually noticed that the image 
reconstructed from the single-arc scan shows the worst resolution. Oblique and spherical 
sinusoidal scans appear to outperform the others in terms of image resolution. In the line 
profiles, one can see that none of the scanning cases produce accurate profiles compared to 
the ground truth. This is a natural consequence of incomplete data for image reconstruction in 
all the scanning configurations. One can also notice in the line profiles that boundaries of high 
contrast boxes in cases of oblique and spherical sinusoidal scans are sharper than those in the 
other scans. 

However, the primary interest of NDT exists in detecting defects, which means that 
contrast of the image plays a key role in addition to spatial resolution. Interestingly, the 
spherical sinusoidal scan, or our proposed scheme, produced highest contrast of the boxes 
among all the scanning schemes. Higher contrast of the boxes is observed in the line-profile 
of spherical sinusoidal scan than in the profiles of other scans. Furthermore, the reconstructed 
images of the phantom with the boxes in a decreasing aspect ratio along the x-axis as shown 
in Fig. 3(b) reveal that the spatial resolution varies along the depth direction. The deeper to 
the detector direction, the worse the depth resolution becomes. This point will be 
quantitatively confirmed in the MTF analysis later in this section. 

As we have mentioned, the depth resolution property is important in NDT of laterally 
extended objects. It is worth while to mention that the in-plane resolution property is usually 
acceptable in most scanning geometries. To validate this, we have also reconstructed the 
phantoms with the boxes oriented along in-plane axes and the results are shown in Fig. 4. The 
image resolution and contrast are visually comparable in all the in-plane images and mid-line 
profiles. Interestingly, it can be also noticed from the images in Fig. 4 that the images 
reconstructed from the data at 40 views by all the scanning schemes are in a good agreement 
with the images reconstructed by the oblique scanning scheme from the data at 360 views 
which is considered a gold standard. 
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Fig. 6. Reconstructed images and MTF profiles acquired at different positions starting from 
surface to its depth in the box phantom by different scanning schemes. Reconstructed images 
are arranged in an order starting from top with (a) single-arc, (b) double-arc, (c) oblique, and 
(d) spherical sinusoidal. 

To analyze the effect of noise in the data on the reconstructed image, we added a Gaussian 
noise into the projection data of the resolution-test phantom aligned along x-axis in 
decreasing aspect ratio. The noise level in the data was set to be 1 percent. The reconstructed 
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images from the noisy data in all the scanning schemes are shown in Fig. 5. It can be seen in 
Fig. 5(a) that the noise significantly drops the resolution and contrast. Compared to the single-
arc, the image reconstructed by the double-arc shows slightly better quality as is shown in 
Fig. 5(b). However, they show poorer image quality than those reconstructed by the oblique 
and spherical sinusoidal scans as shown in Fig. 5(c) and Fig. 5(d), respectively. 

The reconstructed images of the box phantom along with their MTF profiles at four 
selected ROIs are shown in Fig. 6. Reconstructed images of the box phantom shown on the 
left side of Fig. 6 are arranged in an order starting from top with single-arc, double-arc, 
oblique, and spherical sinusoidal. ROIs were numbered in a descending order starting from 
the top of the box phantom, or near from the x-ray source. It can be seen from the plots that 
the MTF degrades from ROI-1 to ROI-4 in each of the four scanning schemes, which 
confirms our finding in the previous section on depth resolution. Additionally, a comparison 
of the MTF plots of the same ROI in all the scanning schemes ensures that the spherical 
sinusoidal and oblique scans produce a comparable resolution property in the images and that 
these scans surpass the other two scans i.e., single- and double-arc. 

Table 1. SSIM values of the reconstructed images of a resolution-test phantom. 

Scanning Schemes 
Increasing Aspect Ratio Decreasing Aspect Ratio 

ROI-a ROI-b ROI-a ROI-b 

Single Arc 0.636 0.577 0.606 0.429 

Double Arc 0.748 0.697 0.740 0.531 

Oblique 0.869 0.853 0.851 0.700 

Spherical Sinusoidal 0.910 0.901 0.886 0.794 

Additionally, we have performed a quantitative analysis that measures similarity (SSIM) 
index [21]. SSIM measures the degree of similarity with respect to image contrast, luminance 
and structure between the reference and the target images. Its value ranges between 0 and 1. 
The closer to 1 the SSIM value becomes, the more similar the two images are. The original 
phantom images shown in Fig. 2 were used as reference for SSIM calculations. Two regions 
of interest (ROIs) as defined in Fig. 2 were selected from each reconstructed image in Fig. 4, 
and the SSIM results are summarized in Table 1. 

ROI-a includes all the high contrast boxes and ROI-b restricts to include only the seven 
boxes of higher aspect ratio. As one can see, the highest accuracy of the image reconstruction 
in terms of SSIM is achieved by use of a spherical sinusoidal scan. It can be noticed from the 
results of ROI-a and ROI-b that the performance difference among the scanning geometries 
becomes larger when fine structures are under a focus. In addition, spatially varying property 
of the depth resolution makes a clear distinction in SSIM values of ROI-b between the two 
different orientations of the contrast boxes. 

4. Discussion 

The focus of this paper is to present a novel CL scanning scheme that can be practically 
implemented to improve visualization of small structures particularly along the object depth 
direction. Additionally, radiation dose to radio-sensitive devices can be much reduced by use 
of sparse scanning scheme with a CS theory-inspired image reconstruction algorithm. 

In our previous work, effects of various sparse scanning schemes were investigated on 
image quality in a CS based image reconstruction framework [14]. It was found that 
uniformly sampled and highly uncorrelated data result in better image quality. Duan et al. 
[22] also confirmed that less correlated data result in better image quality. The reason why the 
proposed scanning scheme performs better than other scanning configurations is due to the 
least correlated data among the scanning schemes investigated. As one can see in Fig. 7, the 
source trajectory circumference is larger in case of the spherical sinusoidal scan compared to 
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the oblique scanning scheme, which implies that the gap between two neighboring source 
points is also larger in case of the spherical sinusoidal scheme. For better understanding and 
clarity, we draw only one ray from each of the two consecutive source points that pass 
through the image pixel marked by the black color in Fig. 7. In each case, we highlighted the 
pixels in gray color that were sampled by both rays. It can be visually noticed from Fig. 7 that 
the sampled data are more correlated in the oblique scanning scheme than in the spherical 
sinusoidal scheme. Therefore, the higher data incoherence can be obtained in the spherical 
sinusoidal than in the oblique scanning scheme. In other words, given the number of rays per 
pixel, the CS-based image reconstruction would perform best when the rays are least 
correlated. 

 

Fig. 7. Schematic illustration of data correlation in the sampled data. 

This is the first study to our knowledge that investigates sparse scanning scheme in CL 
using a CS based image reconstruction framework. A visual comparison between the image 
sets in Fig. 3 confirms that the image reconstructed from data at 40 views in the proposed 
scanning scheme outperforms the investigated scanning schemes. Moreover, the SSIM 
measurements in Table 1 quantitatively support this. 

A study incorporating data noise was also performed to simulate more realistic situations. 
It appears that effects of noise on the image quality in single-arc and double-arc scanning 
schemes are more prominent than in the other scanning schemes. We conjecture that this is 
due to higher correlation of the data in the arc scans than that in the oblique or spherical 
sinusoidal scans. In an iterative image reconstruction framework, unlike analytic image 
reconstruction algorithms, noise in the correlated data would impair accuracy of the 
reconstruction. Particularly, in an under-sampled data situation, it would be more challenging 
for an iterative image reconstruction algorithm to meet the data-consistency when the data are 
contaminated by noise and are more correlated. 
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5. Conclusion 

In summary, we proposed a new CL scanning scheme named spherical sinusoidal scan that 
can be practically implemented for NDT of flat objects. The proposed scanning scheme 
outperforms the conventional CL scanning schemes such as oblique, single-arc and double-
arc in terms of image contrast and accuracy. In addition, it showed a comparable spatial 
resolution with that of the oblique scanning scheme. In this work, we utilized CS based TV 
minimization algorithm and successfully demonstrated image reconstruction from sparse 
projection data at only 40 views on regular interval. In conclusion, a spherical sinusoidal 
geometry can provide a solution for acquiring high contrast images for NDT of 
microelectronic devices with fast and low-dose options. 
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